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Abstract: Helicobacter pylori (Hp) is a prevalent organism infecting almost half the global population.
It is a significant concern, given its associated risk of gastric cancer, which is the third leading cause
of cancer death globally. Infection can be asymptomatic or present with dyspeptic symptoms. It
may also present with alarm symptoms in the case of progression to cancer. Diagnosis can be
achieved non-invasively (breath tests, stool studies, or serology) or invasively (rapid urease test,
biopsy, or culture). Treatment involves acid suppression and regimens containing several antibiotics
and is guided by resistance rates. Eradication is essential, as it lowers the risk of complications
and progression to cancer. Follow-up after eradication is similarly important, as the risk of cancer
progression remains. There have been many recent advances in both diagnosis and treatment of
Hp. In particular, biosensors may be effective diagnostic tools, and nanotechnology, vaccines, and
potassium-competitive acid blockers may prove effective in enhancing eradication rates.

Keywords: Helicobacter pylori; gastric cancer; peptic ulcer disease; triple therapy; bismuth; vono-
prazan; dyspepsia

1. Introduction

Hp is a Gram-negative, characteristically curved bacteria that was first observed to
be present in the stomach lining in the 19th century [1,2]. It was not until 40 years ago
that its association with gastric inflammation was demonstrated [3]. The finding that Hp
could cause gastritis earned the investigators the Nobel Prize in 2005 for its myriad impli-
cations [2]. This discovery generated a massive body of research into the manifestations,
treatments, and associations of Hp infection and revolutionized our understanding of the
role of pathogens in disease [2,4].

Why Is H. Pylori Important?

Hp is strongly associated with duodenal ulcers (present in as many as 90% of cases),
gastric ulcers (up to 80%), and malignancy; it can lead to mucosa-associated lymphoid tissue
(MALT) lymphoma, as well as gastric cancer in as many as 90% of cases [5]. In 2014, the
World Health Organization (WHO) called for the elimination of Hp as a means to decrease
gastric cancer mortality worldwide, and in 2017. it deemed clarithromycin-resistant Hp
strains a serious threat to public health [6]. In this review, we will present an overview
of H. pylori disease characteristics, including epidemiology and clinical presentation, and
discuss the most recent advances in evaluation and management of this entity.

2. Epidemiology

Helicobacter pylori is highly ubiquitous [7], colonizing roughly half of the world’s
population [7,8]. The primary mechanism of transmission is yet to be identified but is
presumed to involve person-to-person transmission [9] through fecal/oral exposure. The
prevalence of Hp varies widely by region; Asia, Latin America, and Africa tend to have
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higher rates (up to 80% in some countries), whereas North America and Oceania have the
lowest rates (as low as 24%) [10,11]; those born in the 1930s have a much higher prevalence
than those born in the 1970s [10]. One meta-analysis estimated the global prevalence of Hp
at 44.3%, ranging from 34.7% in developed countries to 50.8% in developing countries [12],
and most recent studies show a continuous decline in Hp prevalence over the years [13].
Despite this trend, there is a worrisome increase in antibiotic-resistant Hp strains [14].

2.1. Antibiotic Resistance

Unsuccessful eradication has been a recurrent issue over the years; treatment fail-
ure rates are continuously on the rise, in large part due to the increasing prevalence of
antibiotic-resistant Hp strains [14–18]. This is a global phenomenon affecting most countries,
although specific resistance rates vary by region and antibiotic type [19]. One meta-analysis
found that clarithromycin resistance reached as high as 35% in eastern Mediterranean,
European, and western Pacific regions, whereas it was the lowest in Africa, the Americas,
and southeast Asia, at around 15% [14]. Levofloxacin showed a somewhat similar trend,
with 14% resistance in the Americas, Africa, and Europe; and around 25% in Mediter-
ranean, southeast Asian, and western Pacific regions. Reported metronidazole rates were
much higher in this study, ranging from 30 to 91%, whereas amoxicillin resistance was
negligible in most regions, except for Africa, where it was 38% [14]. To put these numbers
into perspective, a local resistance of >15% is the common threshold for choosing alter-
nate treatment regimens [19,20]. In reality, the epidemiology of antibiotic resistance is far
more complex, as there considerable variation within the countries of each region. This
obstacle is compounded by the fact that in most regions worldwide, studies are focused
primarily on a handful of countries [19]. In the US, for instance, national data are scarce,
and fewer than half the states are routinely included in studies [21,22]. Better data are
available from Europe, where various studies have been conducted in individual countries,
as well as larger-scale projects. One study on 3974 patients by the European Registry of
Helicobacter pylori Management (Hp-EuReg) found that resistance rates to clarithromycin
and levofloxacin were significantly higher in southern Europe (e.g., Italy, Spain, and Greece)
as opposed to northern Europe (e.g., Norway) [23]. Alarmingly, strains collected from 52%
of Hp-naïve and 80% of non-naïve patients exhibited some form of antibiotic resistance in
this study [23]. Antibiotic resistance may, in part, be influenced by treatment for previous
Hp infections. This entity recurs in around 4% of cases annually [24,25], and various risk
factors have been identified that contribute to this phenomenon.

2.2. Risk Factors

Risk factors can be categorized on a societal or individual level. The former en-
compasses geographic location; economic development; and sanitation, including ac-
cess to clean food and water [26]. Low familial socioeconomic status and overcrowding
(i.e., crowded living conditions and large family sizes) are also associated with increased
Hp prevalence [26]. Consumption of unpasteurized dairy products [27], sheepherding [28],
high-risk occupations (healthcare) [29], obesity [30], male gender [31], and the gut micro-
biome [32] pose an increased risk of infection. Smoking and alcohol are two variables that
are controversial with respect to their role in Hp infections [33–43].

3. Etiopathogenesis

The pathogenesis of Hp infection can be divided into distinct steps, whereby the
bacteria (1) attaches to and colonizes the gastric mucosa, (2) evokes and evades an immune
response, and (3) induces disease. Once present in the stomach, H. pylori swims toward the
mucous lining the epithelial layer, showing a tropism for sites of injury along the stomach
wall [44]. This chemotaxis relies on Tlp receptors (mainly TlpB) to direct flagellar motion
in response to chemical signals in the cell environment [45]. Urea, gastric acid, lactate,
and reactive oxygen species have all been identified as signals for these receptors; urea in
particular is secreted by the gastric epithelium and is thought to play a significant role in
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bacterial colonization [45]. However, undiscovered chemicals may also be implicated in
this process [46]. Hp utilizes urease to protect itself from the surrounding acid environment.
Urease breaks urea down into ammonia and other useful metabolites, increasing the pH in
the microenvironment to create a thin, pH-neutral layer around the bacterial cell, allowing
it to survive the gastric acid. This barrier reduces the viscosity of the mucin gel lining the
stomach wall and allows the bacteria to move freely through the mucous toward the gastric
glands that it will ultimately colonize [46,47].

Bacterial attachment to gastric epithelial cells is a complex process that involves the
synergistic interaction of several elements and relies heavily on Lewis (Le) antigens. Lewis
antigens are cell-surface glycoproteins that mediate cell-to-cell adhesion by binding to
selectins on target cells [48]. The lipopolysaccharide (LPS) component of the Hp cell wall
has been found to express Lewis-like antigens, among which LeX, in particular, has been
shown to play a minor role in adhesion [49].

Bacterial outer membrane proteins (OMPs), on the other hand, operate as binding
sites to which host Lewis antigens can bind, facilitating attachment. The OMPs on Hp can
be divided into five genomic families [50], of which H. pylori OMP (Hop) and Helicobacter
outer membrane (Hom) play the largest roles [51]. Blood antigen-binding adhesin A (BabA)
and sialic acid-binding adherence (SabA) are members of the Hop family and are the most
well-studied of all OMPs [52]. BabA promotes cell-to-cell adhesion by binding to host
LeB [53], whereas SabA binds to sialylated LeX (sLeX) to facilitate cell adhesion [54]. SabA
additionally stimulates a neutrophil response by binding neutrophil sLeX and activating
a G-protein-coupled, receptor-mediated signaling cascade [55]. Interestingly, sLeX is up-
regulated upon the occurrence of Hp infection and gastric inflammation, which suggests
that SabA may be involved in strengthening and maintaining adhesion, as opposed to
initiating it [54]. MUC5a and MUC1 mucin receptors are the primary target for these OMPs
and can expedite and hinder infection, respectively [56–58]. Whereas BabA and SabA are
the main adhesins involved, several other OMPs, such as outer inflammatory protein A
(OipA), HopQ, HopZ, and the Hom family, improve Hp adhesion and promote inflamma-
tion by prompting the transcription of virulence factors and the secretion of inflammatory
cytokines [52].

Certain virulence factors involved in pathogenicity also contribute to adhesion. BabA-
LeB binding has been shown to activate the type-four secretion system (T4SS), a pilus-like
structure that allows for the translocation of effector proteins, such as cytotoxin-associated
gene A (CagA) and vacuolating cytotoxin A (VacA) [54]. CagA binds to epithelial cell
integrin-β1 [59] to anchor Hp and hijack host signaling pathways to disrupt cell motility,
proliferation, and cytoskeletal stability [60]. VacA, on the other hand, binds to a wide range
of receptors, with numerous downstream effects. It primarily functions as a pore-forming
toxin than acutely induces host cell apoptosis but plays a key role in evading the immune
response in chronic infections. It carries out this latter role by impairing autophagy and
forming intracellular vacuoles in the host cell in which H. pylori can survive. It also binds
to the integrin β2 subunit on T cells to inhibit their activation and proliferation and can
induce macrophage apoptosis by inhibiting interferon-β signaling [61]. Together, these
toxins are the major virulence factors expressed by Hp that are key to its pathogenicity.
Whereas VacA is expressed by virtually all Hp cells, CagA is only present in specific strains;
interestingly, CagA positivity is associated with more severe infection and worse clinical
outcomes, including an increased risk of future malignancy [60,62]. Although these are the
two major proteins involved in the pathogenesis of Hp infection, there are myriad others
that similarly aid in adhesion, immune evasion, and provocation of inflammation [60].

4. Clinical Presentation

The presentation of H. pylori infection is highly variable. As many as 90% of individ-
uals carrying the bacteria are asymptomatic [63]. It can present as dyspepsia, defined as
an epigastric discomfort or pain lasting longer than one month that may be associated
with nausea, early satiety, epigastric fullness, and bloating, among other symptoms [64],
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which is often presumed to be functional in etiology [65]. Gastrointestinal clinical symp-
tomatology of Hp infection poorly correlates with severity of gastric mucosal injury upon
endoscopy [19,64]. Hp can therefore go unnoticed and untreated, in which case it progresses
to chronic gastritis [66]. This chronic inflammation of the gastric epithelium can promote
intestinal metaplasia, which predisposes to gastric cancer [64]. Despite being asymptomatic
for years, such patients may present with alarm symptoms of weight loss, iron deficiency
anemia, dysphagia, vomiting, and the presence of an abdominal mass [19,64,65]. Similarly,
MALT lymphomas may develop as a result of gastritis and present with dyspeptic or
non-specific constitutional symptoms [64,67]. Hp can also cause peptic ulcer disease (PUD),
with the risk of complications, such as gastrointestinal bleeding and perforation [64].

Rarely, H. pylori infection may present with extragastrointestinal manifestations, such
as isolated iron deficiency anemia; idiopathic thrombocytopenic purpura; and ocular,
dermatological, and metabolic diseases [65,68].

5. Evaluation and Management:
5.1. Indications for Testing

The American College of Gastroenterology (ACG) recommends testing in the following
cases [65]:

(1) All patients with active PUD;
(2) All patients with a previous history of PUD (unless there is documentation of a

resolved prior Hp infection), low-grade MALT lymphoma, or a history of endoscopic
resection of early gastric cancer;

(3) Patients with uninvestigated dyspepsia under the age of 60;
(4) Patients initiating long-term, non-steroidal, anti-inflammatory drugs;
(5) Patients with unexplained iron deficiency anemia despite appropriate workup; and
(6) Adults with idiopathic thrombocytopenic purpura.

Other expert panels, including the global Taipei consensus [69] (TC) and the Houston
conference [70] (HC), support guidelines similar to those outlined above, with the addition
of a few other indications:

(7) Family members residing in the same household as patients with proven active Hp
infection (HC);

(8) Patients with a family history of PUD or gastric cancer (HC);
(9) First-generation immigrants from high-prevalence areas or high-risk groups (HC); and
(10) Populations with a high incidence of gastric cancer (TC).

In all of the above cases, a “test-and-treat” strategy is recommended to ensure eradica-
tion of the bacteria and reduce the severity of symptoms and the risk for carcinogenesis. A
variety of tests can be used to diagnose infection with H. pylori, and they can be divided
into non-invasive and invasive tests, a summary of which can be found in Table 1.

5.2. Non-Invasive Tests

The most commonly used test to identify H. pylori is the urea breath test (UBT), which
measures the difference in proportion of 13C/14C in exhaled air before and after the patient
swallows radioactively labeled urea. This relies on the previously discussed Hp urease,
which generates radiolabeled 13C carbon dioxide as a result. Patients with active Hp
infection exhale higher quantities of 13C than healthy patients. Typically, four respiratory
samples are collected (two before and two after ingestion of urea), and the labeled carbon
dioxide is detected using mass spectrometry [71]. UBT is an accessible and commonly used
tool to diagnose Hp infection, with a recent meta-analysis showing sensitivity and specificity
of around 95% [72,73]. However, results can be influenced by concurrent medications, so
patients are required to stop antibiotics 30 days prior to the test and proton pump inhibitors
(PPIs) 15 days prior, as they may produce false negatives [71].

Stool antigen testing (SAT) is another low-cost and accurate means of diagnosing Hp
infection that is often preferred by patients and physicians for its simplicity [71]. There are
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two main types of stool tests: enzyme immunoassays (EIAs) and immunochromatography
assays (ICAs). Both tests operate under similar principles. In EIAs, a solution containing
monoclonal or polyclonal antibodies is added to a diluted stool sample and processed,
antigens detected through spectrometry [74]. In immunochromatography, antigen detection
is made possible by a reaction caused by the antigen–antibody complex, producing a visible
color change in the medium [75]. Between these two testing methods, EIA has proven to be
a more effective diagnostic tool, although the accuracy of SATs varies widely depending on
the detection kit used [76,77].

The final non-invasive method for diagnosing H. pylori is serological testing for im-
munoglobulin G (IgG) antibodies against Hp using an enzyme-linked immunosorbent
assay that operates in a similar fashion to SAT. IgG antibodies appear about three weeks
after infection and can remain detectable for several years thereafter. Serological tests have
fallen out of favor for this reason, as they have trouble distinguishing past infections from
recent or active infections and are associated with a risk of false positives [78]. Despite a
high reported specificity and sensitivity for serologic antibody tests ranging from 80 to 95%,
these values vary considerable depending on the testing kit used, with values reported
as low as 55% [72,78]. This is especially true in the case of the newer latex agglutination
immunoassay test. The latex or LZ test is increasingly used due to its low cost and rapid
processing ability [79]. However, it relies on the agglutination of latex-bound antigens,
and interpretation of results is highly subjective, potentially increasing the risk of false
positives [79]. To their credit, serological tests are not affected by recent PPI or antibiotic
use, making them an option for patients who have used either.

5.3. Invasive Tests

Endoscopic assessment is a critical component of invasive testing for H. pylori upon
which all other invasive tests depend [71]. Conventional endoscopy alone is, for the most
part, inadequate in diagnosing Hp infection, and a biopsy with histological assessment
is still mandatory for evaluation [19]. However, advancements in endoscopic technology
have allowed for image-enhanced scoping to improve the accuracy of endoscopic evalua-
tion [19,80]. There is one scoring system currently in use called the Kyoto classification [81]
that is used to evaluate active H. pylori infection and risk of gastric cancer. It consists of
five endoscopic findings (atrophy, intestinal metaplasia, enlarged folds, nodularity, and
diffuse redness), cumulating in a score ranging from 0 to 8. A Kyoto score ≥2 indicates
H. pylori infection, whereas a score ≥4 suggests gastric cancer risk [80]. Whereas a few
studies have supported the accuracy of the Kyoto classification in diagnosing active H.
pylori infection [81,82], endoscopy is rarely the only diagnostic technique used to evaluate
Hp infection. Instead, it is almost always paired with biopsies or alternative tests.

The gold standard for H. pylori diagnosis is histological examination. For this evalua-
tion, at least six biopsies must be taken during biopsy targeting the antrum, large and small
curvatures of the stomach, and the middle of the gastric body, as well as any suspicious
lesions or ulcerations [71]. Hematoxylin–eosin and Giemsa stains are the most inexpen-
sive and commonly used stains, but immunohistochemical staining is the most accurate
(fluorescence in situ hybridization) and is recommended when histochemical methods
fail [83]. The updated Sydney grading system relies on histopathological findings to assess
the severity of chronic gastritis and categorizes the intensity of mononuclear inflammatory
cellular infiltrates, polymorph activity, atrophy, intestinal metaplasia, and Hp density as
mild, moderate, or severe [84]. The sensitivity and specificity of histological methods can
range from 60% to 100% and depend on a variety of factors, including stain used; location,
size, and quality of the sample; and the pathologist’s experience [71].

Alternative testing methods include bacterial culture, molecular testing (polymerase
chain reaction; PCR), and rapid urease test (RUT). Bacterial culture is a highly specific
means of diagnosing H. pylori infection but, as mentioned earlier, can be an arduous
task that requires well-equipped laboratories [71]. Hp is a notoriously difficult micro-
organism to grow and requires incubation for more than a week in selective blood agar (a
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detailed description of culture requirements can be found in the study by Blanchard and
colleagues) [85]. It has the additional benefit of identifying antibiotic resistance, as does
PCR testing, which is becoming increasingly necessary [71]. The RUT, on the other hand,
relies on a pH indicator that changes color in response to the ammonia produced by Hp
urease. Previous studies have shown it to be highly sensitive and specific, at ≥90%, and it
has the added benefit of rapidly producing results (within 5 min with some tests). Given its
ease of use, it is considered the first-line diagnostic method in cases for which endoscopy is
indicated [71].

Table 1. Sensitivities and specificities of various diagnostic modalities.

Test Sensitivity Specificity Cost [86] Advantages [87] Disadvantages [87] Study

UBT 97% 96% Cost-effective

Fast, simple,
non-invasive, good

for detecting
eradication

Potential risk for false
negatives in cases of
bleeding and PPI or
antibiotic use; low

accuracy in atrophic
gastritis and

gastric malignancy

Abd Rahim et al.,
2019 [72]

Zhou et al.,
2017 [88]

Fecal
antigen

test
94% 97% Cost-effective

Fast, simple,
inexpensive, can

potentially be used
to determine

antibiotic
sensitivity

False negatives in cases of
low bacterial load;

accuracy affected by
recent antibiotic, bismuth,

or PPI use; may be
uncomfortable for
patients; difficulty

maintaining sample; and
variable accuracy

depending on commercial
kit used

Gisbert et al.,
2006 [89]

Serology Variable
(76–84%)

Variable
(79–90%) Cost-effective

Cheapest, widely
available, can be
used in patients

with recent PPI or
antibiotic use

Failure to distinguish
between acute and

previous infection; cannot
confirm eradication

Thaker et al.,
2016 [90]

Rapid
Urease

Test

Variable
(80–99%)

Variable
(92–100%) Cost-effective Fast,

inexpensive, simple

Accuracy impaired by
gastric ulcer bleeding

or intestinal
metaplasia; invasive

Roy et al.,
2016 [91]

Bacterial
Culture

Variable
(70–80%) 100% Expensive

Determination of
antibiotic resistance

and sensitivity

Expensive,
time-consuming, requires

a well-equipped lab

Thaker et al.,
2016 [90]

PCR 96% 98% Expensive

High sensitivity
and specificity;

effective, even at
low bacterial loads

Expensive, requires a
well-equipped lab,

false-positive risk due to
detection of DNA from

dead bacteria

Pichon et al.,
2020 [92]

5.4. Management

Most societies endorse the non-invasive “test-and-treat” method [93–95], and initial
endoscopy is recommended for older patients and those who present with alarm symptoms
(first-degree relative with upper GI malignancy, weight loss, GI bleeding, dysphagia,
odynophagia, persistent vomiting, and abnormal imaging) [94,95].

The first-line management of confirmed H. pylori infections utilizes a PPI, alongside
2–3 antibiotics for periods ranging from 3 to 14 days [64]. A full breakdown of the available
first- and second-line treatment modalities can be found in Table 2.
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Local antibiotic resistance rates are a key factor in determining the most appropriate
first-line of management, as reflected by several major guidelines [20,64,65,96,97]. Fur-
thermore, reuse of antibiotics from first-line treatments in subsequent therapy can lead to
secondary antibiotic resistance and should be avoided [98]. Resistance to nitroimidazole
antibiotics, such as metronidazole, are interesting in that whereas resistance rates can be
high, this resistance can be overcome with dose adjustments and the addition of bismuth,
allowing for its reuse in new regimens after an initial failure [98]. Whereas guidelines are
not clear on sensitivity testing for first-line management of Hp, susceptibility testing is
recommended in refractory cases [98].

An important consideration in initial management of infection is that the most commonly
used acid suppressants, PPIs, are metabolized by hepatic cytochrome P450 (CYP2C19) [99]. Ge-
netic polymorphisms may limit the efficacy of treatment regimens with particular PPIs [100].
It may be advisable to rely on PPIs less affected by CYP metabolism, such as esomepra-
zole and rabeprazole, especially in non-Asian regions, where extensive metabolizers are
common [66,98].

Table 2. Treatment options for Hp.

First-Line Treatments

Regimen Dosing
Frequency Duration Indications Notes Study

Triple
PPI (variable dose) a

CA (500 mg)
AM b (1 g) OR MZ (500 mg)

BID
BID
BID

14 days

First-line treatment in
regions where CA
resistance is low (<15%) or
with high proven local
eradication rates (>85%)
and in patients with no
previous
macrolide exposure.

A few studies are listed to
summarize global
resistance rates [14,101].
Eradication rates of up to
92.6% have been reported
with triple therapy when
potent and long-lasting
gastric acid inhibitors, such
as K+-competetive blocker
vonoprazan, are used [102].

Maastricht
ACG
Toronto

Concomitant
PPI (variable dose) a

CA (500 mg)
AM (1 g)
MZ (500 mg)

BID
BID
BID
BID

10–14 days

First-line treatment,
especially in regions where
CA resistance is high
(>15%) and metronidazole
resistance is low.

Maastricht
ACG
Toronto

Quadruple Bismuth
PPI (variable dose) a

Bismuth (variable dose and
preparation) c

AM
MZ

QID
BID
TID or QID

10–14 days

First-line treatment,
especially in regions where
CA and MZ resistances
are high.

Maastricht
ACG
Toronto
Chinese
Spanish

Second-line treatments

Quadruple Bismuth
PPI (high dose) a

Bismuth (variable dose and
preparation) c

TZ (500 mg)
MZ (500 mg)

BID
QID
QID
TID to QID

10–14 days

Can be used as a first-line
treatment. Used as a
second-line treatment if:

1. Triple or concomitant
treatment failed; or

2. Earlier bismuth
quadruple treatment
failed (two different
antibiotics need to
be used).

The list of antibiotics that
can be used alongside
bismuth includes [103]:
Clarithromycin;
Amoxicillin;
Doxycycline;
Nitroimidazole;
Furazolidone; and
Levofloxacin.

Maastricht
ACG
Toronto
Chinese
Spanish
AGA
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Table 2. Cont.

First-Line Treatments

Regimen Dosing
Frequency Duration Indications Notes Study

Levofloxacin Regimens
Levofloxacin (500 mg)
Amoxicillin (1 g)
PPI (high dose) a

QD
BID
BID

10–14 days

Potential first-line
treatment in areas with
low fluroquinolone
resistance (reference
to ACG).
Second-line treatment
after failure of a
bismuth regimen.

Only ACG suggests this as
a first-line treatment in
regions where levofloxacin
resistance is low.
Levofloxacin can be
replaced by sitofloxacin.

Maastricht
ACG
Toronto
Chinese
Spanish
AGA

Rescue treatments d

High-dose dual
PPI (high dose) a

AM (750 mg or 1 g)

BID
QID or TID
respectively

14 days Salvage therapy after two
eradication failures.

Amoxicillin resistance rates
are still low globally.

ACG
Toronto
AGA

Rifabutin-based triple
Rifabutin
Amoxicillin
PPI (high dose) a

QD
TID
BID

14 days

Salvage therapy after two
(Malfertheimer) or three
(fallone) eradication
failures. AGA guidelines
suggest use as a
second-line treatment after
failed Bismuth therapy.

There is some concern
about increasing M.
tuberculosis resistance as a
result of this treatment.

Maastricht
Toronto
AGA
Spanish

Alternative or adjunctive treatments

Statins
Atorvastatin (40 mg)
Simvastatin (20 mg)

QD
BID 14 days Experimental use

Statins have been shown to
have antibacterial and
anti-inflammatory effects
[104,105]. One study found
that statins reduced Hp
burden in macrophages
and increased Hp-infected
macrophage
autophagy [106].

AGA

Probiotics e 14 days Experimental use

Probiotic strains have been
shown to have a beneficial
effect on eradication and to
reduce treatment adverse
effects, including:
Lactobacillus;
Bifidobacterium;
Lactiplantibacillus; and
Saccharomyces

AGA
Kyoto
Viazis
et al.,
2022 [107]

Notes: Abbreviations: PPI—proton pump inhibitor; CA—clarithromycin; AM—amoxicillin; MZ—metronidazole;
BID—bidaily; QID—quad daily; TID—tridaily; TZ—tetracycline; QD—once daily; a dose varies depending on
PPI used. Standard doses include esomeprazole 20 mg, lansoprazole 30 mg, omeprazole 20 mg, pantoprazole
40 mg, and rabeprazole 20 mg. High dose implies double the standard dose. b In patients with a penicillin allergy,
amoxicillin should be substituted for metronidazole. c Bismuth can come in multiple preparations; the most
common preparations are: Bismuth subsalicylate (262 mg), two tablets QID; colloidal bismuth subcitrate (120 mg),
one tablet QID; bismuth biskalcitrate (140 mg), three tablets QID; bismuth subcitrate potassium (140 mg), three
tablets QID. d Alternative antibiotics that can be used in rescue treatments include sitafloxacin, tinidazole, and
furazolidone. e Lactobacillus and Bifidobacterium are supported by a growing body of evidence, whereas the
benefits of Lactiplantibacillus and Saccharomyces are supported by a limited number of studies.

The exact recommendation for treatment duration differs depending on the guidelines
and treatment line (Table 2). However, there is a trend toward standardization of all
treatment lines to 14 days [108].
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Table 2 highlights various treatment strategies: sequential, hybrid, concomitant, and
reverse hybrid. Sequential therapy involves initial dual treatment with a PPI and amoxicillin
for 5–7 days, followed by standard triple therapy for the same amount of time [108].
Concomitant therapy is a non-bismuth quadruple therapy and involves the concurrent
administration of four medications [109]. Hybrid therapy combines the two, initiating
patients on dual therapy (PPI + amoxicillin) for 7 days, then adding two more antibiotics
for the next 7 days. Reverse hybrid therapy follows the opposite order: three antibiotics
and a PPI for 7 days, followed by only a PPI + amoxicillin [110]. Sequential therapy has
fallen out of favor due to worse eradication rates [20,64,66,95,96,108,109]. Hybrid and
reverse-hybrid treatment strategies have proven to be equivalent to concomitant across
various studies but are of limited efficacy in areas of high dual resistance to clarithromycin
and metronidazole [111,112]. Concomitant therapy is currently the most widely used
treatment strategy.

5.5. Treatment Outcomes

The ultimate goal of treatment is documented eradication of the bacteria [20,65,96,97].
There is evidence for endoscopic and histologic remission of gastritis features, including in-
testinal metaplasia and reduction in recurrence following eradication therapy [69,113–120],
as well as prevention of gastric adenocarcinoma and regression of gastric MALT lym-
phoma [121–127]. Treatment also resolves H. pylori-associated iron deficiency anemia [128]
and ITP [129].

6. Long-Term Surveillance and Complications
6.1. Surveillance

It is currently recommended to retest at least 4 weeks after completion of the initial
treatment regimen, with the patient stopping PPIs as many as 2 weeks prior [64]. All
aforementioned diagnostic tests are suitable for confirmation of eradication.

Despite the lack of established evidence-based guidelines, a growing body of liter-
ature supports endoscopic surveillance following eradication, particularly in high-risk
patients [130–133]. The “ABC method” relies on an investigation of anti-H. pylori antibodies
and serum pepsinogen (PG), whereby patients are divided into four groups depending
on the presence of either (group A, negative for both; group B, anti-Hp-positive and PG-
negative; group C, positive for both; group D, anti-Hp-negative and PG-positive). Groups
B, C, and D were found to be increasingly more likely to develop gastric cancer than
group A and were therefore recommended triennial, biennial, and annual endoscopic
follow-up based on the increased risk [134]. Nonetheless, regular endoscopy is invasive,
costly, and impractical in certain settings. A recent study identified several biomarkers that
could potentially be used in lieu of endoscopy for screening, detection, and monitoring
of individuals at risk of gastric cancer (GC), namely virulence markers, genomic markers,
transcriptomic markers, and inflammatory markers [135]. cagA and VacA-toxin expression;
pepsinogen levels (PG1 and PG2); bacterial lipopolysaccharides; connexin expression; spe-
cific microRNA fragments; and cytokines, such as IL-1β, IL-6, IFN-γ, and IL-10, have been
found to be significantly upregulated in cases of GC [136–139].

6.2. Complications

Treatment of H. pylori does not guarantee permanent eradication. One prospective
study of 1050 patients estimated recurrence rates at one and three years to be 1.75% and
4.61%, respectively [140]. Recurrent infection necessitates alternative antibiotic treatment
regimens to those used previously and may contribute to increased antibiotic resistance
globally. Oral colonization of H. pylori is a potential source of reinfection that can often
go undiagnosed by standard diagnostic methods for Hp and is unaffected by traditional
treatment methods, requiring specific treatment strategies [141,142]. The existence of a
secondary H. pylori colonization site is still highly controversial but may be a consider-
ation in complex cases with frequent recurrences [141,142]. The main complications of
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untreated H. pylori infection were outlined above but include gastric ulceration; perfo-
ration; progression to gastric malignancy (adenocarcinoma or MALT lymphoma); and
extragastrointestinal manifestations, such as ITP and iron deficiency anemia [65]. Other
complications take the form of side effects to treatment and are listed in Table 3.

Table 3. Medication adverse events resulting from H. pylori treatment.

Adverse Effect Reported Frequency * Associated Treatment Group †

Taste disturbance/oral mucositis
[143–145] 17–44% Triple therapy

Nausea [143,144] 7–31% Bismuth

Diarrhea [143–145] 7–33% Triple

Dyspepsia [143,145] 3–11%

Reduced appetite [143,144] 4–12%

Vomiting [144,145] 3–6%

Abdominal pain [144,145] 8–20%

Headache [144,145] 7–31% Bismuth

Rash [144] 3–7% Bismuth

Discoloration of feces [144,145] 4–16% Bismuth

Oral/vaginal candidiasis [143,145] 1–4%
Notes: * frequencies represent a range report in the selected studies comparing different treatment modalities;
† not based on statistical comparison between different treatments, rather an observed difference in frequency
between different treatment modalities. However, Calvet et al. [143] showed that triple therapy was significantly
associated with more frequent taste disturbance.

7. Treatment Challenges

H. pylori eradication rates may not be optimally attributed primarily to antibiotic resis-
tance and patient noncompliance/adherence due to side effects and provider prescriptive
error [146–148]. These data highlight the importance of improved awareness and strict
adherence to existing guidelines.

8. Recent Advances

In the decades since its discovery, considerable progress has been made with regards to
diagnostic and therapeutic modalities in the management of Hp infection. Nanotechnology
is an exciting innovation in the realm of diagnosis and treatment that could eventually
represent cost-efficient and less invasive alternative to current endoscopic measures. Biosen-
sors are one such tool that can translate unique biological elements attached to a transducer
surface into detectable signals [149]. This is accomplished without additional reagents,
reactions, or sample pretreatment, contrary to other modalities, such as PCR or ELISA,
while providing accurate and real-time monitoring of disease [149–151]. Whereas the
process itself is complex, it relies on detecting bacterial antigens or patient Hp antibodies.
Electrochemical sensors rely on a change in electric potential or conductance of a transduc-
ing surface upon element attachment, optical sensors rely on a change in fluorescence or
color absorbance, piezoelectric sensors rely on a change in acoustics, and thermal sensors
rely on a change in temperature to detect disease [151]. Yadav et al. (2022) mentioned the
novel use of aptamers, single stranded nucleic acid sequences that are highly specific to
target antigens, proteins, or antibodies, to diagnose disease and have high hopes for their
clinical utility [152].

Recent advances in therapy make potential use of nanotechnology as auxiliary treat-
ment, improving drug delivery, with a direct antibacterial effect [153]. The development
of novel drugs can also improve treatment of Hp. A potassium-competitive acid blocker,
vonoprazan (VPZ) has advantages over traditional acid suppression with PPIs, in that
it does not require activation by gastric acid and has a longer half-life than PPIs [154].
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It is also unaffected by genetic polymorphisms in CYP450 [99]. Genetic polymorphisms
are receiving increasing attention for their potential role in treatment outcomes. A few
studies to date have shown that eradication rates may be higher in slower CYP metabo-
lizers [99,155,156], although this association has not always been statistically significant.
Polymorphisms in immune response genes can similarly impact disease severity and predis-
pose to complications [157–159]. VPZ was only recently introduced in east Asia, and several
meta-analyses show the superior efficacy of VPZ relative to standard PPI-containing triple
therapy [154,160–162]. A more recent meta-analysis of RCTs found that VPZ demonstrated
comparable and even superior eradication rates relative to PPI across different treatment
regimens and in both low- and high-clarithromycin-resistance areas [162]. A lower rate of
adverse events was also reported among VPZ users [162].

Antimicrobial peptides are short, positively-charged peptide chains that disrupt the
integrity of the negatively charged bacterial cell membrane, leading to cell lysis and disrup-
tion of intracellular processes [163]. Photodynamic therapy relies on microbial production
of photosensitive molecules that use light to produce cytotoxic reactive oxygen species,
leading to bacterial cell death [164]. Phage therapy uses bacteriophages specific to H. pylori
to induce bacterial cell lysis, eliminating the pathogen [165]. Finally, vaccination is an
attractive strategy for combatting Hp infection globally. Various attempts have been made
to develop an Hp vaccine over the years, but the results have been disappointing [166].
Whereas some vaccine candidates have shown potential as an option for prophylaxis, none
have yet shown a therapeutic effect [166,167].

9. Conclusions

H. pylori is a ubiquitous and complex organism that has rightfully received tremendous
interest over the years. It can manifest in a variety of ways and increases the risk of
severe complications, such as peptic ulceration and malignancy. Therefore, treatment
with adequate follow-up is imperative. In the current era of antibiotic stewardship, it
is important to be mindful of antibiotic resistance and susceptibility when selecting a
treatment regimen. Extensive research has been conducted on the pathogenesis of Hp
infection, which has aided in identifying diagnostic and therapeutic targets. However,
there is still room to improve our knowledge. In particular, there is more to be gleaned
regarding bacterial transmission, reinfection, and optimized surveillance. Finally, there
have been numerous recent technological advances that hold promise for streamlining the
management of this pathogen in the future.
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