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Abstract

In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that
particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous
enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive. Here
we propose a simple, rapid, and inexpensive method of predicting pathogenic phenotypes on the basis of the presence or
absence of short homologous DNA segments in an isolate. Our method compares completely sequenced genomes without
the necessity of genome alignments in order to identify the presence or absence of the segments to produce an automatic
alignment of the binary string that describes each genome. Analysis of the segment alignment allows identification of those
segments whose presence strongly predicts a phenotype. Clinical application of the method requires nothing more that
PCR amplification of each of the set of predictive segments. Here we apply the method to identifying EHEC strains of E. coli
and to distinguishing E. coli from Shigella. We show in silico that with as few as 8 predictive sequences, if even three of those
predictive sequences are amplified the probability of being EHEC or Shigella is .0.99. The method is thus very robust to the
occasional amplification failure for spurious reasons. Experimentally, we apply the method to screening a set of 98 isolates
to distinguishing E. coli from Shigella, and EHEC from non-EHEC E. coli strains and show that all isolates are correctly
identified.
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Introduction

Clinically important bacterial phenotypes can be difficult,

expensive and time-consuming to determine. Phenotypic assays

require expensive reagents and growth of the bacteria. PCR assays

which detect genotype do not always correctly indicate phenotype.

However, genotype and phenotype in organisms as simple as

bacteria should have strong correlations, and whatever disconnect

exists between genotype and phenotype likely results from an

incomplete capture of genotype in which too few genetic features

are considered.

Most bacterial species are characterized by a ‘‘pan-genome’’ in

which there is a set of genes that are present in all members of the

species (core genes) and a large set of genes each of which is

present in some, but not all, members of the species (accessory

genes) [1–4]. The major fraction of variation among bacterial

genomes of the same species derives not from base substitutions,

but from massive rearrangements coupled with massive gain/loss

of large DNA segments. The fraction of the genome that is

accessory genes ranges from ,8% (B. anthracis, M. tuberculosis) to

,35% (E. coli) (Hall, unpublished results based on analysis of 22

species using methods described in [1]).

That variance in genetic content makes bacterial genomes

particularly difficult to compare because genome comparison

requires comparing homologous DNA sequences. To ensure

comparisons among homologous bases, genes are typically aligned

by one of a variety of multiple sequence alignment (MSA) methods

that introduce into the alignment gaps that are intended to

represent historical insertions or deletions (indels). That approach

reflects the assumptions that individual genes evolve primarily by

base substitutions and indels, and it works well for sequences which

meet those assumptions. MSA is not robust when those

assumptions are violated. MSA methods generally fail when

inversions, transpositions and many indels occur.

To overcome those difficulties in bacterial genome alignment,

we have developed and applied a novel approach which we have

named the ‘‘Bop’’ method [5]. The Bop method produces a

description of each genome as a binary string that indicates the

presence or absence of each bop that is to be found among the

strains that are analyzed. Because bops are short homologous

sequences, the set of binary strings constitutes an automatic

alignment of the set of genomes with respect to the presence/

absence of those bops. The bop alignment can be used directly to

estimate relationships among the strains.

The most common way to estimate the relationships among

organisms is by phylogenetic analysis, but phylogenetic analysis is

not always appropriate for the set of organisms being compared or

for the data that is used to characterize those organisms.

Phylogenetic trees are used to estimate the relationships of
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organisms to hypothetical ancestors, and thereby to each other.

The branches on a phylogenetic tree are intended to reflect the

number of mutations that separate an organism from its

hypothetical ancestor, or one of those ancestors from its immediate

ancestor. There are two fundamental assumptions involved in

phylogenetic analysis, neither of which applies to these data sets.

First, characters that are shared between a pair of individuals are

assumed to be identical by descent. Deviations from that

assumption, collectively called homoplasies, may arise from conver-

gence, incomplete genetic isolation, etc and are indications of loss

of phylogenetic signal. For these data there is no implication that

shared characters are identical by descent. A pair of strains that

have the same bop may do so because they inherited that bop from

a common ancestor, because of exchange with a distantly related

individual, or because each has acquired the same plasmid or

phage-borne bop. Similarly, individuals that lack a particular bop

may do so because of inheritance or because each has

independently suffered loss of that bop. The nature of the data

makes the use of phylogenetic analysis inappropriate. Second,

phylogenetic analysis assumes that the individuals are genetically

isolated from each other; i.e. they do not exchange genetic

information and inheritance is strictly vertical. As a result a node,

internal (ancestral node) or external (extant individual), can have

only one ancestor. That assumption certainly does not apply to

most microbial species where genetic exchange among individuals

is common, and in particular does not apply to E. coli which is

known to undergo considerable genetic exchange [6]. These

considerations indicate that phylogenetic analysis is not appropri-

ate for estimating the relationships among these genomes.

A more appropriate approach to this problem is a spanning tree,

which is a subset of a fully connected graph in which there is a

single path from any node to any other node. A minimum spanning

tree (MST) is the shortest spanning tree of all the possible spanning

trees. Depending on the order in which the nodes are considered it

is possible for there to be more than one MST [7]. MSTs are

widely used in microbial epidemiology to represent relationships

among strains. MSTs make no assumptions about identity by

descent or the absence of genetic exchange. MSTs are based only

on identity by state, thus the relationships that are diagramed only

indicate the overall similarities among the individuals.

To obtain an MST, the bops are combined into segments, where a

segment is a contiguous series of bops that have identical

distributions among the set of genomes, and a new binary string is

written that describes the presence/absence of each segment in the

genome.

The segment alignment can then be used to determine how

tightly each segment is associated with a phenotype of interest.

Segments that are always present (or always absent) in strains with

the phenotype of interest, and are always the opposite when the

phenotype is not expressed are candidates for amplification by

PCR to estimate the probability that an unknown strain exhibits

that phenotype.

Given the abundance of complete genome sequence data for

numerous strains expressing the same phenotype, we thought it

might be possible to identify multiple genetic markers and to

establish the probabilities of certain phenotypes being expressed

based on the presence or absence of those genetic markers. We

assumed that many clinically important phenotypes are deter-

mined less by variation within homologous sequences (SNPs) than

by the presence or absence of accessory genes within the genome.

Identification of accessory sequences associated with pathogenic

phenotypes requires comparison of genomic sequence obtained

from strains whose phenotypes are known.

We used complete genome sequences in order to identify

sequences whose presence is strongly associated with difficult-to-

determine phenotypes. Once identified, we reasoned that ampli-

fication of such sequences would provide a rapid, reliable and

inexpensive means of assessing the probabilities of those pheno-

types. We have applied this method to two clinically important

species of bacteria, Escherichia coli and Shigella.

Escherichia coli K12 was among the first bacteria to be completely

sequenced [8]. Its historic role as the laboratory strain that was the

center of the development of molecular biology fully justified

sequencing its genome. Long regarded as a benign commensal,

that perspective changed in 1982 when an O157:H7 enterohe-

morrhagic (EHEC) strain was shown to be responsible for the

‘‘Jack-in-the-box’’ outbreak that resulted in several deaths.

Sequencing an O157:H7 strain [9] surprised the microbial

community by revealing the dramatic differences in gene content

and gene arrangement between the two sequenced genomes. E.

coli is now well understood to vary enormously with respect to

pathogenicity, and a variety of pathogenic phenotypes have been

described including enterotoxigenic (ETEC), adherent-invasive

(AIEC), enteroaggregative (EAEC), enteropathogenic (EPEC), and

extraintestinal pathogenic (ExPec). Other strains are recognized as

non-pathogenic commensals, of which five (K12 and its deriva-

tives, B and its derivatives, C, W, and ‘‘Crookes’’) are considered

‘‘safe’’ strains for general laboratory use and are classified as Risk

Group 1[10]. As of November 2011 46 E. coli strains have been

completely sequenced.

Enterohaemorrhagic E. coli (EHEC) causes serious symptoms

including lower gastrointestinal bleeding, diarrhea and colitis. The

clinical importance of these strains, and the need to track

outbreaks and epidemics of these pathogens means that properly

identifying them is important. However current clinical assays

often fail to tell them apart because they are closely related, and

symptomatically similar. Because E. coli varies so much in

pathogenicity it is often not sufficient for public health officials

to simply determine whether or not E. coli is present, it is often

important to determine the danger posed by the strains that are

present. Serotyping is an important tool in evaluating risk

(O157:H7 strains can be presumed to be EHEC and therefore

very dangerous), but other serotypes are also EHEC and it is not

necessarily the case that all members of a particular serogroup

would be EHEC. Determination of the EHEC phenotype is

neither rapid nor cheap. O serotyping is performed following the

procedure published by Orskov et al. [11]. H typing is performed

by the method described by Machado et al. [12].

It would be useful to identify DNA sequences that correlate very

strongly with the EHEC phenotype in order to develop a PCR

assay that could quickly determine the probability that a given

strain is EHEC. It is well understood that many of the virulence

determinants associated with the EHEC phenotype are plasmid

borne, but although some plasmids are shared by EHEC strains,

none is shared by all.

Shigella is another serious pathogen that infects the digestive tract

and can cause abdominal cramping, lower gastrointestinal

bleeding, diarrhea, and colitis and severe dehydration. Shigella

has been treated as a separate genus because of its clinical

pathogenicity resulting in shigellosis, but it has long been

considered to be part of E. coli [13,14]. At this time eight Shigella

strains have been completely sequenced. Shigella is a clinically

important clade within Escherichia coli [15] that causes shigellosis

[16]. Distinguishing Shigella from other E. coli is non-trivial, and it

would be valuable to have molecular markers that would

unambiguously distinguish the two.

Using Genome Comparisons to Predict Phenotypes
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Here we apply the Bop method to the analysis of 47 E. coli and 8

Shigella completely sequenced genomes to determine their similar-

ity and to identify genetic sequences that correlate strongly with

the phenotype of species identity for EHEC E. coli and Shigella,

with the intent of creating a reliable PCR assay for rapidly

identifying them.

Results

BopGenomes analysis of E. coli –Shigella genomes
The 47 E. coli genomes and 8 Shigella genomes were analyzed

using BopGenomes. table S1 lists the GenBank accession

numbers, pathogenicity phenotypes and references for those

phenotypes. The 55 genomes were analyzed both including and

excluding plasmids. In each case the genomes were digested in

silico by restriction enzyme NcoI. When plasmids were excluded,

the 55 genomes included 17,469 unique restriction fragments and

comprised 69,010 unique bops. When plasmids were included,

there were 18,193 unique restriction fragments and 76,517 bops.

Clustering of E. coli-Shigella genomes based on bops
Minimum spanning trees (MST) based on the presence or

absence of each bop are shown in Figures 1 and 2. For the analysis

shown in Figure 1, we excluded plasmids. For Figure 2, plasmids

were included.

Figures 1 and 2 have been colored to indicate the pathogenic

phenotypes when those are known. In general phenotypes tend to

cluster together. We define a cluster as a set of genomes such that

there is a path from each member of a cluster to every other

member of that cluster, and the path does not pass through any

node not belonging to that cluster. When plasmids are excluded

the EHEC strains fall into a single cluster, whereas when plasmids

are included they fall into two closely related clusters, one

consisting of the four O157:H7 strains. In both data sets the

Shigella strains fall into a single cluster, and 13 or 14 of the 16 the

commensal strains fall into a single cluster.

In both of these cases there was a single MST. The two MSTs

do differ in some details. When plasmids are excluded (Figure 1)

the three AIEC strains form a cluster; when plasmids are included

(Figure 2) they do not. One of those strains (LF82) lacks plasmids,

each of the others has a large (.100 kb) plasmid but the plasmids

are unrelated to each other.

Predicting phenotypes and identifying sequences that
do so

We asked whether there are any chromosomal DNA sequences

that are common to, and perhaps exclusive to, EHEC strains. To

answer this question we used BopGenomes to identify EHEC-

specific segments. in a sequence data set (See Materials and

Methods) in which plasmids were excluded.

Each segment consists of a contiguous series of bops that have

identical distributions among the set of genomes. BopGenomes
generates a file (.segScores) in which each strain is described by a

binary string that shows the presence/absence of each segment

(Methods and Figure 3). The program GetProbs was used to

determine, for each segment, the probability that it is present in a

set of EHEC strain and in a set of non-EHEC strains. That set of

strains is known as the ‘‘training set’’ and consisted of four

randomly chosen EHEC strains and 30 randomly chosen non-

EHEC strains. A parameter, ß, was calculated for each segment. ß

is the probability that the presence/absence of the segment is non-

randomly distributed with respect to the phenotype. The output of

GetProbs was used by the program PredictPhenotypes (1) to

calculate for all 55 genomes the probability that the strain is

EHEC and (2) to identify the sequences that most strongly predict

the EHEC phenotype.

Of the 47 E. coli strains 7 are known to be EHEC and 38 are

known to be non-EHEC (Table S1). To test the predictive ability

of our programs 4 EHEC strains and 30 non-EHEC strains

(including Shigella strains) were used as training strains to predict

the EHEC phenotypes of the remaining strains (of which 3 were

known to be EHEC and 16 to be non-EHEC). Given the small

number of EHEC strains the predictions are expected to vary

slightly depending upon the makeup of the training set. With that

in mind 20 independent runs of GetProbs followed by

PredictPhenotypes were carried out. In each run only

sequences with a ß value .0.9999999 were used to predict

phenotypes and to identify predictive sequences. Twenty runs

provide a reasonable fraction of the possible combinations of 4

EHEC and 30 non-EHEC strains in the training sets.

Table 1 shows the probabilities with which each EHEC strain

was predicted to be EHEC over the 20 runs. Among the non-

EHEC strains the mean probability of being EHEC was 0.0098,

with the maximum probability being 0.19 for strain UMNK88.

Together with the results in Table 1 this provides an excellent

example of the ability of this analysis to predict phenotypes based

on the presence of segments with high ß values.

Eighteen segments had ß values .0.9999999. A better test of the

predictive utility of those 18 segments comes from blast searches of

the non-redundant (NR) nucleotide database. Table 2 shows the

results of those searches. Nearly all of the segments (except 13 and

16) show homology with more EHEC than non-EHEC hits. Eight of

the segments would be useful as PCR probes. The sequences of those

eight segments are given in table S2. While most of those eight

segments on their own would have insufficient predictive ability for

reliable clinical assays, when combined, they are powerful predictors

of phenotype. Based on the in silico specificities, any strain in which

even the four least specific probes amplified would have a .99.97%

probability of being an EHEC E. coli.

Identification of Shigella-specific sequences
We used GetProbs to identify 8 sequences, ranging from 400

to 1536 bp, that were present only in the 8 Shigella strains

(ß$0.9999999999). We used each of those sequences as queries in

BLAST searches to screen the entire non-redundant database of

DNA sequences. None of the sequences were present in any

organism but Shigella, including in any of the 47 completely

sequenced Escherichia coli strains. Our criterion for being present

was that the query aligned over .50% of its length with .80%

sequence identity. All but one of the sequences was present in all

eight of the completely sequenced Shigella strains and none were

present in any other organisms including E. coli. Some sequences

did align over short regions with other organisms, so we trimmed

the query sequences to include only the completely Shigella-specific

regions (Table S3).

Experimentally testing the reliability of EHEC-specific PCR
amplification probes

We identified primers for each of the EHEC-specific sequences

in Table S2 (Table S4) and screened a collection that included 56

EHEC E. coli, 17 non-EHEC E. coli, 16 Shigella sp., 4 Klebsiella

pneumoniae, 1 Klebsiella oxytoca, 3 Proteus mirabilis, and 1 Pseudomonas

aeruginosa strains. Three of the EHEC strains and two of the non-

EHEC strains were among the set for which complete genome

sequences are available. Genomic DNA was prepared from each

strain and was used as the template for PCR reactions with each

pair of primers. Four of the probes, EHEC 2, EHEC3, EHEC 7

and EHEC8, were deemed unreliable on two grounds: (a) they

Using Genome Comparisons to Predict Phenotypes
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produced amplicons in less than half of the known EHEC strains,

and (b) they failed to produce amplicons in the three EHEC strains

that had been completely sequenced an in which the sequences

were known to be present (Table 3). None of the four reliable

EHEC probes amplified all 56 EHEC strains, and one probe,

EHEC 4, amplified two Shigella strains. Thus none of the probes is,

by itself, capable of reliably identifying EHEC strains.

Experimentally testing the reliability of Shigella-specific
PCR amplification probes

We identified primers for each of the 8 trimmed Shigella-specific

sequences in Table S3 (Table S5), and screened the same

collection of bacterial strains. None of the PCR probes produced

amplicons in any of the species other than Shigella and E. coli.

Table 3 summarizes the results of those experiments. Only one

probe amplified all 17 Shigella strains, and one probe, Shi 4,

amplified two E. coli strains. Again, none of the probes is, by itself,

capable of reliably identifying Shigella.

Updating the in silico results
In the time since the EHEC-specific and Shigella-specific

sequences were identified, while the experimental PCR studies

were being conducted, an additional nine E. coli and two Shigella

genomes have been completed and one E. coli genome has been

delisted by GenBank. Minimum spanning trees that have been

updated to reflect those changes are shown in figures S1 and S2. The

Shigella-specific and EHEC-specific probes (Tables S4 and S5)

were used as queries in BLAST searches of the non-redundant

nucleotide database. Table 4 shows that both the Shigella-specific and

EHEC-specific probes are highly specific, but are individually

insufficient to identify isolates as EHEC or as Shigella with $99.9%

confidence.

Predicting EHEC or Shigellosis phenotypes based on
amplification profiles

Practical application of this approach to predicting phenotypes

means predicting a phenotype from the ‘amplicon profile’ of a

Figure 1. Minimum spanning tree based on complete genomes excluding plasmids. Pathogenicity phenotypes are indicated by colors.
The pathogenicity of uncolored strains is not known. Full strain IDs and accession numbers of the genome sequence files are given in Table S1.
doi:10.1371/journal.pone.0068901.g001
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strain. The amplicon profile is a binary string in which a 1 means

that a PCR probe produced an amplicon and a 0 means that it did

not. For example, Shigella flexneri 2a str. 2457T produces BLAST

hits (in silico equivalent of an amplicon) with all Shigella-specific

probes except probe Shi 8. Its amplicon profile is therefore

11111110. Table 5A combines the results from Tables 3 & 4 to

Figure 2. Minimum spanning tree based on complete genomes including plasmids. Pathogenicity phenotypes are indicated by colors. The
pathogenicity of uncolored strains is not known. Full strain IDs and accession numbers of the genome sequence files are given in Table S1.
doi:10.1371/journal.pone.0068901.g002
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show, for each probe, the fraction of amplicons or hits that were

from non-Shigella or non-EHEC strains. Table 5A is based upon a

total of 26 Shigella, 63 EHEC-E. coli, 65 non-EHEC E. coli, and 9

strains of other species.

While the presence or absence of an in silico hit can be considered a

completely reliable indicator of the presence or absence of a query

sequence in the genome, the presence or absence of an amplicon in a

PCR experiment is a much less reliable indicator of the presence or

absence of a sequence. The absence of an amplicon can either mean

that the sequence is not present in that strain, or that the PCR

reaction failed for spurious reasons; i.e. a false negative. False

positives are much rarer that false negatives because to be counted as

a positive not only must an amplicon be present, it must be an

amplicon of the correct size. In other words, we can trust the

interpretation of the presence of an amplicon more than we can the

interpretation of the absence of an amplicon.

If the amplification profile of an isolate that was probed with all

eight Shigella-specific probes is 00011001 we want to know the

probability that an isolate in which probes Shi 4, Shi 5 and Shi 8

produce amplicons is Shigella. Probe Shi 4 produced in silico hits in

11 strains Table 4) and amplicons in 17 strains (Table 3), of which

a total of 3 strains were not Shigella. The probability that a Shi 4 hit

or amplicon was not in a Shigella strain is therefore 0.107 (Table 5).

The probability that a strain with the amplification profile

00011001 is not Shigella is the product of those probabilities for

probes Shi 4, Shi 5 and Shi 8, or 1.5461024. The probability that

the strain is Shigella is therefore 0.9998.

Most Shigella strains produced amplicons/hits with all eight

Shigella-specific probes, and most non-Shigella strains produced no

hits with any Shigella-specific probes, i.e. the amplicon profiles were

11111111 and 00000000 respectively. Their respective probabil-

ities of being Shigella are 0.99999999998 and 1.6610211 respec-

tively. Similarly most EHEC E. coli had amplicon profiles of 1111

with the reliable EHEC-specific probes, while most non-EHEC E.

coli and other species had a 0000 profile. Their respective

probabilities of being EHEC are 0.99999993 and 761028

respectively. Those strains with other profiles, and their probabil-

ities of being EHEC or Shigella, are shown in Table S6.

All of the Shigella strains tested were identified as Shigella with

probabilities $0.999. One E. coli strain, strain 53638, was

incorrectly identified as being Shigella with a probability .0.9999,

giving a false positive frequency of 1 out of 75 E. coli screened, or

0.013 (Table S6). Two EHEC strains, RDEC-1 and RD8, were not

identified as EHEC, giving a false negative rate of 0.03.

For clinical applications we suggest that any strain in which the

probability of being EHEC or Shigella is ,0.999 should be rejected

as having that phenotype. Because false positives do occasionally

occur we suggest that any strain in which a single probe produces

an amplicon should be retested.

Discussion

Shigella and E. coli have classically been distinguished on the basis

of a variety of biochemical and serological tests. More recently they

have been distinguished on the basis of presence of the pINV

plasmid and of the Shiga toxin genes, but none of these phenotypes

are unique to Shigella, and in particular many are shared by EIEC E.

coli strains that closely resemble Shigella [17,18]. Similarly, EHEC E.

coli are classically distinguished from non-EHEC E. coli on the basis

of serotype and the presence of Shiga toxin (verocytotoxin), but

again those factors are not unique to EHEC strain. The most

common EHEC serotype is O157:H7, but there are other EHEC

serotypes [15]. Non-EHEC strains, including EIEC and EAEC-

STEC strains produce the Shiga toxin [19]. Indeed, ‘‘EHEC are

sometimes difficult to identify’’ and ‘‘There is no single technique

that can be used to isolate all EHEC serotypes’’ [20]. Because the

infectious doses of both Shigella and ETEC-E. coli are about four

orders of magnitude lower that that of most other pathogenic E. coli

[17], rapid and reliable identification of those organisms is clinically

important. The major advantage of using the Bop method to identify

phenotype-specific sequences that can be used as PCR probes is not

only specificity, but also that using sets of those probes allows a

probability statement about the reliability of identification of EHEC

and Shigella strains to be made. Additionally, use of such probe sets is

both rapid and inexpensive.

At present it is quite difficult to obtain phenotypic information

about pathogens that have been completely sequenced. It is typically

the case that the group that sequenced the strain is interested in only

one phenotype (if any). For instance, the public sequence databases

rarely include any information about antibiotic resistance. The

availability of the Bop method makes a strong argument for

developing collections of clinically important strains whose complete

genome sequences have been determined and whose phenotypes are

thoroughly described. The availability of such a collection would

make it possible to develop databases of their phenotypes and to use

Figure 3. Determination of segments from bops. A: Part of a
.scores file in which binary strings indicate the presence or absence of a
series of bops for strains A–E. Numbered lines above the string show
contiguous bops that are identically distributed among strains A–E. B: A
corresponding .segScores file in which the binary strings indicate the
presence of absence of the segments shown in panel A.
doi:10.1371/journal.pone.0068901.g003

Table 1. EHEC strains.

Strain Probability of being EHEC

EcoO157H7_EC4115 1.00

EcoO157H7_EDL933 0.99

EcoO157H7_Sakai 0.99

EcoO157H7_TW14359 1.00

EcoO26H11_str11368 0.84

EcoO103H2_12009 0.85

EcoO111H-_11128 0.88

doi:10.1371/journal.pone.0068901.t001
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Table 2. Segments used to search the nr database.

Segment Segment ID Length (bp) Number of EHEC hitsa Number of non-EHEC hitsa pb Commente

1 10254 734 7 0 1.0 +

2 10258 6,924 7 1c 0.875 +

3 10261 200 7 2c 0.778

4 10263 270 7 1c 0.875 +

5 10314 600 7 1 0.875 +

6 10375 108 7 1c 0.875

7 10380 196 7 2 0.778

8 10391 217 7 2c 0.778

9 10393 400 7 0 1.0 +

10 10396 800 7 0d 1.0 +

11 10398 141 7 1d 0.875

12 10402 636 7 0 1.0 +

13 10545 12,387 7 12 0.368

14 10547 1,744 7 3 0.700

15 10549 376 7 1 0.875 +

16 10551 5,590 7 14 0.333

17 10605 134 7 0 1.0

18 11916 138 7 1c 0.875

aHits align over at least 50% of the query length.
bp is the probability that a hit is EHEC.
cIncludes Citrobacter rodentium ICC168, a strain that is known to have acquired EHEC and EPEC associated sequences from E. coli [21].
dHits in bacteriophage genomes were not counted.
ePlus sign indicates that length is $200 bp and p is .0.80. Segments indicated by + would be useful as PCR probes to detect EHEC strains.
doi:10.1371/journal.pone.0068901.t002

Table 3. Experimental reliability of EHEC-specific and Shigella-specific PCR probes.

EHEC-specific PCR probes

Probe Number of amplicons Number of amplicons not in EHEC strain

EHEC 1 48 0

EHEC 2 27 0

EHEC 3 0 0

EHEC 4 44 2

EHEC 5 49 0

EHEC 6 47 0

EHEC 7 0 0

EHEC 8 0 0

Shigella-specific PCR probes

Probe Number of amplicons Number of amplicons not in Shigella strain

Shi 1 15 0

Shi 2 14 0

Shi 3 13 0

Shi 4 17 2

Shi 5 16 0

Shi 6 14 0

Shi 7 14 0

Shi 8 16 0

doi:10.1371/journal.pone.0068901.t003
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those phenotypes to identify phenotype-specific PCR probes.

Appearance of a new clinically relevant phenotype could quickly

be followed by characterization of that collection by a laboratory

with the necessary expertise, and in turn followed by development of

phenotype-specific PCR probes.

The Bop method can be applied to any species for which a

sufficient number of strains in which the phenotype of interest is

known have been completely sequenced. The method is useful for

estimating the relationships among the sequenced strains, but the

most valuable application of the method is to identify phenotype-

specific sequences that can then be used to inexpensively and

quickly characterize clinical isolates by PCR. Once the bop and

segment profiles of a set of sequenced genomes has been

determined it requires only a few minutes to identify phenotype-

specific segments among those isolates.

Depending upon the intended downstream application of the

analysis, one might include the plasmids in each strain or exclude

them from the analysis. Excluding plasmids results in the loss of

information, and it seems reasonable that two strains that share a

plasmid are more alike than they would be did they not share that

plasmid. On the other hand, plasmids clearly move more frequently

among strains than do chromosomal genes and if one’s interest is more

in chromosomal similarity, then excluding plasmids makes sense.

These approaches that we have introduced have the potential to

apply genomic data for epidemiological and clinical analyses. We

believe that the approach of using bops as input for MSTs and

Table 4. In silico reliability of EHEC-specific and Shigella-specific PCR probes.

EHEC-specific PCR probes

Probe Number of hitsa Number of hits not in EHEC strain

EHEC 1 10 1

EHEC 2 10 1

EHEC 3 9 0

EHEC 4 9 0

EHEC 5 9 0

EHEC 6 9 0

EHEC 7 10 1

EHEC 8 10 1

Shigella-specific PCR probes

Probe Number of hits Number of hits not in Shigella strain

Shi 1 11 1

Shi 2 11 1

Shi 3 11 1

Shi 4 11 1

Shi 5 12 2

Shi 6 11 1

Shi 7 11 1

Shi 8 10 1

aHits in a BLAST search of the GenBank non-redundant nucleotide database.
doi:10.1371/journal.pone.0068901.t004

Table 5. Probe reliabilities.a

EHEC probe Probability not EHECb Shigella probe Probability not Shigellac

EHEC 1 0.018 Shi 1 0.039

EHEC 2 Unreliable Shi 2 0.04

EHEC 3 Unreliable Shi 3 0.042

EHEC 4 0.039 Shi 4 0.107

EHEC 5 0 Shi 5 0.037

EHEC 6 0 Shi 6 0.04

EHEC 7 Unreliable Shi 7 0.04

EHEC 8 Unreliable Shi 8 0.039

aCombined results from tables 3 and 4.
bProbability that a strain with a hit or amplicon from this probe is not EHEC.
cProbability that a strain with a hit or amplicon from this probe is not Shigella.
doi:10.1371/journal.pone.0068901.t005
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segments as a method for identifying sequences that predict

phenotype can ultimately be implemented into clinical labs as cost

and time effective methods for analyzing infective bacteria.

Additionally, the programs we have developed are readily

available and can be implemented by a wide range of users with

common computing equipment. Our results are also of theoretical

importance because they identify a new type of character, namely

a bop, to perform robust analyses of genomic sequence data.

Materials and Methods

The Bop method
The Bop method is applied to a set of completely sequenced

(closed) genomes through use of the BopGenomes program. The

genomes are digested in silico with one of several restriction

enzymes to produce an ordered restriction map. The selection of

restriction enzymes is designed to allow adequate restriction of any

genome regardless of GC content, and other sequence biases. By

allowing the option to digest the genome at a variety of restriction

sites, it is possible for the program to accommodate most genomes.

Each fragment is given an ID that consists of its length (rounded to

the nearest 100 bp) and the lengths of the fragments that flank it.

Thus a 16,542 bp fragment flanked by a 4,320 bp to its left and a

1,680 fragment to its right would be identified as 4.3-16.5-1.7.

That particular 16.5 kb fragment is distinguished from all other

16.5 kb fragments by the lengths of its flanking fragments. At this

point that system appears sufficient to uniquely identify restriction

fragments. Cases of multiple occurrences of the same fragment

turn out to be duplicated regions that contain the same internal

restriction fragments. Usually such regions represent multiple

copies of mobile elements or phages.

BopGenomes makes a list of all unique restriction fragments; i.e.

as all the genomes are considered, a fragment is added to the list only

if it was not already in the list. Restriction fragments cannot be used

directly to assess genome content because restriction fragments are

degenerate; i.e. multiple restriction fragments can include the same

homologous sequence. For instance, the appearance of a new

restriction site destroys an existing restriction fragment and creates

in its place two fragments whose lengths sum to the length of the

original fragment. In order to deal with restriction fragment

degeneracy each fragment is divided into ,200 bp sections called

‘‘bops’’. Most bops are exactly 200 bp, but bops at the end of a

fragment may be less than 200 bp. If a bop is ,100 bp it is joined to

the previous bop, thus generating a bop of up to 300 bp. Although

the use of restriction fragments may appear to be superfluous when

analyzing completely sequenced genomes, it does serve to put the

bops in most homologous regions into the same frame. Doing that

reduces the number of unique bops and dramatically reduces

computation time.

After introducing the restriction sites and creating the bops, the

program lists all unique bops. As each bop is considered for

addition to the list it is aligned against each of the bops already in

the list by the blast2seq program (NCBI). If a bop shares $80%

sequence identity over .50% of its length with a bop already in

the list it is not added to the list. At the same time, lists of each bop

in each restriction fragment are maintained. Thus, from the

ordered restriction map of a genome we know which bops are

present. Since we know the sequence of each bop we know the

sequence information that is present in each genome.

Finally, each genome is described by a binary string in which the i

th character indicates the presence of bop number i by a 1, and its

absence by a 0. Note that homologous bops (those that share .80%

sequence identity) are considered equivalent. Minor variation in

sequence is lost to this analysis, as is the position of sequences in the

genome. The binary strings that describe the presence/absence of

each bop in each of the genomes are contained in the

BopGenomes output file with the extension ‘.scores’.

Clustering by Minimum Spanning Trees (MST)
Clustering by MST was carried out using the MST gold

program [7]. The pairwise distances between genomes were based

on the equidistant method [7].

Just as a phylogenetic tree is a graph that illustrates the relationships

between individuals and their hypothetical ancestors based on identity

by descent, an MST is a graph that illustrates the relationships

between individuals based on identity by state. On an MST each node

represents an individual and nodes are connected by edges whose

lengths reflect the distance between the nodes. In this case the distance

between a pair of genomes is shown as the number of differences in the

state of the bop (0 or 1) divided by the number of bops.

Predicting phenotypes and identifying predictive
segments

Bops are sufficient for estimating the genetic relationships among

genomes by clustering methods, but for other downstream

applications (such as predicting phenotypes) it is useful to join a

series of contiguous bops that have identical distributions among the

genomes into ‘‘segments’’. A segment is thus a series of contiguous

bops that behave as a unit with respect to their presence or absence

in genomes. A genome can thus also be described by a binary string

that indicates the presence or absence of each of the segments. The

binary strings that describe the presence/absence of each segment

in each of the genomes are contained in the BopGenomes output

file with the extension ‘.segScores’.

The program GetProbs uses a set of genomes whose

phenotypes are known (the training set) to calculate, from the

binary strings in a .segScores file, (1) the probability of a positive

phenotype given that a particular segment is present, (2) the

probability of a positive phenotype given that the segment is

absent, and (3) ß, the probability that the presence or absence of

the segment is non-random with respect to phenotype. ß is thus a

measure of the degree to which the presence or absence of a

segment is associated with the phenotype. That information is

saved in a file with the extension ‘.pp’.

The program PredictPhenotypes uses the probabilities for

each segment in a .pp file to predict the probability that a genome

whose phenotype is unknown has a positive phenotype. Since

segments with high ß values are more strongly associated with a

particular phenotype, the segments that are used to predict

phenotype are filtered to include only those segments with ß values

above a chosen threshold. The probability that a genome has a

positive phenotype is the sum of the probabilities of being positive

given that the segment is present for all segments that are present

plus the sum of the probabilities of being positive given that the

segment is absent for all segments that are absent, divided by the

number of segments whose ß value is above the threshold. The

program lists all of the segments above the threshold ß value.

Strains
Most of the EHEC E. coli and Shigella strains were obtained from

a collection at Michigan State University that was developed by

Dr. Shannon Manning. E. coli strains whose genomes have been

sequenced were obtained from authors of the genomes sequences.

Genomic DNA preparation
A boiling genomic prep was used to lyse cells and extract

genomic DNA. Cells were suspended in 25 ml of water and were
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heated to 100u for 10 minutes. The samples were then cooled and

centrifuged at 1000 rpm (max speed) in a benchtop centrifuge for

1 minute and 3 mls of the supernatant each sample were used as

template for 10 ml PCR reactions.

PCR Assays
PCR reactions were performed as follows:

2x Taq Mastermix (New England BiolabsTM ) was used

according to manufacturer instructions. Primers were used at a

concentration of 500 pM. The reaction was run for 30 cycles with

a denaturation temperature of 94uC, annealing temperature of

65uC, and an elongation temperature of 72uC. We used universal

16S primers as a positive control.

Availability of programs
BopGenomes, GetProbs, and PredictPhenotypes are part

of the BopGenomes Suite that is available for Mac, Windows and

Unix platforms free of charge at http://bellinghamresearchinstitute.

com/software/index.html.
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