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Long‑term stability predictions 
of therapeutic monoclonal 
antibodies in solution using 
Arrhenius‑based kinetics
Drago Kuzman1, Marko Bunc1, Miha Ravnik2,3, Fritz Reiter4, Lan Žagar5 & Matjaž Bončina1*

Long-term stability of monoclonal antibodies to be used as biologics is a key aspect in their 
development. Therefore, its possible early prediction from accelerated stability studies is of major 
interest, despite currently being regarded as not sufficiently robust. In this work, using a combination 
of accelerated stability studies (up to 6 months) and first order degradation kinetic model, we are able 
to predict the long-term stability (up to 3 years) of multiple monoclonal antibody formulations. More 
specifically, we can robustly predict the long-term stability behaviour of a protein at the intended 
storage condition (5 °C), based on up to six months of data obtained for multiple quality attributes 
from different temperatures, usually from intended (5 °C), accelerated (25 °C) and stress conditions 
(40 °C). We have performed stability studies and evaluated the stability data of several mAbs including 
IgG1, IgG2, and fusion proteins, and validated our model by overlaying the 95% prediction interval 
and experimental stability data from up to 36 months. We demonstrated improved robustness, speed 
and accuracy of kinetic long-term stability prediction as compared to classical linear extrapolation 
used today, which justifies long-term stability prediction and shelf-life extrapolation for some 
biologics such as monoclonal antibodies. This work aims to contribute towards further development 
and refinement of the regulatory landscape that could steer toward allowing extrapolation for 
biologics during the developmental phase, clinical phase, and also in marketing authorisation 
applications, as already established today for small molecules.

Generation, evaluation, and interpretation of stability data of a pharmaceutical product are key aspects of drug 
development1,2. During early technical development, stability data inform several important decisions, such as 
formulation selection, the selection of primary packaging materials or defining the manufacturing process. In 
addition, stability data are the basis for setting the shelf-life of a product, i.e. the period in which the quality of a 
product has to remain within pre-set and well-justified shelf-life specifications. Obtaining real-time stability data 
is very time-consuming and is a bottleneck of early technical development. Speeding up the process with acceler-
ated conditions (e.g. higher temperature) has been therefore attempted many times but with limited success in 
accurate prediction3–8. Therefore, achieving robust and reliable long-term prediction of stability (usually several 
years) from accelerated stability (usually a few months) is of major scientific and applied interest. Establishing 
robust prediction approaches could allow for use of accelerated and stress conditions to determine the shelf-life 
(safety) of a product beyond the period covered by actually measured and tested stability data.

Biologics like monoclonal antibodies, bispecific antibodies and fusion proteins are susceptible to a variety of 
chemically- and temperature-induced structural changes2. For example, chemical changes of amino acid residues, 
such as deamidation of asparagine and glutamine or oxidation of methionine or tryptophan can induce structural 
changes in the overall protein structure, potentially leading also to changes in physical stability1,9,10. Both chemical 
and physical degradation might compromise biological activity and safety of the biologic11.

In early technical development of biologics, the risk-based predictive stability (RBPS), i.e. the prediction 
of stability behaviour and the practice of extrapolation to support development milestones, is a company’s 
internal decision. During the clinical development phase of biologics (and within clinical trial applications) 
limited extrapolation is used and accepted by health authorities (HA) worldwide12,13. Differently, in marketing 
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authorisation applications and in the commercial phase, extrapolation is not accepted for biologics14. In the 
majority of cases, for clinical trial submissions, long-term stability testing is also performed and included in the 
submissions although some companies report using reduced protocols with fewer time points and conditions15,16. 
For small molecule drugs, the prediction of stability behaviour is based on accelerated stability data obtained at 
different temperatures and humidity levels. Experimental data are described by a kinetic model and expanded 
Arrhenius equation which allows prediction of long-term stability. Such predictions are for small drugs usually 
performed in accelerated stability assessment program17–19. However, the prediction of stability of biologics is 
still very limited and calculated by a classical approach using linear extrapolation. In clinical trial applications, 
regulatory expectations for risk-based predictive stability of biologics allow extrapolation for the same period as 
the available experimental data but not for more than 12 months12. Introducing RBPS into the development of 
biologics would have similar advantages as in small molecules. In particular, extensive time saving by perform-
ing stability studies at higher temperatures and predicting stability at the intended storage temperature. This 
approach allows also shelf-life estimation, quick evaluation of formulation and primary packaging, evaluation 
of comparability for DP or DS process changes, evaluation of stability for a wide range of storage conditions and 
more15. In addition, temperature excursions during storage or transport can be evaluated20.

It is considered that long-term stability predictions from accelerated stability data are usually not possible 
for biologics due to the complexity of temperature, time and concentration-dependent modifications. When 
studying aggregation, researchers either found non-Arrhenius behaviours3–6 or Arrhenius behaviour was very 
limited to narrow temperature and concentration intervals7,8. However, recent studies indicated the possibility 
to predict long-term aggregation profiles from accelerated stability data and some selected biophysical param-
eters by non-linear models, i.e. artificial neural networks21 or other multivariate approaches21,22. Arrhenius 
behaviour was also demonstrated for vaccine potency to be utilised to manage stability after a process change23, 
and to accurately predict long-term stability20. Long-term profiles of vaccine antigenicity that were predicted 
by Arrhenius kinetic analysis of six months of accelerated stability data were verified with up to three years of 
stability experimental data20.

In this article, we demonstrate accurate long-term (up to 3 years) stability prediction of multiple quality 
attributes for several therapeutic monoclonal antibodies and fusion proteins from short-term (up to 6 months) 
accelerated stability data combined by applying kinetic modelling using the Arrhenius equation. Specifically, we 
tested stability indicating quality attributes like purity, potency, aggregation, fragmentation and charge profile 
for five monoclonal antibodies and one fusion protein. Prediction of three years stability profiles at intendent 
storage condition was verified by experimental data: 96% of experimental data that were not used for building 
the model, lie within the calculated prediction intervals that were approximately three times narrower than 
the width of generic shelf-life specifications at the three year time point. More generally, this work is aimed to 
underlay the relevance and applicability of using a combination of short-term accelerated stability studies and 
kinetic modelling (beyond the currently used linear extrapolation) in the development of therapeutic monoclo-
nal antibodies. This is of major interest to the biopharmaceutical industry and for general society as it enables 
shorter development periods of novel advanced biologics.

Materials and methods
Materials.  All tested protein solutions were manufactured at Lek d.d. (member of Novartis), Mengeš, Slo-
venia and include IgG1 molecules adalimumab and rituximab, IgG2 molecule denosumab and mAb1 (IgG1) 
and mAb2 (IgG2) molecules in development and fusion protein etanercept. Stability studies on rituximab were 
done at protein concentration of 10 mg/mL. Protein was formulated in an innovator’s formulation, i.e. 0.7 mg/
mL polysorbate 80.9 mg/mL sodium chloride and 5.25 mg/mL citric acid monohydrate at pH 6.5. Stability stud-
ies on adalimumab were done at protein concentration of 50 mg/ml. Protein was formulated in design around 
formulation comprised of 3.36 mg/mL adipic acid, 0.25 mg/mL citric acid monohydrate, 12 mg/mL mannitol, 
1 mg/mL polysorbate 80 and 6.16 mg/mL sodium chloride at pH 5.2. Stability studies on denosumab were done 
at 70 mg/mL. Protein was formulated in an innovator’s formulation, i.e. 1.08 mg/mL acetic acid, 46 mg/mL 
sorbitol, 1 mg/mL PS20 at pH = 5.2. Stability studies on etanercept were done at 50 mg/mL. Protein was formu-
lated in design around formulation comprised of 0.786 mg/mL citric acid, 13.52 mg/mL sodium citrate, 1.5 mg/
mL sodium chloride, 10 mg/mL sucrose and 4.6 mg/mL lysine at pH 6.3. These four formulations are Novartis’ 
final drug product formulations identified as the most appropriate during the early drug product development. 
Stability predictions for this four proteins were made also for different batches of the same molecule where the 
batch represents a protein with uniform character and quality, within specified limits, and is produced according 
to a single manufacturing order during the same cycle of manufacture. Variability between batches originates 
from the production process. Stability studies on proteins in development mAb1 and mAb2 were done at protein 
concentrations ~ 5 mg/mL (mAb1) or ~ 150 mg/mL (mAb2). Proteins were formulated in different formulations 
and pH values between 5.5. and 7.0. All formulations were filled in different sizes of type I glass vials.

Chemicals for formulation preparation were of pharmaceutical grade, while chemicals and reagents for 
chromatography and electrophoresis were of HPLC grade.

Analytical methods.  The development of liquid dosage forms of biologics is mainly based on stability stud-
ies that are performed at accelerated ((25 ± 2) °C/(60 ± 5)% r.h.) and stress temperature ((40 ± 2) °C/(75 ± 5)% 
r.h.) whereas the intended commercial storage temperature is between 2 and 8 °C (we will use 5 °C throughout 
the article for simplicity reasons) with shelf-life usually between 2 and 3 years. Stability studies are performed 
at 25 °C and 40 °C in order to speed up changes in the quality attributes of the protein that can be detected by 
state-of-the-art analytical methods and save time spent for development. According to ICH guidelines stability 
indicating quality attributes of the protein and analytical methods are defined by force degradation studies that 
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are designed in a way to identify likely degradation mechanisms24. As such, the intrinsic stability of the molecule 
is determined and the analytical methods indicating stability are validated. When developing a drug product for 
biologics, modifications/changes of different quality attributes are assessed. They can be divided into two groups: 
concentration-independent and concentration-dependent. The most prominent concentration-independent 
modifications are chemical modifications such as oxidation, (de)amidation, isomerisation, etc. These modifica-
tions are usually detected by peptide mapping (PepMap), imaged capillary isoelectric focusing (iCIEF), capillary 
zone electrophoresis (CZE), cation exchange chromatography (CEX) and reverse phase chromatography (RPC). 
The second type of concentration-independent modification is fragmentation that is detected by SDS capillary 
electrophoresis (CE-SDS). Concentration-dependent modifications are aggregation monitored by size exclusion 
chromatography (SEC) and formation of subvisible particles monitored by light obscuration (LO) or micro 
flow imaging (MFI) and formation of visible particles detected by visual inspection. Bioactivity, which is typi-
cally monitored by cell-based assays and by functional tests like surface plasmon resonance (SPR) or bio-layer 
interferometry (BLI), is impacted by the combination of the above-mentioned modifications. Frequently, purity 
is reported in addition. It is determined as the amount of the main peak assessed by iCIEF, CZE, CEX, CE-SDS 
or SEC.

Size exclusion chromatography (SEC).  SEC analysis was performed on Agilent 1260 HPLC or Acquity 
H-class UPLC instrument using Waters Acquity BEH200 SEC, 1.7 µm, 4.6 mm × 150 mm column or similar. 
Mobile phase was 50 mM Na2HPO4/NaH2PO4 and 400 mM NaClO4 at pH 6.0 or 150 mM KH2PO4/K2HPO4 at 
pH 6.5. Monomer and aggregate peaks were detected by measuring absorbance at 210 nm. Chromatograms were 
analysed using Empower or Chromeleon software. Size of aggregates was determined from a calibration curve 
obtained from analysis of molecules of known molecular weights: thyroglobulin (669 kDa), IgG (150 kDa) and 
holo-transferrin (80 kDa). Accuracy of the measured amount of aggregates is between 0.05 and 0.1% while the 
amount of main peak (purity) is between 0.1 and 0.2%.

Cation exchange chromatography (CEX).  CEX analysis was performed on Agilent 1260 HPLC instru-
ment usually using MabPac SCX-10, 10 µm, 4 mm × 250 mm column from Thermo Scientific. Mobile phase 
A was 5.8 mM MOPSO, 4.4 mM Bicine, 12.2 mM CAPSO, 0.6 mM CAPS, pH 6.6, while mobile phase B was 
12 mM MOPSO, 4 mM Bicine, 1.2 mM CAPSO, 5.8 mM CAPS, pH 11.5. Percentage of mobile phase B was 
increased from 15.9% to 63.7% in 26 min. Alternatively, MabPac SCX-10, 3 µm, 4 mm × 50 mm column from 
Thermo Scientific was also used in combination with mobile phase A composed of 5 mM TAPS, 5 mM CAPSO, 
10 mM NaCl at pH 7.8 and mobile phase B composed of 5 mM TAPS, 5 mM CAPSO, 10 mM NaCl at pH 10.2. 
Percentage of mobile phase B was increased from 0 to 55 and 55 to 90% in 1 and 27 min, respectively. Absorb-
ance chromatograms were analysed at 280 nm using Empower or Chromeleon software. Accuracy of measured 
amount of acidic, basic variants and main peak (purity) is between 0.5 and 1.5%.

SDS capillary electrophoresis (CE‑SDS).  CE-SDS analysis was performed by PA 800 Plus instrument 
from Sciex. Typically, bare fused-silica capillary with 50 μm of internal diameter and 20 cm long was used for 
the separation. SDS gel and SDS sample buffers were obtained from Sciex. Non-reducing conditions were always 
used. Protein-SDS complex was alkylated with iodoacetamide or N-ethylmaleimide in a 45–70° C water bath 
for 10 min. After samples were cooled, they were electrokinetically introduced into the capillary and separated 
by applying constant voltage. Absorbance electropherograms were analysed at 210 nm using Empower or Karat 
software. Accuracy of measured amount of fragments is between 0.2 and 0.3% while for the amount of main 
peak (purity) is between 0.3 and 0.5%.

Bioactivity.  In the complement-dependent cytotoxicity (CDC) test25, Raji B cells (isolated from a patient 
with Burkitt’s lymphoma, from American Type Culture Collection (ATCC)) are incubated with different protein 
concentrations and a fixed concentration of rabbit complement. Concentration-dependent killing of the Raji 
cells is analysed after 2 h where viability of the cells is measured with indirect determination of ATP concentra-
tion (by measuring luminescence produced by the ATP-consuming luciferin-luciferase system). In the case of 
tumor necrosis factor-alpha (TNFα) antagonists such as etanercept and adalimumab reporter gene assay was 
used as descibed in 26. Activity of the protein’s test sample is determined by comparison to a reference standard. 
The samples and the standard are normalised on the basis of protein content. Relative potency is then calculated 
using a parallel line assay according to the European Pharmacopoeia. Accuracy of measured relative potency is 
around 10%.

Kinetic model.  Kinetic models of protein processes are composed from dynamic rate terms of quality 
attributes and the empirical Arrhenius equation27 that describes the temperature dependence of rate constant. 
Quality attributes considered are purity and sum of impurities, i.e. fragments, charge variants and aggregates. 
When studying stability of the drug product from the fragmentation standpoint, we are usually interested in the 
sum of fragments, meaning that the apparent chemical reaction can be approximated as A → B (see Fig. 1, top 
scheme). The same reaction scheme was applied also when assessing chemical modifications (middle scheme). 
We can monitor single amino acid residue modification with PepMap or the sum of acid or basic variants by 
iCIEF, CZE or CEX. The latter approximation was reported to have been successfully used for describing chemi-
cal modification of a single amino acid residue28–30. In the examined cases, aggregation was monitored by the 
SEC method and the sum of aggregates was determined. Dimers were the most abundant species among the 
aggregates for all tested proteins at all time points. Thus, the fastest pathway was formation of dimers, especially 
at T < 40 °C, where only minor amounts of larger aggregates were detected. Chromatogram overlays of mAb1, 
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which show total area under the curve did not change with time even at 55 °C storage temperature, is provided 
in Figure S1, while the same was observed for other mAbs for all conditions tested as well. This finding for exam-
ined monoclonal antibodies largely simplifies the model for aggregation, which can be described by the chemical 
reaction 2A → B2 (bottom scheme in Fig. 1). We are aware that aggregation pathways can be more complex31–33 
and can vary depending on temperature, time, protein type, concentration, formulation, process and more3,34. 
Depending on the conditions, we may observe native or non-native aggregation that proceeds via different reac-
tive intermediates towards different oligomers (dimers, trimers, etc.), soluble polymers and precipitates35. Nev-
ertheless, if aggregation conditions are carefully chosen, the process can be successfully described using the 
simple model mentioned.

In our kinetic modelling, we assume apparent one-step irreversible chemical reactions A → B and 2A → B2 
which can be described by equations:

Equation (1a) describes how concentration of A changes over time t and Eq. (1b) how concentration of Bi 
(i = 1 or 2, respectively) changes over time t, both with respect to reaction order n, temperature-dependent rate 
constant k(T). A → B and 2A → B2 reactions are first (n = 1) and second (n = 2) order, respectively. Importantly, 
these chemical reactions should be understood as ‘apparent’ because they do not necessarily correspond to the 
actual dynamical processes in our protein systems, i.e., these apparent reactions should be understood as effec-
tive phenomenological dynamics observed in experiments.

In order to predict stability at different temperatures (in the temperature range from 5 to 60 °C, as relevant 
for our monoclonal antibodies), we use the Arrhenius equation27 that empirically describes temperature depend-
ence of rate constant, k(T)

where Af represents the frequency factor and Ea the activation energy. In this case k(T) represents the degradation 
rate constants that applies to a particular quality attribute of the molecule, such as aggregation, fragmentation, 
chemical modifications and bioactivity. Based on the assumption explained below we approximated all kinetic 
processes as first order chemical reactions. The combination of Eqs. (1a) or (1b) and (2) thus results in simple 
first order degradation kinetic model, namely for purity quality attributes:

and for the (sum of) impurities by taking into account that [A] + [B] is total concentration:

We should comment that we use first order degradation kinetic model to describe degradation and aggre-
gation processes for the following reasons: We use temperature conditions and time intervals (i) where only 
one degradation/aggregation pathway dominates34, (ii) where relatively small changes in the quality attributes 
of the protein are detected, usually up to 20% in 3 months at 40 °C, (iii) where the amount of formed higher-
order aggregates not detected by SEC is negligible33, (v) where only aggregates detected by SEC, among which 
dimers are the most abundant, are considered, thus more complex mechanisms of nucleation and growth can 
be omitted3, and (iv) aggregation is studied at constant protein concentration, therefore second order kinetics 
can be approximated by first order degradation kinetic model.

(1a)
d[A]

dt
= k(T)[A]n

(1b)
d[Bi]

dt
= k(T)[A]n

(2)k(T) = Af e
−

Ea
RT

(3)[A](t,T) = [A0]e
−k(T)t

(4)[B](t, T) = 1− (1− [B0])e
−k(T)t

Figure 1.   Simplified scheme of protein degradation and aggregation pathways. Top scheme: fragmentation, 
middle scheme: chemical modifications, bottom scheme: aggregation. Figure made in PowerPoint 2016 
(Microsoft, Redmond, WA, USA).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20534  | https://doi.org/10.1038/s41598-021-99875-9

www.nature.com/scientificreports/

Kinetic model fitting and calculation of prediction intervals.  Kinetic model parameters are calcu-
lated using data from the accelerated stability study for a single batch. The set of experimental stability data for 
a given batch of biologics thus consists of time interval (up to 6 months), temperature conditions, and analytical 
measurements of sample quality profile, including bioactivity.

Using this data we simultaneously fit a single model, not only in time, but also for different temperatures 
(using Arrhenius relation), which crucially contributes to the robustness of the fitting. Precisely this multi-
parameter fitting allows for reliable and robust extrapolation in time (and also in temperature) using the fitted 
kinetic model, well beyond the measured range of the parameter space. A single analytical measurement of 
sample pulled at t = 0 was initial experimental value for all different temperatures datasets.

The kinetic model is fitted to a given set of experimental stability data numerically, using non-linear least-
squares optimisation, which minimises the sum of squared residuals SSres:

where yi are the actual measurements and pi the calculated model points. Model parameter fitting was done in 
Python using the SciPy library’s curve_fit function set to the “dogbox” method36. To improve the numerical 
stability, we used a different parametrization of Eq. (2), solving the problem for parameters Ea and k(Tref):

We chose the intended storage temperature (5 °C) as Tref  , so the solution of the problem directly provides 
the rate of degradation at this condition, while the rate at other temperatures can be computed using the model. 
To verify the quality of the model fit and compare it across different data sets we used the coefficient of deter-
mination (R2), which is a normalised score with the maximum value of 1, achieved when the model fits the 
experimental data perfectly:

where SStot is defined as:

To further enhance and, more importantly, evaluate the quality of our extrapolation, we use Monte-Carlo 
simulations to construct prediction intervals for the kinetic model. From a given set of experimental data we 
generate an additional 399 sets of perturbed data, where we add random variation (noise) to the original meas-
urements sampled from a Gaussian distribution with zero mean and standard deviation set to the measuring 
equipment’s specified error (equal to method accuracy noted in the description of each analytical method). We 
repeat the parameter estimation and prediction for the desired conditions for each perturbed set to obtain a 
distribution of predictions. The 2.5th and 97.5th percentiles give us the 95% probability confidence interval, while 
the 95% probability prediction interval additionally accounts for the dispersion due to measurement errors and 
is computed as in 37. The upper and lower bounds are computed separately as the interval can be asymmetric. 
The described regression and extrapolation are established approaches when dealing with fitting the non-linear 
model functions to experimental data38,39. The calculations were implemented as a custom widget within the 
Orange data mining framework (https://​orang​edata​mining.​com/)40.

Linear regression.  According to ICH guidelines41, linear regression is applied for modelling of stability 
profiles and for shelf-life calculations. Linear extrapolations are accepted as well by health authorities to support 
clinical development phase of drugs12. In our work, linear extrapolation is used to allow for comparison with our 
improved kinetic modelling. The coefficients, intercept and slope, of the linear model were calculated by using 
measured levels of quality attributes at given pull points for samples stored at intended storage condition (5 °C). 
Coefficients and 95% prediction intervals were calculated by applying lm and predict functions from the stats 
library of R42.

Verification of model extrapolation against experiments.  As the key final verification of our in-
time extrapolation (i.e. prediction) of the changes of quality attributes, we compare the calculated prediction 
intervals with actual full measured stability data (over 3 years) that is available at time of writing. Verification is 
calculated/denoted as number of points lying within the 95% probability prediction interval among all experi-
mental stability data points. Short-term accelerated or intended condition stability data (of 6 months) used in 
model fitting are excluded from this verification pool of data. The verification of model extrapolation against 
long-term experimental stability data is used here to prove the correctness of our methodology; however, the 
idea is precisely that these long-term experimental stability studies may not be needed anymore, if using more 
advanced kinetic modelling beyond linear extrapolation.

Results
Long‑term stability prediction from accelerated stability data.  Figure  2 shows the exemplary 
long-term (36 months) stability prediction based on accelerated stability data (3 months) and kinetic modelling 
using the Arrhenius temperature dependence of kinetic rates. Specifically, the image shows results for rituximab 
molecule and the prediction for increase of the sum of acidic variants. We used experimental data for 3 months 

(5)SSres =
∑

i
(yi − pi)

2

(6)k(T) = k(Tref )e
−

Ea
R ( 1

T −
1

Tref )

(7)R2
= 1−

SSres

SStot

(8)SStot =
∑

i
(yi − y)2

https://orangedatamining.com/
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(Fig. 2, left, data points) and for three different temperatures (5, 25 and 40 °C), which were obtained within an 
accelerated stability study. These experimental data were then fitted with the kinetic model by using Eqs. (4) and 
(6) (Fig. 2, left, full lines). We fitted simultaneously all three measured temperatures. The 3-year prediction curve 
for the change of selected quality attribute in time was determined, together with the 95% probability predic-
tion interval (Fig. 2, right, full and dashed lines, respectively). Finally, the prediction interval obtained from the 
3 months accelerated stability data is validated against the long-term experimental data (Fig. 2 right, dark blue 
data points), showing excellent agreement between the prediction and actual measurements, with all measured 
data points within the prediction interval and very close to the prediction curve.

Prediction of changes of multiple stability quality attributes.  Figure 3 (upper panels, data points) 
show measured data from (accelerated) six months stability study of the key stability indicating quality attributes 
of rituximab (same batch as above). These accelerated stability data were analysed—i.e. fitted and extrapolated 
separately for each stability quality attribute: sum of aggregates by SEC (Fig. 3a), sum of acidic variants by CEX 
(Fig. 3b), purity by nrCE-SDS (Fig. 3c), and complement-dependent cytotoxicity activity CDC since this is the 
main mode of action of rituximab. (Fig. 3d). The obtained stability profiles and prediction intervals for long-
term 36 month period (intended drug shelf-life) at intended conditions (5 °C) are shown on the lower panels of 
Fig. 3 (full and dashed lines). Similarly as above, the predictions are validated against long-term experimental 
stability data (Fig. 3, bottom panel, dark blue data points not used for model building), showing excellent agree-
ment with the predictions based on 6 months accelerated stability data. Furthermore, we verified whether first 
order degradation kinetic model can be successfully applied to predict long-term stability profiles of sum of 
aggregates for adalimumab, etanercept, denosumab and mAb1. As shown on Figure S2, 95% probability predic-
tion intervals encapsulate all experimental long-term stability data.

Improving robustness of kinetic model from accelerated data by goodness of fit and by tem‑
perature sub‑sampling.  We assess the relevance and appropriateness of the chosen kinetic model using 
only accelerated stability data. The most straightforward criterion that measures the appropriateness of the 

Figure 2.   Long-term (36 months) stability prediction based on accelerated stability data (3 months) and kinetic 
modelling which included Arrhenius temperature dependence of kinetic rates. Accelerated stability data (left, 
data points) are used to develop the kinetic model (left, full lines) to predict long-term stability at intendent 
storage conditions (right). The 95% probability prediction interval designated by dashed blue lines is verified 
by long-term experimental data not used in model fitting (right, dark blue data points). Stability prediction was 
evaluated for three mAbs (rituximab, adalimumab and mAb1) and for one fusion protein etanercept. Shown 
data points are values of sum of acid variants obtained by CEX, one of the stability indicating quality attribute, 
measured for one batch of rituximab. Each point represents single measurement (N = 1). Measurement accuracy 
SD = 1.5% was estimated by several measurements of control samples over multiple analytical runs. Protein 
structures created using 1HZH43, 1H3W44 and 3ALQ45 structures from RCSB PDB (rcsb.org)46 using Mol*47 and 
Snagit (TechSmith, Okemos, MI, USA).
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applied kinetic model is the goodness of fit (R2) value as introduced in the Methods section. In the presented 
study we achieved 0.9 < R2 < 1 in most cases, indicating good quality of fits. Note that observing low R2 indicates 
either high values of measurement errors in the stability data or improper selection of the kinetic model.

The second criterion of model robustness is based on sub-sampling of the experimental accelerated stability 
data, by joint fitting data from fewer selected temperatures. Typically, our accelerated stress stability studies are 
performed at least at three different temperatures (e.g. see Fig. 3), and model fitting is performed with all acces-
sible short-term data (i.e. with all temperatures). However, to test the robustness, we include only subsets of 
data (i.e. from fewer temperatures, minimal three temperatures) in fits and observe the obtained fit parameters 
Ea and k(Tref). If fitting results in the same model parameters for different subsets and the full set of data (all 
temperatures), this indicates that the kinetic model is robust in the whole temperature range. For example, if 
stability data is available for 5 °C, 25 °C, 40 °C and 50 °C temperatures one can get 5 different data subsets, where 
minimally three different temperatures are included in a single data subset: {5 °C, 25 °C, 40 °C}, {5 °C, 25 °C, 
50 °C}, {5 °C, 40 °C, 50 °C},{ 25 °C, 40 °C, 50 °C} and {5 °C, 25 °C, 40 °C, 50 °C}.

The described approach was confirmed by using mAb1 molecule stability data in temperature range up to 
60 °C. Figure 4 shows activation energies as obtained from first order kinetic model fitting of different tempera-
ture data subsets. For charge variant analysis (Fig. 4a,b) and for fragmentation analysis (Fig. 4c,d) we have data 
available for six storage conditions (5 °C, 25 °C, 40 °C, 50 °C, 55 °C and 60 °C) resulting in 42 different combina-
tions with at least three different temperatures in a subset. For sum of aggregates analysis (Fig. 4, panels e and 
f) where additionally data for 35 °C and 45 °C temperatures are available, the number of combinations is 219. 
The analysis of charge variants (Fig. 4a,b) resulted in very similar activation energy Ea values (approximately 
25 kcal/mol) for all temperature sub-sampling combinations, including 60 °C condition. This clearly demonstrates 
that first order degradation kinetic model for chemical modifications follows the Arrhenius relation across the 
whole temperature range (5–60 °C) in the event of mAb1 molecule. In the fragmentation analysis (Fig. 4c,d), 
Ea of 25 kcal/mol is obtained for all temperature combinations, except for subsets including 60 °C temperature. 
Expectedly, in these subsets R2 was below the threshold level of 0.9. Collectively these two findings suggest that 
at higher temperatures additional mechanisms of fragmentation are present, which are beyond the dynamics 
covered in our (rather simple) kinetic model. The aggregation process (Fig. 4e,f) is even more complex involving 
additional aggregation mechanisms already at T > 45 °C, reflected by increasing Ea above this temperature. Activa-
tion energy Ea for purity parameter (Fig. 4e) and sum of aggregates (Fig. 4f) is around 25 kcal/mol, the same as 
in case of chemical degradation and fragmentation. Note that on Fig. 4, panels g and h, model verification results 
for aggregation of fusion protein etanercept and mAb2 are shown. For etanercept and mAb2 Ea is around 25 kcal/
mol and 20 kcal/mol, respectively, when we include data subsets up to 40 °C. When we include data subsets 
above 40 °C, obtained Ea increases for both proteins, suggesting the change of aggregation kinetics mechanism.

Verification of stability prediction using long‑term stability data.  Long-term stability data is the 
most powerful way for verification of the stability prediction approach. However, if full long-term experimental 
data are available, the question “What is the value of accelerated experiments and modelling-based predictions?” 
naturally occurs. In the context of our work, we resorted to the verification with long-term stability data only to 
convince the reader about the success and robustness of the accelerated stability data based prediction approach 
and, moreover, a proof that a range of stability affecting processes in multiple therapeutic monoclonal antibodies 

Figure 3.   Long-term stability prediction of different stability indicating quality attributes for rituximab. (a) Sum 
of aggregates by SEC (R2 = 0.92), (b) sum of acidic variants by CEX (R2 = 1.0), (c) purity by nrCE-SDS (R2 = 0.99), 
(d) complement-dependent cytotoxicity activity (CDC) (R2 = 0.99). Accelerated 6 months experimental stability 
data (upper panels, data points) are used for model parameter calculations (upper panels, full lines). Prediction 
intervals (dashed blue lines in lower panels) are validated against the available long-term experimental data 
(bottom panel, dark blue data points). All experimental data are from the single material batch. Measured value 
at t = 0 is designated by a black solid circle.
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follow apparent first order degradation kinetic model that can be applied for prediction beyond the measured 
data. Table 1 shows a summary of prediction accuracy for different stability indicating quality attributes (purity, 
potency (CDC for rituximab and reporter gene assay for adalimumab and etanercept), aggregation, fragmenta-
tion and charge profile) of rituximab, adalimumab, etanercept and mAb1. Note that mAb1 molecule is still in 
early development phase with only limited number of samples characterized by potency bioassay. Hence no 
potency could be predicted yet. Other quality attributes such as subvisible particles, degree of glycosylation, 
content, turbidity, color, pH etc. are usually not stability indicating for mAbs and are therefore not evaluated. 
The prediction accuracy is assessed by the percentage of long-term experimentally measured data points that fall 
within model-based prediction intervals. We utilised the same analysis as in Fig. 3, except that for each molecule 
several batches (technical replicates) were analysed. Each batch was evaluated independently. First, for each 
batch and each quality attribute first order degradation kinetic model was built by using a six months stability 
dataset including 5 °C, 25 °C and 40 °C data points. The second step, prior the long-term prediction, was datasets 
clean-up. It turned out that among 398 built kinetic models there were few models with poor alignment between 
measured 6 months stability data and the model. In most cases the reasons for poor modelling were out-layers 
and/or high analytical variability of data sets with limited data points. As a threshold for acceptable datasets was 
goodness of fit R2 ≥ 0.9. In total 359 datasets/models passed into a third phase where each data point measured 
after the first 6 months was checked whether it fell within calculated 95% probability prediction intervals or not. 
Prediction accuracy for each quality attribute and molecule was then calculated for all batches as the percent 
of all data points that fell within the prediction intervals. Impressively, as clearly shown in Table 1, we achieved 
more than 90% accuracy for all molecules and all stability quality attributes assessed, showing exceptional reli-
ability and robustness of our long-term stability prediction.

The widths of model-based prediction intervals are generally narrower compared to the current state-of-the-
art generic drug product specifications set by the guidelines for first in human studies of monoclonal antibodies 
(see e.g. 48). Calculations in Table 2 utilised the same data analysis as in Table 1 and show the average predic-
tion interval widths in comparison to the specification widths defined by the generic specifications for first in 

Figure 4.   Robustness of kinetic model by the analysis of temperature sub-sampling of accelerated stability data. 
Each circle represents calculated Ea (on y-axis) and the highest temperature (on x-axis) for one subset. Each 
subset contains at least 3 different temperatures. Parameters Ea are determined for all combinations of subsets 
for different quality attributes of one batch of mAb1 molecule (a–f) and for sum of aggregates for one batch 
of etanercept (g) and mAb2 (h). Goodness of fit for each determined activation energy is colour-coded by the 
colour of the data points circles; grey circles indicate (R2 ≥ 0.9); crossed empty circles indicate R2 < 0.9.
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human studies, and their quotient expressed in%. Generic specifications for potency, purity, aggregation and 
fragmentation are defined as absolute values in the guidelines as acceptance criteria for mAb drug substance 
and drug product48 ( relative potency not less than 50% and not more than 150%, SEC purity not less than 
90.0%, SEC sum of aggregates not more than 5.0% and nrCE SDS purity not less than 90.0%). For acceptance 
criteria of nrCE SDS sum of fragments authors suggest to report result or not more than x.x % limit where in 
analogy to sum of aggregates a criteria was set to not more than 5.0% ).Generic specifications for charge variant 
profiles are molecule-dependent and thus there is no clear target values that can be broadly applied as platform 
acceptance criteria. In presented study acceptance criteria for charge variant are set for 10% wider as than the 
observed results as an option proposed by Kretsinger et al. 48. Namely, acceptance criterion for sum of acidic 
variants is “less than its initial value + 10%”, while acceptance criterion for amount of main variant is “more than 
its initial value -10%”. Initial values were calculated as an average of all batches of a molecule at pull point t = 0 
and rounded to the nearest five. As shown in Table 2 calculated model-based prediction intervals at 36 month 
time point are substantially narrower compared to the generic specifications for all quality attributes and for all 
studied molecules. Despite the narrowness of the prediction intervals, we still achieved better than 90% accuracy 
of prediction of all stability quality attributes (Table 1).

Prediction accuracy of kinetic modelling vs. linear extrapolation.  According to ICH guidelines41 
stability profiles and shelf-life are determined by using linear regression models of measured data at intended 
conditions. To compare the kinetic modelling approach with the linear extrapolation we evaluated the same 
experimental data as above with the linear extrapolation approach. We compared accuracy of the prediction and 
prediction intervals for different extrapolated time periods. Specifically, we calculated prediction intervals with 
kinetic modelling and with linear extrapolation by using 3, 6, 12, 18 or 24 months experimental stability data 
(note: in analyses above only 6 month data was used for prediction calculations). Figure 5 evidently shows that 
kinetic modelling resulted in narrower prediction intervals compared to linear extrapolation. For example, by 
using kinetic modelling already after 6 months of stability study the sum of aggregates is predicted to be less than 
1% at 36 month intendent condition time point, which is in agreement with the experimental long-term stability 

Table 1.   Percent of batches where long-term experimental stability data are in agreement with long-term 
stability predictions. Percent of batches that meets the criteria is obtained as the ratio of experimental long-
term data points between 6 and 36 months at 5 °C that fall within the prediction interval relative to the total 
number of all measured values during that time. Prediction intervals are determined from the 6 months 
accelerated stability data . Only batches passing the criterion goodness of model fit R2 ≥ 0.9 are considered 
in the analysis. Numbers of passed batches are 8 (molecule in development mAb1), 36 (rituximab), 11 
(etanercept) and 19 (adalimumab). “no data” indicates that no accelerated and long-term experimental stability 
studies were performed for that quality attribute and protein, “n.a.” indicates not applicable since not enough 
data have been collected.

mAb1 Rituximab Etanercept Adalimumab

CEX amount of main variants (%) 100 91 100 99

CEX sum of acid variants (%) 100 97 100 99

nrCE SDS purity (%) 100 95 100 98

nrCE SDS sum of fragments (%) 100 No data No data No data

Relative potency (%) n.a. 97 100 100

SEC purity (%) 100 98 90 100

SEC sum of aggregates (%) 100 94 90 97

Table 2.   Determined prediction interval widths relative to the current state-of-the-art mAb platform 
specifications for drug products48. Values in brackets are an average of width of calculated model-based 
prediction intervals divided by the width of the mAb platform specification. The widths of model-based 
prediction intervals are given at 36 months as obtained from fitting of 6 months short-term stability study data. 
These prediction interval widths were calculated from exactly the same data set as the prediction accuracies 
shown in Table 1.

mAb1 Rituximab Etanercept Adalimumab

CEX amount of main variants (%) 30%  (13.3/45) 16%  (6.4/40) 23%  (10.4/45) 32%  (9.5/30)

CEX sum of acid variants (%) 24%  (8.5/35) 32%  (6.6/20) 25%  (6.4/25) 33%  (6.7/20)

nrCE SDS purity (%) 20%  (2.0/10) 24%  (2.4/10) 19%  (1.9/10) 26%  (2.6/10)

nrCE SDS sum of fragments (%) 25%  (1.2/5) No data No data No data

Relative potency (%) n.a. 46%(46.0/100) 75%(75.0/100) 74% (74.0/100)

SEC purity (%) 40%  (4.0/10) 38%  (3.8/10) 24%  (2.4/10) 47%  (4.7/10)

SEC sum of aggregates (%) 18%  (0.9/5) 14%  (0.7/5) 11%  (0.5/5) 17%  (0.9/5)
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data. On the other hand, by using linear extrapolation a similar range can be predicted only after 24 months of 
stability study (Fig. 5, upper panel). Similarly, for the sum of acidic variants, good enough prediction intervals 
can be obtained by kinetic modelling 15 months earlier (after 3 months) compared to linear extrapolation (after 
18 months, Fig. 5, lower panel). We defined a good enough prediction interval as prediction interval that falls 
within generic specifications interval. This analysis was performed on a single batch of rituximab. Additional 
examples demonstrating higher accuracy of kinetic modelling compared to liner regression are shown on Fig-
ure S3.

In Fig. 6 a comparison of kinetic modelling and linear extrapolation is shown for analysis of multiple (23) 
batches of rituximab, showing predicted curves (i.e. not prediction intervals as in Fig. 5) of sum of aggregates 
(Fig. 6, upper panels) and sum of acidic variants (Fig. 6, lower panels). Clearly, the kinetic model is able to more 
accurately predict the actual changes in the quality attributes. Especially when using only short-term data for 
model building linear extrapolation overestimates the actual variability of the system, while kinetic model-based 
predictions are accurate and do not vary between batches already when using 3 month data only. To sum up, 
result comparison of prediction intervals for a single batch (Fig. 5) together with result comparison of prediction 
curves for multiple batches provides a clear conclusions that kinetic modelling can more accurately predict the 
assessed stability quality attributes than linear extrapolation.

Approaching rapid stability prediction by exploiting a month‑long stability study at tempera‑
tures beyond traditional stress conditions.  Higher temperatures lead to faster kinetics of degrada-
tion processes. This fundamental knowledge of chemistry could potentially be used for accelerating stability 
prediction even further. Two limitations, arising from the nature of the observed degradation, for using kinetic 
modelling can potentially affect such rapid screening: (i) the temperature up to which the simple kinetic model 
can sufficiently/successfully describe observed changes and (ii) the variability of the experimental data, which 
sets the minimal time interval in which data has to be collected for the model to give sufficiently robust fit. As 
discussed in Fig. 4, some stability quality attributes follow the same mechanisms at temperatures above 40 °C as 
at intendent storage conditions (5 °C) and in these cases degradation can be successfully described by (appar-
ent) first order degradation kinetic model across whole temperature range. For presented charge variant studies, 
acceptable maximum storage temperature could be as high as 60 °C, for fragmentation 55 °C, etc. However, 
acceptable temperature ranges depend on the molecule and should be assessed on a case-by-case basis.

Figure 5.   Comparison of kinetic model (orange) and linear extrapolation (blue) prediction intervals by using 
3, 6, 12, 18 or 24 month experimental stability data (black data points). In grey, remaining measured data points 
at intended storage are shown for visual verification of the prediction intervals. Data shown is for one rituximab 
batch stored at 5 °C. For kinetic modelling data points from 25 and 40 °C conditions up to the respective time 
point were used (data points not shown for clarity reasons).
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To achieve accurate and narrow prediction intervals in the shortest possible time, we generally obtain stability 
data from three or more temperature conditions, which are up to the temperature at which kinetic mechanism 
changes and the simple kinetic model cannot describe the observed change. How to identify this maximal tem-
perature has been discussed above (under the Fig. 4). Here we assessed accuracy and precision of the prediction. 
Rapid stability prediction exploiting data from a 4-week-long stability study including temperatures above 40 °C 
is shown in Fig. 7. In order to demonstrate rapid stability prediction we tried to model stability profiles only 
based on two weeks data. In case reliable model could not be achieved (R2 < 0.9, prediction intervals were not 
verified by measurements or 36 months prediction intervals are wider as generic specifications described above 
(Table 2)) then additional time points were included until model reliability was reached. That leads to different 
number of data points per quality attribute shown on Fig. 7 (top panel). The minimal stability study time interval 
needed to achieve required prediction interval widths48 were thus two weeks for sum of acidic variants, three 
weeks for amount of main variant and four weeks for fragmentation and aggregation (Fig. 7). We speculate that 
by optimising the study design further we could achieve the same precision of predictions even faster for some 
quality attributes. For example, first data point for fragmentation at 40 and 25 °C is at 1 month. If data for first 
and second week time points would be available for these two temperatures, we could probably calculate the 
prediction interval for mAb1 molecule already after two weeks instead of four weeks as shown on Fig. 7c. Since 
model predicted increase in fragmentation at two week time point is 0.4% and 1.2% for 25 and 40 °C, respectively, 
which is above method variability of 0.2%, data from at least 3 temperatures with measurable degradation would 
be available. This is, as already discussed, enough for a reliable prediction.

Discussion
Kinetic modelling for predicting long-term stability from accelerated stability data was evaluated for several 
monoclonal antibodies belonging to IgG1, IgG2 families/types and a fusion protein. Presented results suggest 
that by applying a degradation model-based on first order kinetics and the Arrhenius equation on accelerated 
stability data, we can predict long-term (up to 3 year) changes of most relevant stability indicating quality 
attributes in solution. The highly successful in prediction (above 90% accuracy for 4 different protein molecules) 
quality attributes include fragments, chemical modifications (acidic variants and main peak), purity, aggregates 
and potency. Low accuracy is obtained for prediction of basic variants. The reason lies in use of simple first 
order kinetic model, which cannot cover possible non-monotonic variability of basic variants in time (Fig-
ure S4). A cause for more complex kinetic mechanism of basic variants change over time arises possibly from 

Figure 6.   Comparison of kinetic modelling (orange) and linear (blue) extrapolation, showing prediction curves 
based on 3, 6, 12, 18 or 24 month experimental stability data (black data points). In grey, remaining measured 
data points at intended storage are shown for visual verification of the prediction intervals. Data shown is for 
23 rituximab batches stored at 5 °C. For kinetic modelling data points from 25 and 40 °C conditions up to the 
respective time point were used (data points not shown for clarity reasons).
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the temperature/pH dependence of succinimide formation49.First order kinetic model would fail to describe any 
non-monotonic changes of any quality attribute. Low prediction accuracy is also obtained for subvisible particles 
(data not shown), mainly due to high variability of available analytical methods and high complexity of parti-
cle formation mechanisms50–53 which do not follow Arrhenius kinetics. From a biopharmaceutical application 
perspective, none of the both quality attributes show any trend at intended storage temperature for investigated 
molecules and are therefore not shelf-life limiting. For other quality attributes the predictions were successfully 
determined by using up to 6 month stability data containing three or more temperature conditions (usually 
5 °C, 25 °C and 40 °C). The verification of long-term stability predictions at the intended storage temperature 
of 5 °C was evaluated by comparison of the 95% probability prediction interval and experimental data obtained 
during the long-term stability studies lasting up to 36 months. Results are summarised in Table 1 for 4 different 
molecules (mAb1, rituximab, adalimumab and etanercept). Percentage of experimental stability data between 6 
and 36 months at 5 °C that are within the 95% probability prediction interval is above 90% for all model fits with 
goodness of fit R2 ≥ 0.9. Robustness of the model stability prediction is additionally supported by applying the 
kinetic modelling to combinations of stability data subsets, which included different temperatures, and analysing 
the goodness of fit and model parameters. If values for model parameters do not vary between different stability 
data subsets, this is a strong indication for the appropriateness of the kinetic model and the overall accuracy 
and robustness of the prediction approach (Fig. 4). Furthermore, by fitting the model with data subsets we can 
estimate the maximal temperature up to which molecule degradation follows Arrhenius behaviour. The most 
prominent advantage of using the identified highest temperature storage condition is faster molecule degradation, 
which allows to conduct a shorter accelerated stability study, which based on our results does not compromise 
accuracy or robustness of model prediction (Fig. 7). However, to evaluate the associated risk and benefits of very 
short (weeks) accelerated stability studies, additional research still needs to be done.

Aggregation is a common stability-limiting factor for biologics. It is also known that aggregation is a com-
plex process that in general embraces several aggregation pathways, which are temperature-dependent9,50. For 
mAbs Wang and Roberts3 confirmed Arrhenius behaviour in a temperature range from 5 to 40 °C, at higher 
temperatures the linearity of Arrhenius plot vanished. These findings are in agreement with our data shown on 
Fig. 4 (panels f, g and h), where at temperatures above 40 °C we found an increase of fitted value for Ea for all 
three molecules studied indicating a change in aggregation process. The importance of limiting the temperature 
range for kinetic modelling of aggregation is demonstrated in Figure S5. Obtained aggregation rates based on 
up to 40 °C stability data are in a range of 0.1 to 0.2% increase per year and are in agreement with experimental 
observations. While adding 45 °C data to the modelling dataset results in 100 times slower predicted aggregation 
rate (Figure S5c). According to the literature, there are notable evidences that aggregation pathways are connected 
with the conformational stability54,55. Our aggregation results (Fig. 4, panels f and g) indeed briefly indicate 
that the aggregation pathway changes with increasing temperature, which might be linked to the mentioned 
temperature-induced change in conformational stability. Nevertheless, the presented approach for identification 

Figure 7.   Rapid stability prediction for mAb1 molecule from stability data at temperatures 25 to 60 °C. (a) 
Two weeks data for acidic variants, (b) three weeks for main variants, both measured by CEX, (c) four weeks 
for fragmentation measured by nrCE-SDS and (d) four weeks for sum of aggregates by SEC. Highly accelerated 
experimental stability data (data points) and model fits (full lines) are shown in the upper panels, to generate 
prediction curves (full line) and prediction intervals (dashed lines) with measured data (solid circles) in the 
bottom panels. Note that different temperature intervals had to be used for different stability quality attributes, 
depending on the nature of degradation process kinetics. Measured value at t = 0 is designated by a black solid 
circle.
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of the maximal temperature up to which aggregation follows the same mechanism as at storage temperature is 
robust enough to obtain accurate predictions based on simple first order aggregation kinetic model. By selecting 
the optimal temperature interval we obtained reliable predictions that are verified with experimental data for 
several mAbs and one fusion protein (Figs. 3a and S1). These two predictions are based on first order degradation 
kinetic model build on accelerated stability study data with 5 °C to 40 °C conditions. We are aware, however, 
that even by limiting the temperature range the first order degradation kinetic model does not fully describe the 
aggregation process during the long-term storage at 5 °C. For example, measured stability data of etanercept at 
5 °C (Figure S2b) suggest that the aggregation process involves at least two distinct processes (biphasic change). 
During the first few months level of aggregates increases with the rate of about 0.4% per year, which drops to 
about 0.1% per year after 12 months. However, to appropriately model biphasic changes at 5 °C it would be essen-
tial to experimentally first detect biphasic behaviour at accelerated conditions and then one can apply two steps 
model20. Therefore some pre-tests are recommended to optimally design temperature conditions and pull points 
frequency of accelerated stability to experimentally detect biphasic behaviour at several temperatures that is 
needed to adequately model also biphasic protein aggregation3. Nevertheless, for the etanercept molecule shown 
on Figure S2b, even prediction interval based on first order degradation kinetic model and 6 month accelerated 
stability study satisfactory describes aggregation, which is verified by long-term stability data.

In the guideline of European Medicines Agency it is stated that the shelf-life and storage conditions of the bio-
logics manufactured for clinical study purposes can be extrapolated for the same period as the experimental data 
are available but not for more than 12 months (e.g. from six month stability data to a maximum of 12 months), 
provided that stability studies are conducted in parallel to the clinical studies and throughout its entire duration13. 
Current industrial practice of shelf-life determination is to use linear regression41. But in case that the linear 
regression is complemented in the future by Arrhenius kinetic modelling, similar as for small molecules12, 
applicants would claim 12 months shelf-life already from three months stability data. However it is important to 
note that selection of kinetic model and the validity of predictions based on Arrhenius kinetic modelling should 
be first verified for a specific molecule and quality attributes of interest on case by case basis. Predictions could 
be verified by preliminary studies on non-GMP material using the final primary packaging. The main feature 
supporting advanced claiming of shelf-life is superior accuracy of Arrhenius modelling in comparison to linear 
extrapolation. On Fig. 5 (upper panel) we showed an example for one batch of the rituximab molecule. For 
that batch, based on 3 months accelerated stability study, we predicted sum of aggregates to be below 1% after 
12 months of storage at 5 °C and after 36 months below 2%. By using linear extrapolation, predicted intervals 
for aggregates are much wider, namely below 2.1% at 12 months and below 7.2% at 36 months. Similarly, kinetic 
Arrhenius modelling leads to more accurate prediction also in case of the sum of acidic variants (Fig. 5, lower 
panel). More examples of 12 months predictions for the sum of aggregates for different proteins are shown in 
Figure S3. To generalise, kinetic modelling results in much narrower prediction intervals compared to linear 
extrapolation, enabling faster, more reliable and robust prediction of stability and shelf-life estimation, both of 
prime importance in the development of biologics.

Overall, the data presented demonstrate that already accelerated stability studies (up to 6 months) combined 
with basic first order degradation kinetic model allow for robust and accurate predictions of the long-term (up to 
3 years) stability behaviour of monoclonal antibodies at intended storage conditions. The study presented clearly 
emphasizes that shelf-life model-based prediction can be justified for biologics like monoclonal antibodies, if the 
stability profile of a product is extensively studied and clearly defined, if state-of-the-art analytical methods are 
available for the predicted quality attributes, and, of course, if the actual biological molecule in the development is 
relatively stable. Presented results evidently challenge the current paradigm that stability predictions of biologics 
from accelerated stability data are not sufficiently robust since molecules are more complex, have distinguishing 
characteristics and that their molecular integrity, conformation and, hence, biological activity are more sensitive 
to environmental factors2,56,57. Therefore such predictions are not accepted by health authorities for clinical or 
for marketing authorisation applications14 as they are under certain conditions for small molecule drugs 41,58. 
However, the presented results could contribute to regulatory guidelines covering extrapolation principles being 
updated in the future to acknowledge the use of Arrhenius kinetic modelling for setting the shelf-life of biologics 
as well. Such as, for example, within existing Breakthrough Therapy (BTD) schemes where the US Food And 
Drug Association (FDA) already supports the accelerated access to medications indicated for serious or life-
threatening conditions with limited treatment options59. In addition, recently the European Medicines Agency 
(EMA) published a draft guideline for PRIME marketing authorisation applications, enhancing EMA support to 
the development of medicines that target an unmet medical need with the aim to help patients to benefit from 
these therapies as early as possible60. According to the draft guidelines, for a biologic PRIME product, trends in 
stability data, and therefore the claimed shelf-life, could be extrapolated using predictive stability models gener-
ated from prior knowledge of the stability of structurally similar molecules. That is of course different from the 
proposed Arrhenius strategy, which is based on all the stability data of a specific molecule. Namely, during early 
development by using non-GMP material one should already (1) select the most appropriate type of kinetic 
models, (2) optimize accelerated stability study design (temperature conditions, sampling plan), and finally (3) 
one should verify model by long-term measurements at 5 °C. Guided by acquired knowledge about the specific 
molecule, a GMP accelerated stability study is further designed and executed, the measurements of which are 
then used to set up Arrhenius kinetic models for claiming shelf-life. In short, there are however differences in 
PRIME and Arrhenius approaches but the both proposed strategies pursue the same goal towards approval of 
shelf-life which is longer than the available product-specific real-time stability data. Taken all together, we believe 
that the presented findings can contribute towards development and refinement of the regulatory landscape, 
to allow extrapolation for biologics during the development phase, the clinical phase, and also for marketing 
authorisation applications in the same way as for small molecules.
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