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Abstract 

Background:  In Senegal, considerable efforts have been made to reduce malaria morbidity and mortality during 
the last decade. This resulted in a marked decrease of malaria cases. With the decline of malaria cases, transmission 
has become sparse in most Senegalese health districts. This study investigated malaria hotspots in Keur Soce sites by 
using geographically-weighted regression. Because of the occurrence of hotspots, spatial modelling of malaria cases 
could have a considerable effect in disease surveillance.

Methods:  This study explored and analysed the spatial relationships between malaria occurrence and socio-eco-
nomic and environmental factors in small communities in Keur Soce, Senegal, using 6 months passive surveillance. 
Geographically-weighted regression was used to explore the spatial variability of relationships between malaria 
incidence or persistence and the selected socio-economic, and human predictors. A model comparison of between 
ordinary least square and geographically-weighted regression was also explored. Vector dataset (spatial) of the study 
area by village levels and statistical data (non-spatial) on malaria confirmed cases, socio-economic status (bed net 
use), population data (size of the household) and environmental factors (temperature, rain fall) were used in this 
exploratory analysis. ArcMap 10.2 and Stata 11 were used to perform malaria hotspots analysis.

Results:  From Jun to December, a total of 408 confirmed malaria cases were notified. The explanatory variables-
household size, housing materials, sleeping rooms, sheep and distance to breeding site returned significant t values 
of −0.25, 2.3, 4.39, 1.25 and 2.36, respectively. The OLS global model revealed that it explained about 70 % (adjusted 
R2 = 0.70) of the variation in malaria occurrence with AIC = 756.23. The geographically-weighted regression of 
malaria hotspots resulted in coefficient intercept ranging from 1.89 to 6.22 with a median of 3.5. Large positive values 
are distributed mainly in the southeast of the district where hotspots are more accurate while low values are mainly 
found in the centre and in the north.

Conclusion:  Geographically-weighted regression and OLS showed important risks factors of malaria hotspots in Keur 
Soce. The outputs of such models can be a useful tool to understand occurrence of malaria hotspots in Senegal. An 
understanding of geographical variation and determination of the core areas of the disease may provide an explana-
tion regarding possible proximal and distal contributors to malaria elimination in Senegal.
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Background
Malaria is one of the major diseases that contributed to 
health problems worldwide. There were an estimated of 
207 million cases of malaria worldwide in 2012 and most 
of the estimated cases (80  %) occurring sub-Saharan 
Africa [1]. Two main factors are largely responsible for 
the deaths attributed to malaria in sub-Saharan Africa. 
First, the majority of infections in this region are caused 
by Plasmodium falciparum, the most dangerous of the 
four human malaria parasites and secondly the most effi-
cient mosquito vector, Anopheles gambiae, is widespread 
in the region and is very difficult to control [2]. The spe-
cies has a long life expectancy, strong anthropophagy, 
and high abundance, which can lead to several hundred 
secondary malaria cases from a single infected individual 
[3, 4].

The disease remains an important public health prob-
lem in Senegal, where it is mostly seasonal with its major 
incidence during the rainy season. Recent data from the 
National Malaria Control Programme (NMCP) indicate 
that malaria is endemic in more than 26 health districts, 
with an incidence rate greater than 25 per 1000 inhabit-
ants in some parts of the country.

In Senegal, considerable efforts had been made to 
reduce malaria morbidity and mortality during the last 
decade. This had resulted to a marked decrease of malaria 
cases. With the decline of malaria cases, transmission has 
become sparse in most of the Senegalese health districts.

In recent years, there has been a growing interest 
among the Ministries of Health through the NMCP in 
the use of geographical information systems (GIS) as a 
tool to strengthen the analytical, management, monitor-
ing and decision-making capacity in public health, as well 
as a tool for advocacy and communication between tech-
nical personnel, policy makers and the general public. 
This is a result of the recognition of the capacity of GIS in 
managing geographical dimensions, integrating health-
related data from various sources, helping to discover 
and visualize new patterns and geographical relations 
in data that would otherwise be difficult to identify, and 
displaying these on maps that constitute a more expres-
sive and visual representation. Recognizing the power 
of this tool (GIS) has led to a growing number of health 
studies and projects being developed by academic teams 
and health service professionals that include its use as a 
tool for identifying and characterizing malaria hotspots. 
The dependence of malaria transmission on its spatial 
and ecological context has long been recognized; hence, 
the need to study malaria disease within its explicit spa-
tial context [5, 6]. GIS has been widely applied to the 
understanding and management of malaria in Africa. For 
example GIS has been used to generate models of malaria 
occurrence [7, 8], seasonality [9, 10] and transmission 

intensity [11–16] using climatic and remotely-sensed 
data.

This study was undertaken in Keur Soce health and 
demographic surveillance site (KSHDSS). It is located in 
Ndoffane health district. This study investigates malaria 
hotspots in Keur Soce sites by using geographically-
weighted regression. Because of the occurrence of hot-
spots, spatial modelling of malaria cases could have a 
considerable effect in disease surveillance (especially in 
malaria control) in Senegal towards the certain reduction 
(if not complete elimination) of malaria infection and 
deaths.

Methods
Study area and population
The primary tool of health and demographic surveillance 
is a rigorous annual update of the demographic status 
of every member of geographically defined population, 
namely the Keur Soce Sub District of the Ndoffane Dis-
trict. This comprises 74 villages. A baseline census was 
conducted in 2010. Since then, updates have been con-
ducted, collecting information on all births, deaths and 
in-and-out-migration in the surveillance population. 
A field operation was performed each year to visit each 
of the almost 3000 households in the sub-district inter-
viewing the best respondent available, who must be ade-
quately knowledgeable of the status of household events. 
During this interview, the fieldworker verified existing 
records, recorded new data pertaining to individuals or 
the household and recorded the demographic events that 
have occurred since the preceding year’s census update. 
Enquiry into the demographic event experienced by each 
household members were supplemented by a full mater-
nity history of all in-migrant women aged 15–55 years, as 
well as residence histories, and other modules built into 
the census. The census update was conducted by two 
census teams of five fieldworkers each with supervisor 
who scrutinized GIS-based maps listing every dwelling in 
the area. The maps were kept up to date by taking GPS 
(Global Positioning System) readings of new dwellings 
each year.

A verbal autopsy was conducted on each death to 
establish the cause. The verbal autopsy interview was 
conducted by a trained lay fieldworker in the vernacular 
i.e. Wolof, and assessed by medical practitioners to estab-
lish the main cause of death, as well as immediate and 
contributing causes. In this way, a longitudinal database 
of demographic events has been established and updated 
during each round.

The Keur Soce Health and Demographic Surveillance 
Site (KSHDSS) is located in rural area in the region of 
Kaolack, in the district of Ndoffane. The area lies between 
longitudes 16°00′14.8″ and 16°07′13″W and latitudes 
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13°51′53″ and 14°00′00″N. It is located at 230  km from 
Dakar in the Sudano-Sahelian region of Senegal (Fig. 1).

Regarding its localization, the site’s ecology is charac-
terized by the alternation of a long and dry season from 
November to June and a short rainy season from July 
to October. The population of the Keur Soce HDSS in 
August 2013 was 32,601, which is less than 1  % of the 
total population of the country and about 2 % of the total 
population of Kaolack’s region. Demographic monitoring 
covers 74 villages of varying size. The main religious faith 
is Islam, with more than 97 % of muslims. The main lan-
guage spoken is Wolof.

In addition, lack of communication systems, road net-
work and electricity within the health district also affects 
the health of the population. There are two health posts 
and 15 health huts operating within the study area that 
are providing basic services to the study population. 
These include curative care, immunization, prenatal care, 
delivery, and oral rehydration therapy and malnutri-
tion management. The residential unit is the compound, 
which consists of one or more households together 
with some members of the extended patrilineal family. 
Traditional houses are huts (one for each couple that is 
married and an additional huts for young unmarried 
people). In most of the villages, there are some modern 

constructions made with cement walls and iron roofs. 
Water from taps and fountains are the main source of 
drinking water for the population. Most of the villages 
have electricity.

Subsistence agriculture is the mainstay of the district’s 
economy, complemented to some extent by retail trading. 
About 95  % of the people are farmers. The major agri-
cultural products are groundnuts, millet, maize, beans. 
Rearing of cattle, goats, sheep and fowls also form part of 
the agricultural activities. Unfortunately, the rainfall pat-
tern limits food cultivation to a single growing season.

The district has 10 primary schools, and one secondary 
school in Keur Soce village. In each of the village, there is 
a “DAARA”, i.e. an Islamic school, where children learn 
the Koran and arabic.

Passive surveillance of malaria
From June to December 2013, patients self-presenting 
at the health structures with fever or a history of fever in 
last 24 or 48 h are normally diagnosed at the health post 
and the health huts in Keur Soce health and demographic 
surveillance site system. For each patient the govern-
ment health workers routinely perform a rapid diagnos-
tic test (RDT) on a finger prick blood sample to diagnose 
malaria, and record basic details in a register.

Fig. 1  Localization of Keur Soce HDSS in Senegal
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Outcome definition
To analyse the spatial relationships between malaria occur-
rence and socio-economic and environmental factors in 
small communities in Keur Soce, Senegal, the confirmed 
malaria cases during the 6 months of passive surveillance 
were used. This was defined as any resident (any person 
who has been staying at least 3 months in the study area) 
self-presented at the health structures with fever or history 
of fever in last 24 or 48 h and had been diagnosed malaria 
positive by RDT and confirmed by microscopy.

Data collection
Blood film for “gold standard” microscopy confirma-
tion of the RDT test (which was done in parallel with the 
finger-prick sample thus avoiding the need for repeated 
sampling) was performed and an individual question-
naire was used to investigate determinant factors at the 
household level.

GIS coordinates were measured at the household level. 
The exposures of interest are the individual use of pro-
tective measures, and the coverage of control measures 
at the community level and household level. This will 
help to understand the direct and indirect effects of these 
measures. The analysis included also demographic and 
socioeconomic variables, to understand the population 
groups who are now at risk. Each patient was visited at 
home to record current ITN use (based on inspection of 
the place where the patient sleeps, net type and condi-
tion, and net use); of other interventions [including other 
antivectorial measures, and the timing of any intermit-
tent preventive treatment (IPT) doses]. Coverage of ITNs 
and other protective measures in the vicinity of the per-
son’s home; proximity to mosquito breeding sites were 
investigated. For children less than 10 years vaccination 
status were assessed with the vaccination card.

Data management and cleaning
Data were double-entered in an Access 2007 database, 
checked for errors or inconsistencies and analysed. The 
localization (longitude and latitude) of all households 
were recorded using eTrex Venture single handheld GPS 
receivers. Administrative boundary data were obtained 
from the “Centre de Suivi Ecologique” (CSE) of the Gov-
ernment of Senegal. GPS records were imported in Arc-
Map 10.2 software and checked on the polygon boundary 
map. All errors were checked at field level. Distances 
between points of interest (distance from households to 
every health facility) were calculated using ‘costed dis-
tance surface’.

Statistical analysis
The basic software used for computation, exploratory anal-
ysis, mapping and visualization is ArcMap version 9.2. This 

GIS software was chosen because it presents numerous 
extensions for spatial statistical and geostatistical model-
ling (such as GWR, spatial autocorrelation and other geo-
statistical analyst tools). Generally, these techniques were 
used to map spatial pattern, test relationships, check for 
redundancy among the explanatory variables and geo-vis-
ualization. The model’s framework is shown in Fig. 2. The 
dependent variable for this model is the confirmed malaria 
cases from June to December 2013 by village level. These 
statistical values were entered into the prepared GIS vector 
polygon map as non-spatial data. To visualize the spatial 
distribution of such data, a choropleth map was generated 
to show the prevalence of malaria within household in the 
study area. For each household a number of confirmed 
malaria cases during the passive surveillance was geolocal-
ized and mapped. Figure 3 shows the malaria prevalence 
within household. For the classification, three classes were 
produced: households with no confirmed cases, house-
holds with one to three confirmed cases and households 
with more than three cases. In order to detect malaria hot-
spots and show continuous distribution, empirical Bayes-
ian kriging model with log empirical data transformation 
method was applied on the map Fig. 4.

Basically, the first fundamental geographic question 
(the where question) regarding malaria prevalence in the 
study area has been answered by Fig. 4 (i.e. by displaying 
the location of malaria hotspots and the spatial pattern of 
distribution). The next logical geographic questions that 
follow are “why” such clustering pattern. And “what” are 
the likely factors that are associated with this observed 
pattern? The GWR is designed to answer such scientific 

Fig. 2  Methodological framework
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questions and others like, does the relationship between 
the dependent variable and the predictors varies across 
space. Which explanatory variable shows stronger influ-
ence in a certain area?

Several socio-economic, demographic and environ-
mental factors were identified and selected for the anal-
ysis as explanatory variables. Population density was 
included as a predictor variable because it may exert 
strong influence over malaria occurrence and spread (i.e. 
it is expected that malaria cases would be high in high 
population density areas).

Modeling spatial relationship
OLS and GWR spatial statistic were employed for explor-
ing the spatial relation between malaria occurrence and 
the selected explanatory variables (Table  1). The linear 
regression was used as a diagnostic tool and for selecting 
the appropriate predictors (with respect to their strength of 
correlation with the criterion variable) for the GWR model.

The multicollinearity was assessed with the variance 
inflation factor (VIF). This is defined by the equation:

VIFj =
1

1− r2j

where r2j  is the coefficient of determination when vari-
able Xj is regressed on the j − 1 remaining independent 
variables. If the VIF value(s) is greater than 10, it there-
fore indicates the existence of multicollinearity among 
the predictors. In addition, autocorrelation statistic 
was applied to detect whether there is spatial autocor-
relation or clustering of the residuals, which violate the 
assumption of Poisson regression. Progressively, the spa-
tial independency of the residuals was assessed with the 
global spatial autocorrelation coefficient Moran’s I. This 
is defined by the equation:

where: N is the number of observations (points or poly-
gons), x̄ is the mean of the variable, Xi is the variable 
value at a particular location, Xj is the variable value at 
another location, Wij is a weight indexing location of i 
relative to j.

Moran’s I values ranges from +1 (positive autocorre-
lation) and −1 (negative autocorrelation). The expected 
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Fig. 3  Spatial distribution of household with and without RDT positive
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outcome in this case is a complete random pattern i.e. no 
spatial autocorrelation.

Geographically weighted regression (GWR) has been 
developed as an extension of traditional regression to 

incorporate, detect, and account for spatial non-station-
arity in variable relationships in the model [17]. This spa-
tially localized model assumes that relationships between 
regression variables may vary over space; consequently, 
it generates a set of local line regression models rather 
than a global model, with estimates for every sample in 
space. A moving window approach allows the weights of 
each spatial unit to vary as a function of the spatial rela-
tionship between them. Namely, a local estimation of 
model parameters is derived by using a subsample of data 
from nearby observations, which are weighted by using a 
decreasing function of distance. In this way, the impacts 
of neighboring samples are stronger than those farther 
away. A threshold, called the kernel bandwidth, is speci-
fied to indicate the distance beyond which neighbours no 
longer have influence on local estimates. A geographic 
surface of models is derived with associated goodness-
of-fit statistics and localized parameter estimates such 
as R -square, standard error, and t values. These maps 
highlight possible data relationships, aid finding excep-
tions or local hotspots, and provide information on the 
nature of the processes under study. GWR coefficient 
values was used to explore the spatial variability of rela-
tionships between malaria incidence or persistence and 

Fig. 4  Malaria hotspots in Keur Soce HDSS

Table 1  Candidate explanatory variables

Variables Values

Age 0–69

Gender 0–100 % for both males and females

Household size 1–35

Village size 10–3698

Sleeping rooms 1–9

Bed net use 1–25

Distance to health Facilities 1–15

Temperature 18.1–41.7

Raining days 15–39

Housing materials Material used for walls, roof, and floor

Cow 2–125

Goat 1–66

Sheep 0–99

Donkey 0–58

Horses 0–15

Distance to breeding site 10–300



Page 7 of 11Ndiath et al. Malar J  (2015) 14:463 

the selected, socio-economic and human predictors. In 
order to determine the optimal bandwidth of the kernel 
function, the Akaike Information Criterion (AIC) was 
applied.

Ethical considerations
This study was reviewed and approved by the Senegalese 
Ministry of Health through the National Ethics Commit-
tee. All participants signed an informed consent before 
being enrolled in the study and handled a signed or 
marked with a fingerprint informed consent. All house-
hold heads signed the consent form.

Results
Clinical and demographic profile of malaria patient
Table  2 presents the socio-demographic and clinical 
characteristics of the study population. Out of a total of 
764 patients diagnosed for malaria, 408 were treated as 
malaria confirmed cases and 356 cases were malaria free 
patient.

It was seen that malaria infection in males (57.98  %) 
was more common as compared to females (42.02 %) and 
many were within the 6–15  years age group (41.49  %). 
Most of the study participant were farmers among them 
78.72 % were tested malaria positive. Almost half of the 
study participant tested malaria positive (59.04  %) were 
illiterate, and only 10.64  % of the study participant had 
completed primary school and 8.51 % had attended sec-
ondary school.

The analysis of symptoms showed that the occurrence 
of fever was notified among 70.21 % of the study partici-
pant diagnosed malaria positive. Most of the study par-
ticipant 134 (65.96  %) reported nausea and vomiting. 
Other reported symptoms were headache 184 (92.55 %) 
cases, sweating in 57 (25.00 %), and chills and shivering 
in 89 (42.02  %). Fever, nausea/vomiting and headache 
were the predominant symptoms among the study par-
ticipant with confirmed RDT’s in the Keur Soce health 
and demographic surveillance site during the 7 months of 
passive malaria surveillance.

Global model using linear regression
The results showed that all the predictors returned VIF 
values are greater than 1.0 indicating that none of the 
variables are redundant. The explanatory variables-
household size, housing materials, sleeping rooms, 
sheep and distance to breeding site returned significant 
t values of −0.25, 2.3, 4.39, 1.25 and 2.36 respectively. 
The OLS global model revealed that it explained about 
70  % (adjusted R2  =  0.70) of the variation in malaria 
occurrence with AIC =  756.23 (Table  3). The ANOVA 
returned a significant F value = 13.83 and the Wald sta-
tistic has a significant Chi-squared value =  33.39. This 

means that generally, the model prove to be statistically 
significant. Jarque–Bera statistic returned a non-signifi-
cant Chi-squared value =  2.12 (Table  4) indicating that 
the model’s prediction is free from bias (i.e. the residu-
als are normally distributed). The Chi-squared value 
(15.06) of the Koenker statistic is statistically significant. 
Importantly, it indicates relationship between some or 
perhaps all of the explanatory variables and the criterion 
variable are non-stationary or consistent across the study 
area. The explanation for this is that some independent 
variables may be important with respect to predicting the 
outcome of malaria in some villages, but in other villages 
may demonstrate weak predictive capability. It is evident 
that the model’s fitness will likely be improved with GWR 
(since the Koenker statistic detected non-stationarity in 

Table 2  General characteristics of malaria cases

Factors Malaria

Positive Negative P value

Age group

 Less than 5 years 56 (24.47 %) 61 (37.50 %) 0.000

 6–15 years 88 (41.49 %) 39 (21.32 %)

 More than 15 years 74 (34.04 %) 66 (41.18 %)

Sex

 Male 119 (57.98 %) 65 (40.44 %) 0.002

 Female 79 (42.02 %) 91 (59.56 %)

Occupation

 Farmers 158 (78.72 %) 111 (74.26 %) 0.054

 Student/Teacher 44 (18.09 %) 32 (16.18 %)

 House wife 16 (03.19 %) 23 (09.56 %)

Education

 None 121 (59.04 %) 89 (58.09 %) 0.579

 Primary 30 (10.64 %) 22 (08.82 %)

 Secondary 26 (08.51 %) 18 (05.88 %)

 Arabic 51 (21.81 %) 47 (27.21%)

Fever (Temp >37.5 °C)

 Yes 142 (70.21 %) 91 (59.56 %) 0.046

 No 66 (29.79 %) 65 (40.44 %)

Headache

 Yes 184 (92.55%) 115 (77.21 %) 0.000

 No 24 (07.45%) 41 (22.79 %)

Sweating

 Yes 57 (25.00 %) 31 (15.44 %) 0.037

 No 151 (75.00 %) 125 (84.56 %)

Chills and shivering

 Yes 89 (42.02 %) 53 (31.62 %) 0.056

 No 119 (57.98 %) 103 (68.38 %)

Nausea and vomiting

 Yes 134 (65.96 %) 35 (18.38 %) 0.002

 No 74 (34.04 %) 121 (81.62 %)

N 408 (58.02 %) 356 (41.98 %) 764
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the relationship). This is because GWR assumes that rela-
tionships across space are non-static.

Geographically‑weighted regression
Geographically weighted regression resulted in a signifi-
cantly better fit for all tested combinations of variables. 
Comparing both models with the AICc values, show 
that the value is reduced from 763.25 (for OLS model) to 
679.5 (for GWR model) (Table 5). The GWR model was 
an improvement over the global. The difference between 
Adj R2 from the global and GWR is about 10 percent. This 
is a high percentage explained value not accounted for by 
the global model. Verifying with autocorrelation statis-
tic (Moran’s I) returned a randomly distributed residuals 
with a z-score = − 1.14 and Moran index = − 0.14.

The results from GWR allow to display and visualize 
the parameter estimates of each explanatory variable 
on a raster surface. This will make the complex rela-
tionship that varies over space easier to be understood. 
The resultant surface raster for the predictors show 
that there is spatial variation in relationship between 
sources of household water supply and cholera occur-
rence across the country (Fig. 5). Positive and negative 
relationships were manifested in the result of GWR. 
The positive relationship means that as specific explan-
atories variable increase, malaria cases equally reduce. 
On the other hand, negative relationship implies as 
specific explanatories variable increase, malaria cases 
equally increase. Local coefficient estimate for each 
explanatory variables are presented in Fig.  5. The col-
our ramp is graduated from light to dark gold. Areas 
with light shade represent areas where that particular 
variable exhibit strong influence on malaria occur-
rence while dark shade represent areas where that spe-
cific variable exhibit weak or low influence on malaria 
occurrence.

The geographically weighted regression on malaria hot-
spots resulted in local intercept ranging from 1.89 to 6.22 
with a median of 3.5. Large positive values are distributed 
mainly in the south-east of the district where hotspots 
are more accurate while low values are mainly found in 
the centre and in the north Fig. 5a.

Risk factors for malaria hotspots
Generally, OLS model was able to identify important 
variables that significantly explained the occurrence of 
malaria hostpots in Keur Soce HDSS. In the analysis 
of the risk factors, only these fundamental explanatory 
variables will be analysed in detail regarding the local 
coefficients derived from GWR model. Some predic-
tors exhibited high spatial variability in the resultant 
parameter estimates of GWR model. In some cases, 
even contradicted the sign of global parameter esti-
mates of OLS model. These predictors are village size 
and distance to health facilities, both reflected a com-
bination of negative and positive coefficients across 
villages.

Among the explanatory variables, five are statistically 
significant; these are household size, housing materi-
als, sleeping rooms, having sheep in the household and 
distance to breeding site. These variables are the most 
important with respect to explaining malaria hotspots. 
Housing materials and distance to nearest breeding site 
returned a highly significant t value (i.e. significant at 
0.001). Drawing from this, there is 99 percent confi-
dence that malaria occurrence in the study area positively 
influenced by these explanatories variables. This result 
is not unexpected because these factors can encourage 

Table 3  Summary statistics for OLS

* Significant at 0.05

Variables Coefficients 
value

Std. error t statistic P value VIF

Intercept 304.8 2.453 0.58 0.456

Household size −0.02 0.044 −0.25 0.036* 1.804

Housing  
materials

0.56 0.221 2.3 0.005* 1.704

Village size −0.06 0.068 −1.56 0.562 1.479

Sleeping 
rooms

2.12 0.024 4.39 0.003* 1.223

Bed net use 0.78 0.061 9.23 0.921 1.012

Distance to 
health Facili-
ties

0.92 0.091 6.99 0.256 1.740

Sheep 0.15 0.051 1.25 0.001* 1.635

Distance to 
breeding site

0.43 0.014 2.36 0.003* 1.453

Table 4  OLS diagnostics statistics

R2   = 0.7696; Adj R2 = 0.70369; AIC = 756.23; AICc = 763.25

* Significant at 0.05

Parameters Value P value

Joint F-statistic 13.83 0.00004*

Joint wald statistic 36.39 0.00013*

Koender statistic 15.06 0.01562*

Jarque–Bera statistic 2.12 0.04303*

Table 5  Model fitness comparison

Fitness parameters OLS GWR

AICc 763.25 679.5

R2 0.76 0.95

Adj R2 0.70 0.82
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the growth of Anopheles populations and facilitate the 
malaria transmission.

The results from the GWR shown that the risk of 
malaria hotpots occurrence increase from the north to 
the south. The household located at the north at more 
at risk compared to the household located at the south 
(Fig. 5b). The results had shown that for those household 
the size varied from 10 persons to 25 persons. The hous-
ing materials are also risk factors for malaria hotpots in 
Keur Soce. The highest coefficient are mainly found in 
the centre of the study area where most of the household 
are among the wealthy quintile (Fig. 5i).

Discussion
Application of the spatial statistic methods success-
fully identified malaria clusters and clearly demonstrate 
malaria risk heterogeneity at local level. In the present 
study, the study described considerable spatial variation 
in malaria disease incidence and exposure to malaria-
infected mosquitoes in an area of stable transmission 
intensity in Senegal. Clusters of high malaria incidence 
among study participant were interpreted as hotspots 
of malaria transmission. The distribution and level of 
malaria endemicity estimated in the analysis reveals sig-
nificant spatial variation in malaria risk, which previous 

Fig. 5  Local parameter estimates of GWR. a Local intercept for malaria hotspots (shows the spatial variation in the local intercept estimated by 
GWR). b Household size (indicates how malaria hotspots would change for each spatial unit change of the household size variable). c Village size 
(indicates how malaria hotspots would change for each spatial unit change of the village size variable). d Number of sleeping rooms (indicates 
how malaria hotspots would change for each spatial unit change of the number of sleeping rooms variable). e Bed net use (indicates how malaria 
hotspots would change for each spatial unit change of the bed net use variable). f Households raising sheep (indicates how malaria hotspots 
would change for each spatial unit change of the number of household raising sheep variable). g Distance to breeding sites (indicates how malaria 
hotspots would change for each spatial unit change of the distance to breeding sites variable). h Distance to health facilities (indicates how malaria 
hotspots would change for each spatial unit change of the distance to health facilities variable). i Housing materials (indicates how malaria hotspots 
would change for each spatial unit change of the housing materials variable)
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mapping studies failed to convey. The study also identi-
fied important clinical and modifiable socio-economic 
factors significantly associated with malaria risk, some of 
which with important operational relevance to the imple-
mentation of current malaria control strategies in the 
area. The survey results can be used to validate suggested 
malaria stratification schemes and improve the malaria 
control program’s targeting of interventions. The results 
from this study support the conclusion that malaria clus-
ters may differ because of spatial variation [18] and that 
risks for malaria infection are associated with definable 
socio-demographic factors, which may be fundamental 
ecological units of malaria transmission [19]. A multi-
tude of other factors may have an impact in these mostly 
rural settings, creating a context in which the impact of 
geographical factors and social behaviours on malaria 
prevalence and incidence may be particularly relevant. 
The results from the study support the fact that Distance 
to the nearest breeding site [7, 12, 14, 19–22], walling 
material [13], and household size [7] were independent 
predictors of living in a hotspot of malaria transmission. 
Proximity to breeding sites has been shown to increase 
the likelihood of exposure opportunities to mosquitoes 
and the results confirm that households closer to rivers 
are at increased risk of Plasmodium infection [23–27].

Household characteristics have also been shown to 
increase the likelihood of exposure opportunities to mos-
quitoes; for example, some studies have suggested an 
increased risk of malaria infection in houses made with 
vegetable material, which provides favourable conditions 
for mosquito survival [28–30].

The association between vector density and environ-
mental or climatic factors has been widely studied [12, 
13, 31, 32] with rainfall and season consistently identified 
as significant factors while this study did not observe any 
association between climatic factors and malaria hotpots 
maybe due to the relative small variation in altitude.

A couple of studies have shown that increasing SES 
has a strong association with the malaria infection 
[29–32]. According to the WHO malaria report [33], 
malaria causes widespread premature death and suffer-
ing, imposing financial hardship on poor households, and 
holds back economic growth and improvements in living 
standards. Malaria flourishes in  situations of social and 
environmental crisis, weak health systems and disadvan-
taged communities.

Conclusion
In conclusion, malaria infection appears to be rare in Keur 
Soce health and demographic surveillance site while the 
transmission remains high during the rainy season. From 
the pure view of spatial extent, the hotspot analysis shows 
a strong spatial relationship of malaria occurrence in Keur 

Soce health and demographic surveillance site. A modelling 
based on GWR and OLS regression showed important risks 
factors of malaria hotspots. The outputs of such models can 
be a useful tool to understand occurrence of malaria hot-
spots in Senegal. An understanding of geographical varia-
tion and determination of the core areas of the disease may 
provide an explanation regarding possible proximal and dis-
tal contributors to malaria elimination in Senegal.
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