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Abstract

higher leakage results in fewer bursts.

Background: Quantitative analysis of simple molecular networks is an important step forward understanding
fundamental intracellular processes. As network motifs occurring recurrently in complex biological networks, gene
auto-regulatory circuits have been extensively studied but gene expression dynamics remain to be fully understood,
e.g., how promoter leakage affects expression noise is unclear.

Results: In this work, we analyze a gene model with auto regulation, where the promoter is assumed to have one
active state with highly efficient transcription and one inactive state with very lowly efficient transcription (termed
as promoter leakage). We first derive the analytical distribution of gene product, and then analyze effects of
promoter leakage on expression dynamics including bursting kinetics. Interestingly, we find that promoter leakage
always reduces expression noise and that increasing the leakage rate tends to simplify phenotypes. In addition,

Conclusions: Our results reveal the essential role of promoter leakage in controlling expression dynamics and
further phenotype. Specifically, promoter leakage is a universal mechanism of reducing expression noise, controlling
phenotypes in different environments and making the gene produce generate fewer bursts.

Keywords: Gene model, Promoter leakage, Probability distribution, Burst dynamics, Noise

Background

Gene expression dynamics is a lasting issue in Systems
Biology and has attracted extensive attention. While re-
cent advances in experimental methods allow direct ob-
servations of gene expression levels in individual cells,
there is considerable interest in theoretically understand-
ing how different molecular mechanisms of gene expres-
sion influence variations in mRNA or protein levels
across a population of cells. In fact, quantifying the con-
tributions of different sources of noise using stochastic
models of gene expression is an important step towards
understanding fundamental cellular processes and cell-
to-cell variability.

Many theoretical models of gene expression have been
proposed and become more and more subtle, from the ini-
tial one-state model [1,2] to the common two-state model
[3] to those considering many detailed processes or factors,
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such as chromatin remodeling [4-6], TATA-box- mediated
promoter [7-9], transcription additional re-initiation [10],
growth rate [11], copy number variations [12], recruitment
of transcription factors [13,14], alternative splicing [15]. In
spite of these, few gene models in previous studies consid-
ered promoter leakage. Here, by promoter leakage we mean
that transcription efficiency at the promoter inactive state is
much lower than that at the promoter active state. In fact, it
has been experimentally verified that transcription takes
place not only at the active state but also at the inactive state
of promoter, e.g., different nucleosome protein binding sites
can lead to different expression efficiencies, some of which
are high whereas the others are very low [16,17]; a basal
transcription rate at each open promoter state implies that
the promoter has leakage; and transcription can take place
at some promoter state with a very low rate due to the pre-
initiation complex formed at the TATA box [7]. Some stud-
ies have shown that increasing the leakage rate may elimin-
ate bistability [18] whereas decreasing the leakage rate of
protein production can lead to persistent oscillations [19,20].
But there has been no systematic study on how promoter
leakage affects dynamics of gene expression including the
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noise in gene product, probability distribution, and bursting
kinetics (characterized by burst size and burst frequency).
This paper will address these issues by analyzing three cases:
the common ON-OFF model, the ON-OFF model with
negative regulation and the ON-OFF model with positive
regulation, referring to schematic Figure 1(A). We will
present a systematic investigation for each case.

To be clear, we will analyze relevant literatures and present
the major findings of this study from three different aspects.

First, how the architecture of promoter affects expres-
sion noise is a hot issue and has attracted attention of
many scholars [21,22]. Here, the promoter architecture
mainly includes the pattern of transitions among pro-
moter activity states and exits of transcription [22,23].
Some transcription rates may be very small (this corre-
sponds to promoter leakage). On the other hand, it is
known that feedback is a ubiquitous mechanism control-
ling signals. In general, the effect of feedback on expres-
sion noise depends on the type of feedback (positive or
negative) and model parameters [24]. It has been shown
that direct negative feedback decreases fluctuations and
is a ubiquitous mechanism for homoeostatic control
[25,26]. A question naturally arises: in the case of feed-
back loop, how does promoter leakage impact expres-
sion noise? By analyzing effects of promoter leakage on
gene expression using the above-mentioned three gene
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models, we find that promoter leakage always reduces
expression noise, regardless of models, feedback types
and model parameters as well as whether or not the ex-
pression level is fixed. This implies an important fact
that promoter leakage is a universal mechanism of redu-
cing expression noise.

Second, it is well known that probability distribution not
only provides the most complete information on stochas-
tic dynamics of a stochastic model but also can clearly in-
dicate the system’s states in the stochastic sense since a
different peak in the distribution corresponds to a differ-
ent state of the system. In addition, peakedness of prob-
ability distribution has biological implication, e.g., bimodal
or multimodal gene expression (i.e.,, mRNA or protein dis-
tribution exhibits two or multiple peaks) is a cause of
phenotypic diversity in genetically identical cell popula-
tions [27]; the amount of phenotypic variation in gene
product population can determine fitness by affecting
growth rate, robustness and adaptation [27-31]. Increased
phenotypic variation can enhance adaptation and growth
of cells in fluctuating environments as well as robustness
of the population to external stresses [32-34]. It is particu-
larly beneficial to microbial cells that need to adapt effi-
ciently to sudden changes in environmental conditions
[35,36]. And decreased phenotypic variation, where every
gene product is as close as possible to an optimal level of
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Figure 1 A schematic diagram for effect of promoter leakage on expression dynamics. (A) schematic description of two-state gene

Number of product

auto-regulatory model with leakage, where gene product is produced not only at the ON state with high efficiency but also at the OFF state with
very low efficiency (termed as promoter leakage); (B) representative time series for changes in the number of gene products (left) and effect of
leakage on population distribution (right).
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gene expression that maximizes fitness, is usually advanta-
geous to cells in constant environments [28,37,38]. Given
the above facts or results, an unsolved question is how
promoter leakage influences probability distribution and
phenotypic heterogeneity. Although a theoretical study
[39] illustrated the impact of promoter leakage on a prob-
ability distribution, the corresponding model did not con-
sider feedback. We find that promoter leakage tends to
unimodalize the mRNA or protein distribution regardless
of feedback type, implying that promoter leakage may
cause phenotypic simplification. In a word, phenotypic di-
versity is beneficial to survival of cells in a fluctuated en-
vironment on the one hand and phenotypic oneness is
beneficial to fitness of cells in a constant environment on
the other hand. Through our study, we conclude that pro-
moter leakage is a mechanism of controlling phenotypes
in different environments: cells would make use of not
only the mechanism of promoter leakage-induced diverse
phenotypes to adapt changes in environments but also the
mechanism of promoter leakage-induced optimal pheno-
types to adapt to constant environments.

Third, it has been shown that mRNAs or proteins are pro-
duced often in a bursty manner [40-42]. In fact, single mol-
ecule measurements have provided evidence for
transcriptional or translational bursting [9,43,44]. An ac-
cepted view is that bursting dynamics are responsible for the
generation of cellular heterogeneity in the response of genet-
ically identical cells to the same stimulus, e.g., the authors in
Ref. [34] demonstrated in yeast cells that high levels of cell-
to-cell variability, originated from slow promoter state fluc-
tuations, may confer cell colonies with an enhanced prob-
ability of survival when subjected to external stresses, such
as addition of high concentrations of antibiotic. Regarding
bursting dynamics, there have been many studies. For ex-
ample, for a two-state gene model, it has been shown that
the higher the burst frequency (BF) is, the lower is the gene
expression noise whereas the larger the burst size (BS) is,
the higher is the noise [42,45,46]. More interestingly, R.D.
Dar, et al. [42] showed by analyzing 8,000 individual human
genomic loci that transcriptional bursting dominates across
the human genome, both BF and BS change by chromo-
somal location, and transcriptional activators alter BF and
BS, depending on the expression level of the locus. In
addition, G. Hornung, et al. [8] showed that burst size
is a promoter-specific property that is relatively robust
to sequence mutations but depends strongly on the
interaction between the TATA box and promoter nu-
cleosomes. In spite of these studies, it is not clear
whether the results obtained in the case of neither
feedback nor promoter leakage are still correct in the
case of feedback or promoter leakage or both. We will
address this issue. By model analysis, we find that a
higher leakage rate of promoter produces fewer bursts,
regardless of feedback type, referring to Figure 1(B).
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Results

Gene model and analytical distribution

In principle, the chemical master equation (CME) pro-
vides the most complete model for probabilistic behavior
of any biochemical reaction network including gene
auto-regulatory circuits. Alternatively, the joint probabil-
ity density function (or the joint probability distribution)
for all the reactive species in a reaction network provides
the most complete information on stochastic properties
of this system. Therefore, finding probability distribution
becomes a common interest in understanding all the
possible stochastic properties of a biochemical reaction
network. Here, we will derive the analytical expression
for the steady-state distribution in a two-state gene auto
regulatory model with promoter leakage.

Before presenting our analytical result, let us simply intro-
duce our model to be investigated. Assume that a gene has
two activity states (we will use D to represent promoter
state): the active one (or the ON state) where DNAs are
transcribed into mRNAs that are then translated into pro-
teins (denoted by P), and the inactive one (or the OFF state)
where transcription is not nonexistent but is lowly efficient,
that is, there is a smaller transcription rate at the inactive
state in contrast to that at the active state. The latter case is
often called promoter leakage [47,48]. The promoter leakage
was neglected in previous studies of gene models [49-52], or
equally, the transcription rate at the inactive state was as-
sumed as zero. In addition, we assume that the gene product
regulates its expression as a transcription factor, thus form-
ing a feedback loop. This regulation may be positive or
negative. In particular, we assume that the transcription fac-
tor regulates the gene expression not in a manner of seques-
tration (by sequestration we mean that dissociation of
protein from transcription factor-DNA complex is a slow
process, or binding of transcription factor-DNA is strong)
[53,54] but in a manner of directly changing transition rates
between promoter states (i.e., assuming that association and
dissociation of a transcription factor are a very fast process.
Specifically, the transcription factor first binds fast to DNA
and then dissociate rapidly from the DNA, leading that the
transcription factor changes directly the switching rates be-
tween promoter states without consuming itself) [55,56]. To
simplify our analysis, we further integrate transcription and
translation into a single-step process. This simplification has
been extensively made [52,57]. In fact, it has been shown
that protein’s half-life is in general much longer than that of
mRNA’s half-life [52,57], e.g., Shahrezaei and Swain [52] did
a survey for ~ 2000 genes in budding yeast and found that
the expressions of most of these genes satisfy this condition.
A main reason for this consideration is to derive the analyt-
ical expression for the probability distribution of gene prod-
uct or to give the analytical formula for calculating the noise
intensity, which in turn can clearly describe our qualitative
results. In the Additional file 1, we also investigate slightly
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more complex gene models, which consider either a
slow process for binding and dissociation of a tran-
scription factor or two-step process of transcription
and translation. By stochastic simulation, we find that
the results using the complex models are basically
similar to those using the simplified model, indicating
that the latter can well capture the effect of promoter leak-
age on expression dynamics.

A transcription factor may regulate gene expression in
an enhancing or a repressing manner. To derive our
analytical distributions in a unified framework, we intro-
duce the following set of biochemical reactions based on
the above hypotheses.

Do 11> Dy, D; —L2> Dy, Dy + P —L>Dy + P )
Dy 45D, + P, Dy 25Dy + P,P—%>¢

which describe our gene model with positive or negative
regulation. Here, D; and D, represent the ON and the
OFF states respectively if 1; > Ay and the OFF and the
ON states respectively if 1g > 1;. In the former case, the
third reaction in the first row of Eq. (1) describes the
negative regulation and 1, Ay are transcription rate and
promoter leakage rate respectively, whereas in the latter
case, this reaction describes the positive regulation and
Ao, A1 are transcription rate and promoter leakage rate
respectively. Parameters y; and y, are transition rates
between the promoter activity states, f represents feed-
back strength, and d is the degradation rate of gene
product.

Then, we establish our mathematical model to be stud-
ied. Let Py(n, t) and Py(n, t) represent the probability that
the gen product has # molecules at time ¢ when the gene
is at Dy and D; states, respectively. Then, the discrete
CME for the full reaction network takes the form

() - (7 o) (3
(B T ae )

(2)

where E is the step operator and [ is the identity
operator.

Next, we focus on finding the steady-state solution of
Eq. (2). The basic idea is first to introduce probability-
generating functions, and then to solve a coupled set of
ordinary differential equations with respect to these
functions. The overall procedure for finding the station-
ary distribution is technical. Here, we list results only,
and the details for derivation are put in the Additional
file 2 of this paper.
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For convenience, let all the parameters be normalized
by the degradation rate d, that is, y,/d — y1, yo/d — yo,
fld —f, Ao/d — Lo, A1/d — A;. Then, then analytical prob-
ability distribution can be expressed as

pn) =4S <n ))L(’)’""[(er e

n! m=0 m (ﬁ_l)m
Fil(a+m-1,8+m-1;-Q) (3)

which is the linear superposition of confluent hypergeo-

metric functions. In Eq. (3), A=11-1g R=1-fA,,
_ Af2 _ Mty R _ Atyoty R
Q=G &= Ty A=t T wy

a=1+2 and A=eb[gF (a-1,-1;fQ)]" . The
symbol <:1> represents the combinational number of

choosing m molecule from # molecules, and (c), is the
Pochhammer symbol and is defined as (c), =I(c + n)/
I(c). In principle, this analytical distribution gives all
the stochastic information about the underlying gene
model.

The more useful is that we can give the analytical for-
mula for calculating the noise intensity for the gene
product, where by noise intensity we mean that it is the
ratio of variance over the square of mean. In fact, note
that mean and variance can be calculated according to
the following general formulae.

2

(n) =G (1),02=G (1) +G (1)-[G (1)] (4)

where G(z) = Gy(z) + G1(z) is the total generating func-
tion. Two factorial generating functions Gy (z) and G;(2)
are analytically given in the Additional file 2. By calcula-
tion, we find

G(l) :Ae/\u [gA'OIFll(a_lv ﬁ_]w fQ) +/11F11(0{, ﬁa fQ)]
(5)

G (1) = Ak [eAF, Fy (a-1,8-1.£ Q) + 2Mo,F, (@, 8. Q)

AAy; +R)
A+yi+70 +Jl‘+1—R/(1 +f) ‘Fll(“H”SH’fQ)]
(6)

Thus, the noise intensity is given according to the
formula.

, o2 GL)+G61)-[61)]°
My = < 2 [G(l)]2 (7)

Next, we focus on effects of promoter leakage on ex-
pression noise as well as burst dynamics. Note that the
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promoter leakage rate is A in the case of negative feed-
back whereas it is A; in the case of positive feedback. As
pointed out in the previous section, by promoter leakage
we mean that the parameter A, is in general more than
zero but much smaller than A, in the former case. Con-
versely, 1; is in general more than zero but much
smaller than A, in the latter case. We point out that to
demonstrate the more remarkable numerical effects of
promoter leakage, we sometimes let the leakage rate be
a little smaller but be not much smaller than the normal
transcription rate. For convenience, we always set d = 1
in our simulation.

Leakage always attenuates expression noise

In previous studies [49-52], the effect of promoter leak-
age on gene expression was frequently neglected. Here,
we numerically show that the promoter leakage has
unneglectable effects on gene expression and in particu-
lar on expression noise. More precisely, the promoter
leakage always reduces the noise in gene product. The
numerical results are shown in Figure 2.

In our numerical calculation, we let the leakage rate in-
crease but keep the mean expression of gene product fixed.
This constraint implies that two of the system parameters
are dependent of each other if the other parameters are
fixed. For example, consider the case of 11 > Aq. If gene
product is kept at a fixed level, then increasing leakage rate
(Ap) implies: 1), a decrease in the transition rate from OFF
to ON (y1); 2), an increase in the transition rate from ON
to OFF (yo); 3), an increase in the feedback strength (f); or
4), a decrease in the maximum transcription rate ;. Spe-
cifically, in Figure 2(A), changing Ao implies varying y;
(solid red line) if we fix A; = 40, yo=0.1, and f = 0; chan-
ging Ao implies varying y, (black dotted line) if we fix A; =
40, f = 0, and y; = 0.1; changing 1, implies varying f (green
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dashed line) if we fix A; = 40, yo=0.1 and y; = 0.1; chan-
ging Ay implies varying A, (blue dash dot line) if we fix y,
=0.1, y1=0.1 and f = 0. We point out that this classifica-
tion of parameter values implies that positive and negative
feedbacks can be considered in a unified framework.
Therefore, it is unnecessary to distinguish the case of posi-
tive feedback from that of negative feedback for simulation.

From Figure 2(A), we observe that in the case that the
average expression level is fixed, the noise intensity 7, is
a monotonically decreasing function of the promoter
leakage rate, regardless of ways that the mean is fixed. In
other words, the noise intensity always decreases with
the increase of the leakage rate. This implies that the
promoter leakage plays a role of attenuating the noise in
the gene product, no matter what the property of feed-
back (positive or negative). Figure 2(B) is used to show
that the conclusion that the promoter leakage always re-
duces the expression noise does not depend on the
choice of parameter values, thus being qualitatively in-
variant. In this figure, we choose 4 different sets of par-
ameter values (see the caption of Figure 2(B)) to
demonstrate numerical results. The combination of
Figures 2(A) and (B) implies that promoter leakage is a
mechanism of efficiently reducing expression noise. To
check if this mechanism is universal, we also investigate
slightly more complex models in the Additional file 1,
which consider either strong binding of transcription
factors to DNAs or the two-step processes of transcrip-
tion and translation. By numerical simulation, we find
that the qualitative conclusion that promoter leakage al-
ways reduces noise still keeps invariant, referring to
Additional file 1: Figure S1 (C), Figure S2 (C) and Figure
S3 (C).

Intuitively, the larger the promoter leakage rate is, the
more is the number of gene-product molecules. This will
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Figure 2 Effects of promoter leakage on gene expression noise. (A) The dependence of the noise intensity on the promoter leakage rate in
the case that the gene product amount is fixed at a certain value, showing the noise intensity is always a monotonically decreasing function of
the leakage rate, regardless of ways to keep the average expression level fixed (e.g., decreasing the transition rate from OFF to ON (y;) (solid red
line); increasing the transition rate from ON to OFF (yo) (black dotted line); increasing the feedback strength (f) (green dashed line); decreasing the
maximum transcription rate (A;) (blue dash dot line). (B) Results in the case that the mean expression is not fixed, showing that increasing the
leakage rate reduces the expression noise, where 4 colored lines correspond to 4 different sets of parameter values: A; =40, yo=0.1,y; =0.1,
f=0.01(green); Ay =40,yo=0.1,y, =0.2,f =0(red); A; =40, yo=0.2,y, =0.1,f = 0(black); A; =30, yo=0.1,y; =0.1,f = 0(blue). This subfigure shows that
the conclusion that promoter leakage always reduces noise is independent of model parameters. (C) The noise as a function of the mean for
different values of the leakage rate, where the parameter values are the same as those used in Figure 2(B). The subfigure shows that the larger
the promoter leakage rate is, the more is the number of gene product molecules, implying that promoter leakage always reduces expression
noise. In Figure 2(B) and (C), lines represent theoretical results whereas circles represent stochastically simulating results.
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lead to the reduction of the noise in gene product (see
Figure 2(C)). This result is easily seen in the case that
the mean level is not fixed but seems not apparent in
the case that the mean level is fixed. However, if the
mean expression level is fixed, then the above qualitative
conclusion seems unrelated to the property or type of
feedback. See the following content for interpretation.

Promoter leakage tends to unimodalize distribution
Several examples have shown that the noise in gene ex-
pression is a potential mechanism to generate phenotypic
heterogeneity [27,49,58]. The phenotypic diversity has been
a focus of attention in biology, since the amount of pheno-
typic variation (also known as gene expression noise) in a
cell population can determine fitness by affecting growth
rate, robustness and adaptation [28-31]. Population diver-
sity offers an alternate way that cells adapt to randomly
fluctuating environments [30]. Increasing phenotypic vari-
ation is particularly beneficial to organisms that need to
adapt efficiently to sudden changes in chemical compos-
ition, local temperature, or illumination [30]. In contrast,
decreasing phenotypic variation is usually advantageous in
constant environments [28,37,38]. The peaks of gene prod-
uct distribution are a cause of generating phenotypic diver-
sity in genetically identical cell populations [27], and the
gene product noise always decreases with the increase of
the leakage rate as shown above, so we naturally consider
the relationship between promoter leakage and phenotypic
selection. For this, we will investigate the effect of pro-
moter leakage on peakedness of probability distribution.

It has been shown that a two-state gene model can ex-
hibit bimodal distributions if neither promoter leakage nor
auto regulation is considered [28,59]. Bimodality can also
occur even in the presence of regulation [60,61]. If pro-
moter leakage is considered, however, we find that the situ-
ation is different. The numerical results are demonstrated
in Figure 3, where we consider three cases: no feedback,
which corresponds to f = 0; negative feedback, which im-
plies that D, represents the active state but 1, corresponds
to the normal transcription rate whereas 1, to the leakage
rate; and positive feedback, which implies that Dy repre-
sents the active state but 1, corresponds to the normal
transcription rate whereas 1, to the leakage rate.

From Figure 3(A) where no feedback is considered, we
observe that with the increase of the leakage rate from
zero to 25, the gene product distribution finally becomes
a single peak from initial two peaks. Figure 3(B) shows
that in the case of negative feedback, the gene product
distribution becomes a single peak away from the origin
from one single peak near the origin with the increase of
the leakage rate from zero to 10. In contrast, Figure 3(C)
shows that in the case of positive feedback, the gene
product distribution becomes a single peak away from
the origin from two distinct peaks with the increase of
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the leakage rate from zero to 10. Compared to the case
in Figure 3(A), this change in Figure 3(C) is faster.

Thus, we obtain an interesting conclusion, that is, pro-
moter leakage tends to unimodalize the distribution, inde-
pendently of the property or type of feedback. We point
out that neither transcription factor long residency on the
DNA nor transcription and translation in different time
scales influences this qualitative conclusion. In fact, we
have shown in the Additional file 1 that if these factors are
considered, then the unimodal distribution of gene product
will become more apparent with the increase of the pro-
moter leakage rate, referring to Additional file 1: Figure S1
(B), Figure S2 (B) and Figure S3 (B). Since multimodality is
an important source resulting in the diversity of phenotype
and since the unimodal distribution implies the singleness
of phenotype. While increased phenotypic diversity can en-
hance adaptation and growth of cells in fluctuating envi-
ronments [33], so our conclusion provides an important
hint, that is, promoter leakage would not be too remark-
able in in vivo organisms.

As mentioned in the introduction, diversity of pheno-
type is beneficial to survival of cells in a fluctuated envir-
onment whereas oneness of phenotype is beneficial to
fitness of cells in a constant environment [35-38]. Thus,
the above results imply that promoter leakage would be
a mechanism of effectively controlling phenotype in dif-
ferent environments: cells would make use of not only
the mechanism of promoter leakage-induced diverse
phenotypes to adapt fluctuated environments but also
the mechanism of promoter leakage-induced optimal
phenotypes to adapt constant environments.

Promoter leakage can result in fewer bursts

As is well known, mRNAs or proteins are synthesized
often in a burst manner [40-42]. Bursting kinetics is com-
monly characterized by two indices: burst size (BS) and
burst frequency (BF). A question is how promoter leakage
impacts bursting kinetics. Previous studies did not give a
positive answer to this issue although it has been shown
that the larger the BS is, the higher is the gene expression
noise whereas the higher the BF is, the lower is the noise
[42,46,47]. Here, we will show that promoter leakage has
unneglectable influences on bursting kinetics, remarkably
making the gene product produce fewer bursts.

Before presenting results, let us simply introduce compu-
tation formulae associated with bursting kinetics. Recall
that in the case of no feedback, the mean BF and the mean
BS are calculated according to the following formulae [42]

1
<BF> = y <BS> = ktmnscription ‘TON (8)
TOFF

where ropr and 7oy represent the mean time dwelling at
OFF and ON states respectively, and Ky upscriprion is the
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Figure 3 Effects of promoter leakage on distribution. (A) no feedback (f = 0): the gene product distribution changes from bimodality to
unimodality when the leakage rate increases. The parameter values are set as A, =40, yo = 0.1, y; = 0.2; (B) negative feedback: only one peak
closed to the origin gradually becomes another peak away from the origin with the increase of the leakage rate. Other parameter values are set
as Ay =40,yo=0.1,y; =0.2,f=0.1; (C) positive feedback: two peaks gradually become one peak away from the origin with the increase of the
Y1 =05,f=0.1.
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transcription rate when the gene is at ON state. First,
consider that our model has no feedback, ie., f = 0. If Ay
compared to A, is so small that it may be ignored (in this
case, D; represents the ON state), then we have ropr=
1/y1 [62,63], which implies (BF)=y;, and ton=1/yp
[62,63], which implies (BS)=A,/y,. Similarly, if 1; com-
pared to Ay is so small that it may be ignored (in this
case, Dy represents the ON state), then we have ropr =
1/yo, which implies (BF) = y,, and 7ox = 1/y1, which im-
plies (BS) = Ao/y1. Thus, for the former case, we see from
Eq. (11) that increasing the leakage rate Ay does not
change the mean BF nor change the mean BS, referring
to Figure 4(A) and (D), but may make the original low
expression amount of the gene product have a rise.
Moreover, it can be seen from the time series shown in
Figure 5 (more precisely, by comparing Figure 5(A)
which corresponds to the case of no leakage with
Figure 5(D) which corresponds to the case that the leak-
age rate is 10) that the number of gene product mole-
cules tends to centralize a certain value. The similar
phenomena can take place in the latter case.

Next, consider the case that there is feedback. In this
case, increasing the promoter leakage rate will change
the number of gene product molecules, thus in turn in-
fluencing the switching rates between the ON and the
OFF states. Furthermore, this will change the dwelling
times at two states of the promoter, thus influencing BS
and BF. More specifically, in the case of negative feed-
back, increasing the leakage rate can increase the num-
ber of gene product molecules, leading that the effect of
negative feedback becomes more remarkable. In other
words, increasing the leakage rate will make the transi-
tion rate from the ON state to the OFF state become

larger, i.e., will make the dwelling time at the ON state
become shorter. This will lead to the decrease of BS, re-
ferring to Figure 4(B), and further the reduction of the
expression noise. In addition, negative feedback does not
change the transition rate from the OFF state to the ON
state, so does not influence the dwelling time at the OFF
state nor change the mean BF, referring to Figure 4(E).
Figure 5(B) and (E) further justify the numerical results
shown in Figure 4(B) and (E). Similarly, in the case of
positive feedback, increasing the promoter leakage rate
will increase the number of the gene product molecules,
leading that the role of positive feedback becomes more
remarkable. Specifically, increasing the leakage rate will
make the transition rate from the OFF state to the ON
state become larger, i.e., make the dwelling time at the
OFF state become smaller. This will lead to the increase
of BE, referring to Figure 4(F), and further the reduction
of the expression noise. In addition, positive feedback
does not change the transition rate from the ON state to
the OFF state, so does not influence the dwelling time at
the ON state nor change the mean BS, referring to
Figure 4(C). The time series shown in Figure 5(C)
and (F) further justify the numerical results shown in
Figure 4(C) and (F).

Then, we want to know how increasing leakage influ-
ences bursting kinetics in the case of keeping the mean
level fixed. By numerical analysis, we find that for negative
feedback (1; > Ao), the mean BS always decreases with the
increase of the leakage rate A, regardless of the way that
the mean is fixed, but the mean BF decreases only when
the transition rate from OFF to ON (y;) decreases, and is
kept invariant in the other three cases: increasing the tran-
sition rate from ON to OFF (yo); increasing the feedback
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strength (f); and decreasing the maximum transcription
rate (A,), referring to Additional file 1: Figure S4 (A). In the
case of positive feedback (1; < Ag)), if increasing the leak-
age rate (A1) corresponds to the change of the transition
rate from OFF to ON (y,) or that of positive feedback in-
tensity (f), then the mean BS does not change but the
mean BF decreases; and if increasing the leakage rate (1)
corresponds to change of the transition rate from ON to
OFF (y1) or the maximum transcription rate (o), then the
mean BS decreases and the mean BF increases. referring to
Additional file 1: Figure S4 (B).

In a word, under the condition that the mean level is
fixed, increasing the leakage rate can make the mean BS
decrease in most cases and the mean BS invariant in few
cases, regardless of the way the mean is fixed and the
type of feedback. This implies that increasing promoter
leakage tends to generate fewer bursts.

Summarizing the above analysis, we know that in the
case of no feedback, promoter leakage does not influence
promoter dynamics, but in the presence of feedback, the
former influences the latter and this influence is through
the way that feedback indirectly impacts bursting kinetics.
Specifically, the promoter leakage makes the burst size be
reduced and the burst frequency be enlarged, indicating
that the promoter leakage makes the gene produce fewer
bursts. This conclusion can be also seen from the time
series shown in Figure 5. In fact, by comparing Figure 4
(D), (E) and (F) with their corresponding Figure 5(D), (E)
and (F), we find that fewer bursts are generated due to the
effect of promoter leakage.

Discussion

Biochemical reactions associated with gene expression are
all essentially single-molecule events and thus stochastic,
resulting in substantial randomness in the production of
mRNA or protein. This noise can significantly influence
the expression levels of gene products and has been identi-
fied as a source of cell-to-cell variability. To capture effects
of expression noise, many gene models have been pro-
posed, such as those with simple promoter structures [2,7]
or with a DNA loop [51] or with a more complex pro-
moter structure [23], and those with auto regulation [7].
Almost these models, however, neglected the effect of pro-
moter leakage on gene expression. Here, we have intro-
duced and analyzed a stochastic model of gene expression,
which considers not only promoter activity and regulation
but also promoter leakage. Interestingly, we have derived
the analytical distribution (seeing Eq. (2)), which can repro-
duce some known distributions obtained in simplified
cases, e.g., with or without auto-regulation, without pro-
moter leakage. More importantly, our results on the noise
in gene product indicate that promoter leakage can be
taken as a mechanism of attenuating expression noise, im-
plying that previous gene models of no promoter leakage
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would overestimate expression noise. Similarly, previous
estimations on bursting dynamics characterized by burst
frequency and burst size would be inaccurate since they
did not consider the effect of promoter leakage. In fact,
we have shown that promoter leakage can significantly im-
pact bursting dynamics (Figure 4) and expression noise
(Figure 2). An intuitive interpretation for this impact is as
follows. Promoter leakage can increase the amount of gene
product, thus possibly reducing the intrinsic noise of gene
product. Meanwhile, it also can influence promoter noise
when the gene product as a transcription factor auto-
regulates the transition rates between promoter states.

Regarding our model, here we present simple discus-
sions. To simplify our analysis, our first assumption is that
the binding and dissociation of a transcription factor is a
very fast process, that is, it binds quickly to DNAs and dis-
sociates rapidly from the DNAs. With this assumption, one
can view that the transcription factor changes only the
transition rates between promoter activity states without
consuming itself. The similar assumption has been before
made to obtain analytical distributions in gene models
[55,56]. On the other hand, experimental studies indicated
that the association and disassociation of transcription fac-
tors to promoter sites may be a slow process. Moreover, it
was theoretically shown that the mode of binding of tran-
scription factors to DNAs can affect the properties of ex-
pression noise [64,65]. If a slow process for binding of a
transcription factor is introduced to the models studied
here and even if transcription and translation processes are
considered, then two qualitative conclusions obtained here,
that is, increasing the leakage rate reduces noise and makes
the gene product distribution be uni-modalized, will still
held. For this, we have performed numerical simulation,
with results shown in Additional file 1: Figure S1, Figure
S2 and Figure S3. These results indicates that our simpli-
fied model have well captured effects of promoter leakage
on expression dynamics including distribution, noise and
bursting dynamics.

Our second assumption is that the gene promoter has
one active state and one inactive state. In many cases, how-
ever, the promoter may have multiple activity states [23,63].
For example, the PRM promoter of phage lambda in E. coli
is regulated by two different TFs binding to two sets of
three operators that are brought together by looping out
the intervening DNA. As a result, the number of regulatory
states of the PRM promoter is up to 128 [66]. In particular,
eukaryotic promoter structures would be more complex
since they involve nucleosomes competing with or being re-
moved by transcription factors [67]. In spite of this, our
qualitative conclusions will not be ruined although the
quantitative results would be modified if a more complex
promoter structure is considered (data are not shown).

It should be pointed out that gene expression is a com-
plex biochemical process. Except for the factors considered
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here such as transition between two activity state of the
promoter, auto-regulation and promoter leakage, gene ex-
pression also involves other factors such as RNA nuclear
retention, chromatin remodeling [4-6], combinatorial regu-
lation from many transcription factors [68,69], DNA loop
[70,71] and alternative splicing [15] as well as binding of
transcription factors [64,72]. However, it is unclear how
these factors impact gene expression in the combined case
of feedback and promoter leakage.

Finally, our study would have biological implications in
fields such as synthetic biology. First, according to our re-
sults obtained here, promoter leakage in circuits of stochas-
tic gene expression especially in those with repressive
regulation should be controlled and otherwise it would in-
fluence functions of the corresponding circuits, e.g., bistabil-
ity in circuits of positive feedbacks [73], and information
processing in circuits with AND gate [74]. See the review
article [75] for more details. Thus, introducing promoter
leakage to gene circuits to be designed would achieve better
design effects. Second, our results can provide a guideline
for biologists who design synthesized circuits used to probe
for the relationship between bistability and phenotype.
Third, our results would imply that promoter leakage is a
mechanism of efficiently adjusting phenotypic diversity of
in vivo organisms.

Conclusions

Promoter leakage is an unneglectable factor in gene ex-
pression and plays a significant role of controlling expres-
sion dynamics and phenotypic diversity. Specifically,
promoter leakage (1) always reduces expression noise; (2)
tends to unimodalize the gene-product distribution; (2)
makes the gene produce fewer burst in contrast to the case
of no promoter leakage. These results imply that promoter
leakage may be taken as a strategy of efficiently controlling
cell-to-cell variability.

Methods

Derivation of analysis results

In order to derive the analysis expression of the prob-
ability distribution and noise, we transform the chemical
master equation into a confluence hypergeometric equa-
tion [51,53], using the probability-generating function.

Stochastic simulations
Stochastic simulations of our model studied here have

been carried out using the Gillespie algorithm [76].

Additional files

Additional file 1: Effects of promoter leakage on expression dynamics
in more complex situations. Figure S1. The effect of promoter leakage on
expression dynamics in a gene auto-repressing model that assumes the

dissociation of transcription factors from genomic binding site is a slow
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process. Figure S2. The effect of promoter leakage on expression
dynamics in a gene auto-enhancing model that assumes the dissociation of
transcription factors from genomic binding site is a slow process. Figure S3.
Effects of promoter leakage on distribution and noise in a full two-state gene
model. Figure S4. The effect of promoter leakage on burst dynamics in the
case that amount of the gene product is fixed.

Additional file 2: Theoretical derivations of probability and noise.
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