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Abstract

Next-generation sequencing technologies expedited research to develop efficient computational tools for the identification
of structural variants (SVs) and their use to study human diseases. As deeper data is obtained, the existence of higher
complexity SVs in some genomes becomes more evident, but the detection and definition of most of these complex
rearrangements is still in its infancy. The full characterization of SVs is a key aspect for discovering their biological
implications. Here we present a pipeline (PeSV-Fisher) for the detection of deletions, gains, intra- and inter-chromosomal
translocations, and inversions, at very reasonable computational costs. We further provide comprehensive information on
co-localization of SVs in the genome, a crucial aspect for studying their biological consequences. The algorithm uses a
combination of methods based on paired-reads and read-depth strategies. PeSV-Fisher has been designed with the aim to
facilitate identification of somatic variation, and, as such, it is capable of analysing two or more samples simultaneously,
producing a list of non-shared variants between samples. We tested PeSV-Fisher on available sequencing data, and
compared its behaviour to that of frequently deployed tools (BreakDancer and VariationHunter). We have also tested this
algorithm on our own sequencing data, obtained from a tumour and a normal blood sample of a patient with chronic
lymphocytic leukaemia, on which we have also validated the results by targeted re-sequencing of different kinds of
predictions. This allowed us to determine confidence parameters that influence the reliability of breakpoint predictions.

Availability: PeSV-Fisher is available at http://gd.crg.eu/tools.
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Introduction

Genomic structural variations (SVs) include copy number

variants (CNVs) of genomic segments (typically .100 bp),

insertions, and balanced rearrangements, such as inversions and

translocations [1,2]. The fraction of the genome affected by SVs is

comparatively larger than that accounted for by single nucleotide

polymorphisms (SNPs) and other smaller scale variants (Indels) [3];

currently, around 15% of the human genome is considered to fall

into copy number variable regions [4]. Thus, their potential role in

the contribution to genetic differences between individuals and

species, to genetic diseases, and to the somatic differences between

normal and cancer cells has become increasingly apparent [1–

3,5,6].

Advances in DNA sequencing technologies have enabled the

exploration of genomic SVs at a very fine scale, allowing a

genome-wide characterization of breakpoints for most classes and

sizes of SVs at base-pair resolution. However, the nature and the

huge amount of next-generation sequencing (NGS) data pose

substantial computational and bioinformatics challenges. Four

main strategies exist for the detection of SVs breakpoints from

NGS data (reviewed in [7,8]). Briefly, these strategies are: (1)

Paired-reads (PR) approaches, based on the alignment of sequence

pairs corresponding to both ends of a clone or a DNA fragment,
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which find clusters of aberrantly mapped pairs of reads that

suggest the presence of SVs [9–12]; (2) read-depth (RD) analysis,

that detect CNVs by analysing the density of reads mapped to a

given interval of the reference genome [13–15]; (3) split-read (SR)

[16] and clip-read (CR) [17] analysis, which directly identify

sequence reads that contain breakpoints of SVs; and (4) sequence

assembly (AS), which enable the fine-scale discovery of SVs,

including novel (non-reference) sequence insertions [5,18,19].

Each of the above-mentioned approaches has limits in terms of

the type and size of SVs that they are able to detect, as each one

has different strengths and weaknesses [7,8]. For example, PR

approaches have difficulties in mapping assignments when the

read pairs fall into repetitive regions or when there are SNPs or

other sequence features mapping close to the breakpoints.

Furthermore, the size of insertions that can be detected by PR is

limited by the library’s insert size mean and standard deviation.

Although RD analysis is the only sequencing-based method to

accurately predict absolute copy-numbers [13,20], its breakpoint

resolution is poor. RD is further hampered by PCR induced

coverage biases and is unable to detect copy-number neutral

variants such as inversions and balanced translocations. The SR

strategy has had a limited application in the analysis of NGS data

due to the difficulty of aligning short reads (reliable only in unique

genomic regions), algorithmic issues with aligning across large gaps

and the need of a higher depth of coverage in order to obtain

sufficient split reads matching the breakpoints. Finally, AS

approaches require higher computational costs, are very-time

consuming, and are still prone to assembly errors.

So far, there is no single SV caller with the capacity to detect the

full range of changes, since most of the existing methods for SV

prediction use only one type of the described approaches.

Although the PR strategy would, a priori, be able to detect most

types of SV, available methods designed to detect SV by PR focus

mainly on the discovery of deletions, insertions and inversions. As

an alternative, algorithms like SVMerge [21] propose to integrate

multiple existing SVs algorithms, which could complement each

other and enhance their capabilities for SVs detection. However,

the computational requirements for such a process are very high.

More recent methods have begun to consider both PR and RD

signals [22–24], although most of them have focused only on

detection of CNVs, with the exception of the recently described

GASVPro algorithm that combines these two strategies for the

detection of CNVs and inversions [24]. Only the HYDRA [25]

and the next-generation VariationHunter [26] algorithms have

moved one step further, and offer the capability to predict

retrotransposition events. Additionally, two other methods, Pindel

and Delly, have considered the combination of PR and SR signals.

Pindel [16] uses both strategies for the detection of large deletions

and medium-sized insertions, while Delly [27] integrates PR and

SR for the characterization of balanced and unbalanced structural

variants.

In the last years, the systematic whole-genome sequencing of

several cancer samples and germline genomes has revealed a high

level of structural genomic complexity in some populations of

tumour or germline cells [28–31]. This high genomic complexity

consists of a specific pattern of breakpoint accumulation for

different types of SVs (deletions, duplications, intra- and inter-

chromosomal translocations, and inversions) occurring in relative-

ly small focal regions, involving one or several chromosomes [28].

At the genomic level, this phenomenon demonstrates the

importance of the capability to predict the complete spectrum of

SV types and to correctly interpret these predictions.

Here we present a novel computational tool to detect and

interpret five general types of SVs (deletions, copy-number gains,

intra- and inter-chromosomal translocations, and inversions)

present in a given genome using NGS data. NGS analysis

generates a large amount of SV predictions, and therefore it is

essential for computational tools to try to obtain the most reliable

set of potential variants in order to facilitate the downstream

biological validation. In this sense, our pipeline, called PeSV-Fisher,

is based on a combinatorial analysis of PR and RD strategies that

lead to the detection and correct interpretation of simple and

complex structural rearrangements. In addition, for all those

breakpoints predicted by PR that are not supported by RD or

defined as complex SV, our pipeline includes a module that filters

out rearrangement predictions involving multi-copy elements such

as segmental duplications (SDs), simple sequence repeats (SSRs) or

transposable elements (TEs).

PeSV-Fisher has been designed with the aim of facilitating the

identification of somatic variation, and, as such, it is capable of

analysing two or more samples simultaneously, producing a list of

non-shared variants between tumour and normal samples,

although it can also analyse samples individually.

Algorithm Description

PeSV-Fisher works on the two different types of sequence data

based on pairs of reads, namely paired-end or mate-pair libraries.

Paired-end libraries are constructed with small insert sizes

(,600 bp) generated by the fragmentation of genomic DNA into

short segments followed by gel-based size selection and sequencing

of both ends of the segments. In contrast, mate-pair (jumping)

libraries are constructed with larger insert sizes (.2 kb). The DNA

is fragmented and adaptors are added at the ends, then it is

circularized and randomly sheared, generating smaller fragments;

the fragment containing the adaptors is selected, and its ends are

sequenced [9]. Computationally, the main difference between the

two procedures is the strand order of the resulting aligned pair of

reads. However, for readability, from now on we will assume that

the data has been generated using paired-end libraries. The

pipeline starts from sequence alignment data in the BAM format, a

quasi standard widely accepted in the sequencing community and

produced by most NGS alignment tools. This way, the users can

apply their alignment algorithm of choice, such as MAQ [32],

SOAP [33], bowtie2 [34] or BWA [35].

The PeSV-Fisher toolkit is a compendium of modules performing

the following steps: definition of anomalous read-pairs, clustering

procedure and breakpoint prediction, read depth analysis,

definition and interpretation of structural variants, and filtering

structural variant calls (FinalCountDown). These modules are

described in detail in the following subsections.

1.1 Defining Anomalous Read-pairs
First, read-pairs (RPs) are extracted from each BAM file using

SAMtools [36]. Unpaired RPs (i.e. one-end anchored RPs) and

orphan RPs (i.e. unmapped RPs) are retained apart.

Second, RPs are assigned to four different categories based on

the following criteria: (1) RPs mapped in right order and right

orientation (i.e., the leftmost read should be aligned in the forward

strand and the rightmost read in the reverse strand); (2) RPs

aligned in right orientation but wrong order (i.e., the leftmost read

is aligned in the reverse strand and the rightmost in the forward

strand); (3) RPs mapped in right order but wrong orientation (i.e.,

both reads mapped in either forward or reverse strands); and (4)

RPs mapped to different chromosomes.

Third, category (1) is used to estimate the empirical distribution

of the insert size random variable, L. This is used to define the cut-

offs to discriminate concordant RPs (those falling into the expected
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range) from discordant RPs exhibiting a significantly increased or

decreased insert size. The empirical distribution of L is calculated

based on the locations (left, right) of the innermost RP positions such

that l = right – left, where l correspond to the observations of L.

Assuming that at least 1{að Þ|100% of the RPs are concordant,

an upper cut-off, UC, and a lower cut-off, LC, are calculated as the

1{a=2 and �a=2 percentiles of the L distribution. If L is normally

distributed, when �a~0:01, these percentiles correspond to 2.58

standard deviations (2:58�s) from the mean.

Fourth, the type of aberration is defined based on the

characteristics of the alignment. Note that this only classifies the

aberration, but it does not attempt to define the type of SV yet.

RPs in category (1) with l .UC are labelled as distance-pairs. This

type of RPs are usually considered as indicators of deletions,

however, as already described by [26] and as we will show later in

this section, other types of SVs might be defined by these mapping

aberrations. RPs in this category with l,LC, which are considered

as indicators of insertions, are discarded. The size of the insertions

that could be detected from these RPs is limited by the library’s

insert size mean and standard deviation, and most PE data does

not allow a high-confidence detection of insertions because of this.

Detection of novel sequence insertions requires a specific analysis,

which is provided by other algorithms [18,25,26]. RPs in category

(2) will be called order-pairs, and are indicators of intra-

chromosomal rearrangements. RPs in category (3) will be called

ori-pairs, and are usually considered as indicators for putative

inversions. However, all these RP categories may also be

indicators of more complex SVs, which will be described in detail

later in this section. Finally, RPs in category (4) will be called chrpos

or chrposori-pairs, depending on whether both reads of the pair are

mapped to opposite strands or to the same strand, respectively,

and are considered indicators of different inter-chromosomal

rearrangements.

1.2 Clustering Procedure and Breakpoint Predictions
A clustering procedure is carried out to group indicators

pointing to the same aberration. Two different types of clustering

approaches are used depending on whether (A) the anomalous

RPs consist of paired reads where one read is aligned on the

positive DNA strand and the other on the negative strand (such as

distance-, order- or chrpos-pairs), or (B) both reads are aligned on the

same strand (ori- or chrposori-pairs).

In case (A) any pair (i,j) of RPs are clustered together if they

meet the following criteria:

Drightz,i{rightz,j DvUC ^ Dleft{,i{left{,j DvUC ^

Dli{lj Dv UC{LCð Þ

where rightz,i is the rightmost position of the read aligned on the

positive strand corresponding to the ith RP (likewise for left{,i).

Note that if one assumes that L follows a normal distribution,

UC{LC~2z1{a=2�s, where z1{a=2 is the 1{a=2ð Þ|100 per-

centile of the cumulative standard normal distribution.

In case (B), the criteria are based on the following conditions:

Dright1,z,i{right1,z,j DvUC ^ Dright2,z,i{right2,z,j DvUC ^

D right1,z,izright2,z,ið Þ{ right1,z,jzright2,z,j

� �
Dv UC{ULð Þ

or

Dleft1,{,i{left1,{,j DvUC ^ Dleft2,{,i{left2,{,j DvUC ^

D left1,{,izleft2,{,ið Þ{ left1,{,jzleft2,{,j

� �
Dv UC{ULð Þ

where right1,z,i is the rightmost position of read 1 of the ith RP,

pointing to the 1st breakpoint, and right2,z,i is the rightmost

position of read 2, pointing to the 2nd breakpoint, both aligned on

the forward strand (likewise for left1,{,i and left2,{,i on the reverse

strand).

In all cases, any RP that has been included in one cluster is not

considered for any other cluster.

Once the clustering procedure is finished, clusters containing at

least two RPs are used for breakpoint prediction, and two

breakpoints are predicted for each cluster. For reads aligned on the

forward strand, putative breakpoints are predicted to fall within

the range max rightsf g; min rights0f gzUC½ �, with s,s0~1, . . . ,S,

being S the number of RPs in a cluster. Likewise, putative

breakpoints found with reads aligned on the reverse strand are

predicted to fall within the range max leftsf g{UC; min lefts0f g½ �.

1.3 Somatic Breakpoints
One of the main objectives in cancer genomic studies is the

identification of tumour specific variants. In this sense, PeSV-Fisher

allows the user to analyse paired samples, i.e. tumour and normal

cell samples, simultaneously. If the somatic option is activated, the

algorithm searches for aberrant clusters present in the tumour

sample that are not shared with the normal sample, and only these

clusters are taken into account in the subsequent analysis modules.

Therefore, when a SV is later predicted, it is automatically defined

as a somatic SV.

1.4 Read Depth Analysis
This module uses both RPs with either one- or two-end

anchored reads. The algorithm comprises the following steps

executed in a hierarchical order:

First, each chromosome is divided into non-overlapping

windows of equal size and the GC content in each window is

annotated.

Second, every aligned read is assigned to the window where the

highest percentage of its base pairs fall. Then, a read-depth count

per window, ri, is calculated.

Third, a GC content normalization is applied to each window i

based on the following adjustment: r�i ~ri| m=mGCð Þ, where m is

the median of read-depth counts across all windows and mGC is the

median of read-depth counts across all windows with the same GC

content as the actual ith window [15]. To liken the data to a

normal distribution, we further use the square-root transformation

and use the global median as a shift parameter towards 0:

r��i ~
ffiffiffiffi
r�i

p
{

ffiffiffiffi
m
p

. Based on the formula, values above/below 0 (or

a user defined threshold, which we empirically set at 0.4/20.4) are

interpreted as copy number gains/losses.

Fourth, an adaptation of the Genome Alteration Detection

Algorithm (GADA) [37] is used to detect copy number variable

genomic segments. This is possible because the adjusted read-

depth signal r��i is analogous to the data properties of the log

relative intensities obtained from CGH or SNP array experiments

to identify CNV calls. The GADA algorithm exploits the use of

piece wise constant vectors to represent CNVs and sparse Bayesian

learning to detect the breakpoints. This algorithm has been shown

to improve the computational speed among other algorithms,

which is desirable given the huge volume of data obtained in NGS-

based studies.

NGS Based Identification of Structural Variants
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1.5 Defining and Interpreting Structural Variants
Finally, the results from the two previous modules are combined

to define and interpret four different types of SVs, classified into

two main categories: (a) unbalanced SVs, including those

rearrangements that are accompanied by significant increase or

decrease of the depth-of-coverage (involving deletions and gains of

genetic material); and (b) balanced SVs, including those rear-

rangements with copy number neutral values in depth-of-coverage

as described below.
(a) Unbalanced SVs. A deletion is defined by the overlap of

genomic regions within breakpoint predictions from distance-pairs

with copy number losses from the read depth analysis (Figure 1-

a.1).

The definition of a copy number gain depends on the nature of

the rearrangement. In the case of tandem duplications, genomic

regions within breakpoint predictions from order-pairs must overlap

with copy number gains in read depth analysis (Figure 1-a.6). A

copy number gain of a region within the same chromosome but

not in tandem is found combining distance- and order-pairs clusters

with an increase of coverage depth of the copied region (as shown

in Figure 1-a.2). If the copied region is inserted in inverted

orientation, it is identified by a combination of ori-pairs clusters,

one comprising ori-pairs anchored to the forward strand and the

other on the reverse (Figure 1-a.3), and an increase in read depth

analysis of the copied region. When the copy is inserted into a

different chromosome, the combinatorial process is similar as those

just explained, but the clusters combined in these cases are based

on chrpos- or chrposori-pairs (Figure 1-a.4 and 1-a.6). In all cases,

PeSVFisher defines the copied region and the insertion breakpoint.

(b) Balanced SVs. Inversions are defined by their two

breakpoints: breakpoint predictions from clusters of ori-pairs

anchored to the forward strand should be equal to breakpoint

predictions from clusters of ori-pairs anchored on the reverse

strand (Figure 1-b.1).

The definition of neutral intra- and inter-chromosomal trans-

locations is based on the combination of three cluster types, also

accompanied by a copy number neutral pattern from the read

depth analysis. If a genomic region has been translocated to

another location within the same chromosome, two distance- and

one order-cluster should be combined (Figures 1-b.2). When the

translocated region is inserted in an inverted orientation, the

combination should include distance- and ori-clusters as shown in

Figure 1-b.3. If the region is translocated into another chromo-

some, the combinatorial process comprises distance- and chrpos- or

chrposori-clusters, depending on whether the translocation is

inserted directly or in an inverted orientation (Figures 1-b.4 and

1-b.5).

1.6 Filtering Non-defined Structural Variant Calls
(FinalCountDown)

The identification of genomic rearrangements based on PR

strategies is prone to wrong predictions, especially when reads fall

onto repetitive regions of the genome (i.e., simple sequence

repeats, segmental duplications, and transposable elements). This

is particularly important in the case of balanced SVs, as they are

only supported by the PR strategy. Thus, the proportion of false

positive predictions could be drastically reduced if those predic-

tions falling within repetitive regions were filtered out. For this

purpose, PeSV-Fisher includes an optional module called Final-

CountDown, which searches for and removes those rearrange-

ments where at least one of the breakpoints falls within repetitive

elements of the genome, if these rearrangements are not supported

by RD or by a combination of different types of PR aberrant

clusters as described in the previous step. The repetitive elements

considered in this step are: (1) segmental duplications (SDs), (2)

simple sequence repeats (SSRs), or (3) low-divergent transposable

elements (TEs) [38] (defined as those transposable element

insertion sites that share .90% identity at the nucleotide level

with the corresponding family consensus sequence). SSRs, SDs,

and TEs GRCh37 coordinates are obtained from the UCSC

Genome Bioinformatic Browser (http://genome.ucsc.edu/).

However, since there is evidence that large blocks of sequence

homology (or SDs) or shorter common repeat sequences overlap

with a relatively high percentage of SV breakpoints [12], the

removed rearrangements could still indicate valid structural

variants. Therefore, the FinalCountDown module provides one

final file with putative rearrangements that passed all filters, and

three files with putative rearrangements that did not pass a certain

filter (those in SDs; those not in SDs but in SSR; those not in the

previous two but with low-divergence from a TE). Finally, the TE-

identity of the rearrangements that passed all filters is also

provided.

Figure S1 shows a schematic representation of the complete

process for the SV detection, interpretation and classification, and

the final organization provided by PeSV-Fisher for the results is

summarized in Figure S2.

Results and Discussion

Targeted Re-sequencing for Evaluating the Performance
of PeSV-Fisher on Two Individuals with Chronic
Lymphocytic Leukaemia

The research presented in this study has been approved by the

‘‘Comité Ético de Investigación Clı́nica’’ (CEIC, Hospital Clı́nic

de Barcelona). All patients gave informed consent for their

participation in the study following the International Cancer

Genome Consortium (ICGC) guidelines [39]. All participants

provided a written informed consent to take part in this study,

which was also approved by CEIC (Hospital Clı́nic de Barcelona)

to enter in the ICGC-Chronic Lymphocytic Leukemia Genome

Project (http://www.cllgenome.es/). All patients submitted to

mutational screening and clinical validation gave their informed

consent in agreement with an Institutional Review Board-

approved informed consent for genetic studies. All clinical

investigation was conducted according to the declaration of

Helsinki.

We first studied the behaviour of PeSV-Fisher at fine-scale

breakpoint resolution in all the different types of aberrant clusters

the tool is able to detect. Our aim was to evaluate the different

types of breakpoint predictions by PR strategy rather than the final

variant definitions. Given the nature of the genome and of NGS

data (such as high percentage of repetitive regions and short read

lengths), mapping programs generate a large amount of ambig-

uous alignments, leading to a similarly large amount of false

positive breakpoint calls and thus false positive SV predictions by

the PR strategy. Although PeSV-Fisher integrates PR and RD

strategies to define a SV, balanced SVs (inversions and translo-

cations) can only be detected by combining breakpoints from

different aberrant clusters predicted by PR. Therefore, reliable

aberrant cluster breakpoints are key to further define a reliable SV,

especially in the case of balanced SVs.

The performance of PeSV-Fisher was evaluated in terms of true

positive (TP) and false negative (FN) rates. To this end, we studied

both normal and tumour DNA from one previously published

patient with chronic lymphocytic leukaemia, case CLL2, from the

Chronic Lymphocytic Leukaemia Genome Project (CLL-GP)

[40]. Detailed information about sample collection and processing,

biological characteristics of the tumour sample and the whole-

NGS Based Identification of Structural Variants
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genome sequencing (WGS) protocol for short-insert library

construction are provided in a previous study [40]. Sequencing

coverage statistics are shown in Table 1.

To evaluate the TP rate of our method we collected aberrant

cluster calls from the tumour sample and constructed different

scenarios based on the set of confidence parameters that influence

the reliability of breakpoint predictions. These parameters are:

phred-scaled quality scores; Q, which evaluate the mappability of

the read and the base call accuracy; the number of read-pairs

supporting the aberrant cluster; and the length of the detected

variant, which is taken into account in all cluster types except for

chrpos- and chrposori-clusters. In particular, we considered two levels

for Q: clusters with at least one RP where both reads have Q§35
(more than 99.9% of base call accuracy), and clusters with Q§20
(99% of base call accuracy) excluding those potentially involved in

the first Q level. For the number of RPs supporting each cluster,

we considered 4 categories: high [10–50), medium [5–10), low [1–

5) and special, in the sense that the number of RPs is significantly

larger than the average sequence coverage, §50. Finally, the

different variant lengths categorizations were: high [1 kb –1 Mb),

medium [500 bp –1 kb) and special, §1Mb. Consequently, we

designed 24 scenarios that reflect the spectrum of RP based

aberrant clusters obtained by PeSV-Fisher.

Breakpoints of the clusters integrated in these scenarios that do

not contain any type of the repetitive sequences after the

FinalCountDown analysis, were re-analysed by a targeted re-

sequencing approach (Supporting Information S1). Note that the

criterion to re-sequence only those clusters with ‘‘clean’’ break-

points is due to the incapability to design specific targets for

repetitive sequences. We then applied the PR strategy of PeSV-

Fisher and an independent split-read analysis using the GEM

algorithm [41] on the re-sequencing data in order to establish the

TP rates of our tool conditioned on the different reliability

parameters.

We captured the two breakpoints of 509 potential SVs,

corresponding to 259 distance-clusters, 21 order-clusters, 49 ori-

clusters, 104 chrpos-clusters, and 76 chrposori-clusters. Using the PR

strategy we confirmed the two breakpoints of 76% of distance-

clusters, 67% of order-clusters, 84% of ori-clusters, 32% of chrpos-

clusters, and 21% of chrposori-clusters, while by split-reads we

validated 61%, 10%, 65%, 21%, and 18%, respectively (Figure 2).

The efficiency of breakpoint capture was very low in the scenarios

where clusters had poor Q values, which could be explained by the

presence of some types of repetitive sequences in the breakpoints

not included in the FinalCountDown module, or by sequencing/

mapping errors. Hence this only allows us to be confident with

clusters containing at least one RP with Q§35, and to realize the

importance of this value for the reliability of a SV even in those

rearrangements that do not contain repetitive sequences in the

breakpoints.

As expected, the higher the number of RPs pointing to the same

alignment aberration, the more confident the results are. This is

especially important in order-, chrpos-, and chrposori-clusters

(Figure 2). In the category of special number of RPs, which

includes those clusters with significantly more RPs than expected

by average coverage rate, the re-sequencing approach failed to

capture them, mainly because these breakpoints might also fall

into specific types of highly repetitive or highly polymorphic

regions not included in the FinalCownDown filtering module.

Finally, according to our validation results the predicted length of

the variant indicated by the anomalous RPs is also important for

the reliability.

To evaluate the ability of the PeSV-Fisher to detect real complex

SVs, we further searched for some examples of SVs that had been

defined in sample CLL2 whose breakpoints have been completely

validated by our targeted re-sequencing approach. Two interesting

examples are further detailed in Table S1: an inter-chromosomal

copy-paste event involving two different clusters of chrposori

supported by a significant increase of RD and an intra-

chromosomal cut-paste event formed by two ori clusters that

overlapped with a distance cluster without a significant increase or

decrease of RD.

In order to establish FN rates, we extracted breakpoints that

were detected only in the tumour sample, i.e. a priori somatic

breakpoints, and we asked if the breakpoints were also found in the

normal sample using the targeted re-sequencing approach. We

obtained a set of targets that should be free of variant breakpoints

in the normal genome based on the WGS analysis; therefore if we

detect the same breakpoint in the normal sample as in the tumour,

this is defined as a FN.

Figure 1. Combination of different types of anomalous read-pair alignments together with read depth (RD) pattern to define four
different categories of structural variants (SVs). Case a.1 plus a decrease in RD represents a deletion. Cases a.2, a.3, a.4, a5 and a.6 together
with an increase in RD represent different types of copy number gains in terms of the co-localization of the copy. Cases a.2 and a.3 represent a copy
inserted within the same chromosome, were in case a.3 the copy is inserted in an inverted orientation. Analogous cases a.4 and a.5 represent straight
or inverted insertions of copies in another chromosome. Case a.6 represents tandem duplications. Case b1 corresponds to an inversion. Cases b2 and
b3 correspond to an intra-chromosomal translocation, but in case b3 the translocated region is inserted in inverted orientation. Similarly cases b4 and
b5 correspond to inter-chromosomal translocations.
doi:10.1371/journal.pone.0063377.g001

Table 1. Whole-genome sequencing data statistics.

Read
length Insert size #Reads

Seq.
coverage #Reads

Seq.
coverage

1st percentile Median 99th percentile Unpaired+paired-reads Paired-reads

CLL2 Tumour cells ,95 112 271 400 1.178.606.714 38.7x 1.138.687.234 37.4x

Normal cells ,95 78 261 370 1.161.111.680 38.1x 1.120.131.088 36.8x

CLL16 Tumour cells ,95 84 264 405 1.377.406.890 45.2x 1.355.526.562 44.5x

Normal cells ,95 68 247 402 1.364.685.267 44.8x 1.322.094.298 43.4x

YRI NA19240 ,40 42 186 966 2.328.156.503 32.2x 2.178.558.262 30.3x

doi:10.1371/journal.pone.0063377.t001
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Previous analyses of sample CLL2 by WGS showed that the

tumour sample contains, excluding antigen receptor loci, only 6

somatic SVs [40], which were all called by PeSV-Fisher and

validated as somatic by targeted re-sequencing. Thus, in order to

establish more significant FN rates, we applied the PR strategy of

our tool to another CLL case from the CLL-GP (CLL16,

unpublished data). In this case, we detected by whole-genome

sequencing and validated by target re-sequencing 42 clusters of

potential SVs in the tumour sample, and only 5 (FN = 11.9%) of

the putative somatic variants were detected in the normal tissue

using the target re-sequencing approach. Information about

sample collection and processing, biological characteristics of the

tumour sample and the whole-genome sequencing (WGS) and

targeted re-sequencing protocols are provided in Supporting

Information S1.

Comparative Analyses in a 1000 Genome Project Trio
Using Other Approaches

We applied PeSV-Fisher to the WGS data from the daughter of

the Yoruba high-coverage trio included in the 1000 Genomes

Project (1000 GP) dataset (NA19240). For the analysis, we

considered different paired-end libraries generated by Illumina

with insert sizes ranging from 100 to 600-bp, obtaining ,30x

sequencing coverage (Table 1). This same sample is analysed in

the publication of Mills et al. [5], which reports a complete list of

deletion/insertion calls made by different institutions on the high-

coverage trios and low coverage sample sets (1000 GP pilot

project). From this publication, we obtained the non-redundant set

of deletion calls (. = 50 nt) for high coverage trios that were either

validated through the use of PCR, assembly of breakpoints (ASM),

sequence capture arrays (CAP array) and a high-resolution array-

CGH platform (downloaded from: ftp://ftp.1000 genomes.ebi.a-

c.uk/vol1/ftp/pilot_data/paper_data_sets/a_map_of_human_-

variation/trio/sv/(trio.2010_10.deletions.sites.vcf)).

To examine the sensitivity of PeSV-Fisher on true deletion calls

with well-defined breakpoints, we selected the PCR and/or ASM

validated deletions $900-bp from the validated deletions list,

independently of which algorithm was used for calling, and we

checked the overlap with our calls. This 900 bp cut-off was

selected based on the variability of the insert sizes in the combined

libraries used. Figure 3a shows the overlap of our calls with these

validated variants. PeSV-Fisher detected 523 distance-clusters

overlapping with the validated list, which is similar to those

detected by BD (541) or VH (558). Nonetheless, only 374 of these

523 distance-clusters were finally classified as deletions, showing a

significant decrease of RD and non-overlapping any other PR

clusters. Of the remaining 149, in 6 cases the variant definition

classified them as other than deletions (two copy-paste and two

cut-paste events) and in 28 cases as putative deletions. Unsurpris-

ingly, of these 6 variants not classified as deletions by PeSV-Fisher,

5 contain breakpoints located in highly repetitive regions close to

telomeres. Sites with high sequence diversity are prone to generate

multiple and similar breakpoint predictions by several types of

anomalous RPs, reflecting the complexity of the sequence analysis.

This reveals the importance of the combination of two types of

strategies like PR and RD to correctly interpret and define the

individual status for the high polymorphic loci and the complex

genomic events. For the last 115 distance calls, the predicted

breakpoint ranges for each end of the variant were overlapping

and we usually discard these calls as unreliable. This overlap is

probably due to the high variability in the libraries insert sizes.

We also compared our performance with that of BreakDancer

and VariationHunter, checking the overlap of our calls with those

of these two algorithms obtained from a Supplementary Table of

Mills et al. [5] (downloadable from http://www.nature.com/

nature/journal/v470/n7332/extref/nature09708-s5.zip and cor-

responding to Washington University –WU- and University of

Washington –UW- indicators, respectively). We did not compare

to algorithms that do not use the PR strategy, as they are

conditioned to the analysis of unbalanced SVs, or to data

generated by unpublished algorithms. Figure 3b summarizes the

overlap of the predicted defined deletions made on the Yoruban

Figure 2. Performance of PeSV-Fisher based on the analysis of a high-coverage sequenced blood-cancer genome. Results according to
different scenarios based on the set of confidence parameters that influence the reliability of breakpoint predictions of clusters made by anomalous
alignment read-pairs. These are phred-scaled quality scores Q; the number of read-pairs supporting the aberrant cluster; and the length of the
potential variant call. For each scenario and cluster type are represented the number of breakpoints captured by target re-sequecing of PeSV-Fisher
calls from whole genome sequencing (n), percentage of breakpoints validated by target-re-sequencing using the paired-reads strategy (%PR) and the
percentage of breakpoints validated by target-re-sequencing using split-reads analysis (%SR).
doi:10.1371/journal.pone.0063377.g002
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daughter NA19240 by the three different algorithms. We

considered that two different algorithms were calling the same

deletion if there was a 99% reciprocal overlap. With this stringent

value we ensured that the overlap measure was symmetric. Each

algorithm uniquely called a large number of calls; however a

fraction of these calls might be due to false positives or different

breakpoint accuracies. Another explanation might be the different

size distribution patterns of deletion calls reported by the three

algorithms. However, the three algorithms show the expected peak

that corresponds to the 6 kb average sizes of full-length LINE-1

human retrotransposons [42] (data not shown).

Computational Considerations
As argued by [43], NGS data imposes challenges on procedures

applied for storage and analysis of data. The computer memory is

usually a limitation to the analysis and, moreover, the run time

scales approximately linearly with the number of reads. A

plausible alternative is to search for modular code methods or to

split the data in order to divide the process in multiple threads.

Thus, the current tendency is to parallelize processes and use

large-scale computing clusters with high numbers of cores.

However, PeSV-Fisher can be launched on either a cluster or a

workstation. This is achieved by splitting the data by chromosomes

and by making classes with low coupling between them. This

approach can be easily parallelized. Furthermore, we paid special

attention to memory balancing using sorting strategies that directly

manipulate files.

To exemplify the applicability of PeSV-Fisher to processing of

large datasets we recorded basic timing information for processing

of whole-genome paired-end data from medium to high coverage

(16x to 45x). PeSV-Fisher was launched in multithreading mode (5

cores for read depth process and 5 cores for the definition of

anomalous RPs plus clustering processes by sample) in a

workstation with 12 cores and 48GB of memory under a Linux

environment. It required approximately an average of 3915 CPU

minutes for processing an average of 1.377 million reads generated

by an Illumina platform using a median fragment size of 264. Two

samples with medium coverage (16x–20x) were completed in

parallel mode in approximately 265 minutes and two samples with

high coverage (45x) needed 805 minutes. The memory by thread

in the medium coverage sample was about 0.1–0.4 GB during the

longest part of the execution, but displayed peaks of 1.1–1.4 GB at

the sorting step in definition of anomalous RPs plus clustering

modules. The memory used for the samples with high coverage

was similar but peaks were in the range of 1.7–2.4 GB.

The analysis time for the clustering processes present a high

dependency on hard drive speed; however, the analysis time for

read depth processing is more dependent on the CPU speed. So,

the read depth and definition of anomalous RPs plus clustering

modules for each sample can be launched simultaneously for a

better performance and resource utilization.

Further computational aspects are given in the Supporting

Information S1.

Conclusions
Despite constantly ongoing development of algorithms for the

detection of SVs, the complexity of NGS data and of the human

genome hampers SV discovery as well as the understanding of the

subsequent biological interpretation and consequences.

We presented here our computational tool, PeSV-Fisher, for the

detection and characterization of SVs using NGS data. We

employed a new strategy to correctly interpret SV calls generated

by paired-reads approaches, combining different types of aber-

rantly aligned read-pairs, and a read depth strategy. By doing so,

PeSV-Fisher is capable of defining five general types of structural

rearrangements (deletions, gains, intra- and inter-chromosomal

translocations, and inversions), but goes one step further in their

definition with the interpretation of co-localization of identified

aberrant calls. Additionally, PeSV-Fisher keeps information con-

cerning the orientation of aberrantly aligned read-pairs. For

example, the positional effect of a gene copy in any region of the

genome could be different if this copy is inserted in one orientation

or another.

PeSV-Fisher does not take into account the diploid nature of the

human genome, although it is an aspect recently being considered

in strategies to solve the co-localization of more than two variants

at the same locus [26]. However, our tool has been designed

especially for the analysis of cancer genomes, where clonal

mosaicism, which is defined as the coexistence of cells with two

or more distinct genotypes within an individual, has been observed

Figure 3. Sensitivity analysis and comparison with results from other SV prediction methods based on the analysis of the Yoruba
daughter (NA19240) from the high-coverage trio from the 1000 Genomes Project dataset. (a) 90% based of the overlap of PeSV-Fisher
calls with the non-redundant set of deletions from the publication of Mills et al. [5] that were validated by PCR and/or assembly. Breakpoints
overlapping indicate distance clusters with predicted overlapping breakpoint ranges from each end of the variant; (b) three-way comparison of the
deletion calls made by PeSV-Fisher, BreakDancer and VariationHunter. The analysis is carried out using a 99% of reciprocal overlap.
doi:10.1371/journal.pone.0063377.g003
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[44,45]. Interestingly, clonal mosaicism has also been described in

aging genomes [44], which means that it not only happens in

cancer genomes, but also is a common phenomenon appearing

throughout the genome evolution within an individual.

Finally, we should highlight the good performance of the tool in

terms of sensitivity and true positive and negative rates, with a

reasonable computational cost in a single workstation.
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