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Abstract: It is valuable to study the land use/land cover (LULC) classification for suburbs. The fusion
of Light Detection and Ranging (LiDAR) data and aerial imagery is often regarded as an effective
method for the LULC classification; however, more in-depth analysis would be required to explore
effective information for enhancing the suburban LULC classification. In this study, first, both aerial
imageries and point clouds were simultaneously collected. Then, LiDAR-derived models, i.e.,
normalized digital surface model (nDSM) and surface intensity model (IM), were generated from the
elevation and intensity of point clouds. Further, considering the surface characteristics of ground
objects in suburb, we proposed a new LiDAR-derived model, namely surface roughness model (RM),
to reveal the degree of surface fluctuations. Additionally, various combinations of aerial imageries
and the LiDAR-derived data were used to analyze the effects of multi-variable fusion under different
scenarios and optimize the multi-variable integration for suburban LULC classification. The mean
decrease impurity method was used to identify the importance of variables; three machine learning
classifiers, i.e., random forest (RF), k-nearest neighbor (KNN) and artificial neural network (ANN)
were adopted in various scenarios. The results were as follows. The fusion of aerial imagery and all
the LiDAR-derived models, i.e., nDSM, RM and IM, with RF classifier performs best in the suburban
LULC classification (overall accuracy = 84.75%, kappa coefficient = 0.80). Variable importance analysis
shows that nDSM has the highest variable importance proportion (VIP) value, followed by RM, IM,
and spectral information, indicating the feasibility of this proposed LiDAR-derived model-RM. This
research presents effective methods relating to the application of aerial imagery and LiDAR-derived
model for the complex suburban surface scenarios.

Keywords: suburban land cover classification; LiDAR; aerial imagery; machine learning; nDSM;
surface roughness; surface intensity

1. Introduction

Land use/land cover (LULC) has significant influences on the biochemical cycle, hydrological
processes, climate change, and regional ecosystem biodiversity from global to local scales [1,2].
Suburb is often regarded as an indispensable part of urban area, which undertakes the agricultural
serving function of providing agricultural and sideline products for the city. With the acceleration
of urbanization, the structure and management concerning the suburban LULC have undergone
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tremendous changes. Therefore, monitoring changes in suburban LULC classification are beneficial for
exploring sustainable development of suburbs.

In recent years, remote sensing technology has developed into multi-platform, multi-sensor,
and multi-angle featuring high spatial resolution, high spectral resolution, and high time-phase
resolution, which are conducive to better interpretation and processing of images by users [2,3].
Laser scanners can accurately acquire the three-dimensional information (XYZ) of the Earth’s landscape
and bare surface without the influence of illumination conditions, but the LiDAR data lack sufficient
spectral information [4]. Since aerial imageries can provide spectral information in the visible band,
the fusion of aerial imagery and LiDAR data can enable improvements in the classification accuracy of
ground objects and make possible land cover surveys and applications at very fine scales [2,5–8].

Previous research has proven that the LiDAR-derived data, e.g., nDSM, intensity, and topographic
information, could perform better in distinguishing ground objects [2,7–9]. For example, the nDSM
enables the distinguishing of high vegetation (trees) from low vegetation according to their elevation
differences, whereas the intensity could enable better distinguishing of different materials, especially
in the classification of land cover. Nevertheless, the high volume of information contained in LiDAR
data is of significant for further improving the accuracy of land cover classification. Some derived
height features like skewness and kurtosis models [6], the height variation [10], mean, variance and
standard derivation of height of the first echo [11], homogeneity, contrast, and entropy of height [12]
were measured for improving the accuracy of classification, but these derived features did not perform
any better than nDSM and intensity [2]. Therefore, some new feature descriptions of LiDAR data need
to be discovered and verified to play a role in land cover classification. In addition, a literature review
shows that most of the studies concerning urban land cover classification [2,5,13–15] were performed,
however, few studies focused on the suburbs’ classification.

In the article, taking suburbs as the study area, the main objectives of the study are as follows:

(1) Analyze the performances of fusion data of LiDAR-derived models and aerial imageries
incorporated with three machine learning classifiers (i.e., random forest (RF), k-nearest neighbor
(KNN), and artificial neural network (ANN) [16–20]) for the suburban land cover classification.

(2) Propose a new index, namely surface roughness model (RM), to describe and quantify the
surface fluctuations of ground objects, and further evaluate the effects of RM to improve the land
cover classification.

(3) Calculate the contribution of various input variables, i.e., RGB, nDSM, RM, and IM, in the various
scenarios, and determine the optimal combination scheme as well as the optimal classifier.

2. Materials and Methods

2.1. Study Area

Figure 1 gives an overview of the study area, which is located in the central part of Sichuan Basin
and belongs to Ziyang City, Sichuan Province, China (104◦59′ E, 30◦14′ N). As a suburban region,
the area features diverse and irregular land cover, and includes both natural and human formed
landscapes, i.e., low buildings, roads, cultivated land, and vegetation. The study area is approximately
1.6 km2 (1538 m × 1060 m).

2.2. Data Sources

Airborne LiDAR data and aerial imageries were collected in December 2017 using an integrated
RIEGL VUX-1LR laser scanner recording a single pulse return and intensity, a PHASE ONE IXU1000-R
digital camera, and the POS (Positioning and Orientation System). Additionally, the system acquires
point clouds and aerial imageries synchronously. The parameters of those data were detailed as follows.
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(1) Point clouds parameters: the density of the point clouds was approximately 20 points/m2.
The horizontal and vertical resolution of the point clouds were approximately 0.17 m and 0.2 m,
respectively. The maximum difference in altitude among the points was 138.94 m.

(2) Aerial imagery parameters: the image size was 11,608 × 8708 pixels. The visible bands included
red, green and blue.
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Figure 1. Location of study area.

2.3. Methods

2.3.1. Research Scheme Description

The study workflow is shown in Figure 2 and included five key steps: (1) Data pre-processing,
which included the processing of point cloud and aerial imageries; (2) Data fusion schemes design,
which comprised five scenarios of data fusion for the point clouds and aerial imageries; (3) Sample
datasets selection, which included training data collection, calibration and validation data division,
and test data preparation; (4) Classifier selection, which used three machine learning algorithms
included RF, KNN, and ANN; (5) Accuracy assessment and results analysis.
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2.3.2. Data Pre-processing

(1) LiDAR-derived models

Three LiDAR-derived surface models, i.e., normalized digital surface model (nDSM), surface
intensity model (IM) and surface roughness model (RM), were generated for the land cover classification.

Digital elevation model (DEM) describes ground elevation information, whereas digital surface
model (DSM) reflects the realistic surface fluctuation [2]. nDSM is generated to eliminate the influence
of topography and to obtain the accurate relative elevation differences between objects and the ground
surface. Previous researchers have been demonstrated that the nDSM can be used as an effective
indicator for improving classification accuracy [21,22]. The procedure of nDSM generation were as
follows: Point cloud data were initially filtered to eliminate low points, air points and isolated points
and then classified into ground, non-ground using Terrasolid software; then, DEM and DSM with a
resolutions of 0.5 m covering the study area were established by the inverse distance weighted (IDW)
interpolation algorithm using ground points and non-ground points, respectively; lastly, nDSM with
a resolution of 0.5 m was generated by subtracting DSM and DEM. Specifically, we also performed
some appropriate adjustments to ensure the accuracy of the nDSM (i.e., we set a conditional function
to remove some negative values caused by laser penetration of glass roofs) [4].

For a discrete return LiDAR sensor, intensity describes the peak amplitude of the laser beam
returned by the object [2], and distinguishes ground objects according to reflectance properties of
objects [5,12,21,23]. The LiDAR data recorded the returns with 16 bits of high-resolution intensity
information. In this study, intensity is regarded as one of the input parameters. IM with a resolution of
0.5 m was generated by the IDW algorithm using all points.

The discrimination of many types of ground objects could depend on the elevation differences,
e.g., trees and roads [2]. However, trees and low buildings feature similar elevations in some cases,
especially in suburban areas. Figure 3 shows the profile of surface elevation fluctuations for various
land covers. As shown in Figure 3, a significant difference in surface fluctuations was observed among
land covers. It is clear from Figure 3 that trees had the highest surface fluctuations, whereas roads
had the lowest surface fluctuations; crops and grasses had varying degrees of fluctuations; the surface
fluctuations of buildings are low. Note that water is missing in Figure 3 because there are no point
clouds in the water surfaces. In order to capture those differences of surface fluctuations among land
covers, we defined a variable to describe and quantify the surface fluctuations of the ground objects.
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Considering that the density of point clouds are sufficient, the surface roughness coefficient (SRC)
were proposed to reflect the surface fluctuations of ground objects, and is defined as a ratio of the
ground objects surface area and its projected area in a grid unit:

SRCi j =
Ssi j

Spij
, (1)

where SRCi j represents the roughness coefficient for the grid at row i and column j; Ssi j and Spij
represent the surface area and projected area, respectively, in the grid at row i and column j.

Figure 4 shows the ground objects surface and its projected surface. Firstly, we defined the size
of the grid as 0.5 m × 0.5 m, and assigned corresponding points onto it. Then, we built polygons
based on points within each grid. Next, we calculated the surface area of polygons within each grid,
and found its corresponding horizontal projection region based on the position of the four vertices and
calculated projection area, SRC was calculated by formula (1) until all grids are completed. Finally,
IDW interpolation method was used to generate the RM with 0.5 m resolution by SRC.
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The results of RM are described in Figure 5, where RM in the water region is set to 0 because there
are no point cloud data. As show in Figure 5a, the outline of the ground objects is distinct, and we
can distinguish the classes clearly according to RM. Compared RM (Figure 5b) with its corresponding
aerial imageries (Figure 5c), we found that the RM values for trees were the highest, crops and grasses
were relatively low, and buildings and roads were the lowest. A comprehensive analysis Figures 3
and 5, revealed that the roughness of trees is large when the elevation fluctuations are large, while the
roughness of buildings and roads is small when the fluctuations are small. Therefore, RM as an
overall feature of measuring the elevation variation of ground objects in a certain region, it reflects and
quantifies the surface fluctuations degree of ground objects. We used RM as a new LiDAR-derived
model and studied its effects and advantages in LULC classification in suburbs.
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(2) Aerial imagery processing

There were 70 aerial images that covered the study area, and selected to generate orthophoto.
Their position and orientation information were obtained from POS data and used in Pix4Dmapper
software to generate the orthophoto. Firstly, we selected UTM Zone 48N/WGS 84 as the coordinate
system and imported the position and orientation information of images. Secondly, we selected original
image size to extract the image features and match the images. Thirdly, we optimized externals and all
internals of images to rematch the images. Next, we used weighted average method to generate a
complete orthophoto mosaic of study area. Finally, the orthophoto was sampled to 0.5 m resolution to
maintain the resolution consistent with LiDAR-derived models.

2.3.3. Data Fusion Schemes Design

This study was designed with five groups of data fusion scenarios. We fused the spectral
information of aerial imagery and three LiDAR-derived models to analyze and assess differences in
classification accuracy. We used an image layer stacking process to combine those data sources and
generated the composite images. Table 1 shows the fused input bands used in scenarios.

Table 1. Fused datasets input bands used for five combination scenarios.

Scenarios Datasets Number of Bands

1 Aerial imagery spectral information(R, G, B) 3
2 Aerial imagery spectral information(R, G, B) + nDSM 4
3 Aerial imagery spectral information(R, G, B) + nDSM + RM 5
4 Aerial imagery spectral information(R, G, B) + nDSM + IM 5
5 Aerial imagery spectral information(R, G, B) + nDSM + RM+ IM 6
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2.3.4. Classification Sample Datasets

Based on the spectral response of features on the aerial images and field observation, seven land
cover types, including building, road, tree, grass, crop, bareland, and water were identified. Samples
covering the study area were extracted directly from the aerial images. Further, those samples were
divided into calibration, validation and test samples. In order to avoid the influence of an imbalance of
samples in quantity and proportion on classifier training [24], we used random sampling to create
sample datasets overlaying the entire study area and all classes, the number of samples in each category
was selected according to the proportion of categories in the entire study area. In the process of
samples selection, we randomly created samples first, which did not contain any band information.
Then, we extracted the band information from composite images, and assigned it to corresponding
samples. The samples were divided into seven land covers by referring to aerial true color imageries.
In addition, some poor-quality training samples were removed in the process of sample classification.
Again, we used the random sampling to ensure the representative class proportions and minimize
the proportional error in the training results, where 80% of the classified samples were selected as the
calibration datasets to train the classifier, and the remaining 20% as the validation datasets to verify the
accuracy of the classification model (Figure 6). Meanwhile, we used the data of the entire research area
which contained different band combination information as the test dataset to output the classification
map. All the sample datasets were converted to decimal data format.
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2.3.5. Classifier Selection

Three machine learning methods were adopted to perform the land cover classification and
identify the consistency of the classification results, included RF, KNN and ANN. The algorithms were
implemented in the Python 3.6 environment.

RF is an important non-parametric ensemble learning method based on decision trees and
bagging [25–27]. RF can handle thousands of input variables and evaluate the importance of variables.
It can also maintain high classification accuracy even for a smaller number of training data [14,28,29].
The samples from the original training dataset are taken at random but with replacement using the
bootstrap method to construct the decision tree. The Gini criterion is used to split each node [30].
The remaining original samples which are called out-of-bag (OOB) are used to estimate the test accuracy
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and evaluate the variables importance by measuring the mean decrease impurity [30]. OOB improves
the efficiency and accuracy of classifier by optimizing parameters. Classification of new data by
combining all the classification voting results of each constructed tree and assigns the class with
the most votes as the final output [12,21]. The vital parameters for RF: the number of constructed
decision trees (ntree); the number of randomly variables selected (mtree) used for the best split at
each node. Some studies have indicated that ntree is more crucial than mtree to the classification
accuracy [28,31], the default value of mtree is usually set to the square root of the number of input
variables [32], while the ntree values ranging from 0 to 1000 have been shown to be effective for many
RF applications [16,33,34]. Our research used the default value of mtree; set the ntree values range
from 0 to 1000 at an interval of 100 to test the best value of ntree so as to get the optimal accuracy for
the best classification of scenarios.

KNN algorithm [35,36] is a lazy learning algorithm (i.e., instance-based) and a powerful
non-parametric classification method. The KNN does not require generating classifier in advance,
it stores all available cases and classifies new cases based on a similarity measure which is the
distance between different eigenvalues [37]. There are four main steps for KNN classification: assign a
classification code to each data in the sample dataset; input the new data and compared its features
with the sample dataset; extract the classification code according to the most similar feature (nearest
neighbor) in the sample dataset; new data (a new instance) is classified by a majority vote of its
neighbors, by assigning to the most common class among its k nearest neighbors (measured by a
distance function; usually k < 20) [19,38]. The choice of k value is crucial in classification process,
whether the value of k is large or small will lead to either overly normalize the patterns or highlight
local variation problems [39,40]. Our research attempted to get optimal k for the best classification,
by setting the value range from 0 to 20; then, an iterative algorithm was introduced to calculate the
classification accuracy of each iteration; the k corresponding to the highest accuracy is selected as the
optimal value which is determined by cross-validation using training data.

ANN algorithm is a mathematical model of distributed parallel information processing that
imitates the behavior characteristics of biological neural network [41]. The neural networks get a
solution using a non-algorithmic and unstructured fashion, also it depends on the complexity of the
system to process information by adjusting the weight of a large number of internal nodes (neurons)
which are connected to each other in the networks [42]. ANN has been used to classify various
types of remote data and have in certain instances produced results superior to those of traditional
statistical methods [20,43,44]. When using ANN to process remote sensing images, it could effectively
reduce errors caused by human participation because the procedure basically controlled by program;
additionally, the requirements of data are not constrained by normal distribution, and it can adaptively
simulate complex and nonlinear patterns and give appropriate topologies. Our research chose a
multilayer perceptron (MLP) as a classifier which is a kind of forward structure ANN model based on
supervised training [20] to train the sample datasets.

2.3.6. Accuracy Assessment

Accuracy assessment is a key step for the land cover classification. The classification accuracy
directly affects the mapping report, and this report is a key reference for the usefulness of actual
land cover data analysis and the rationality of scientific research. In addition, it is very important to
understand and analyze the causes and distribution characteristics of classification errors to revise the
classified results and improve the subsequent classification methods.

Accuracy assessment is carried out by the confusion matrix (CM) [45], which is widely used
for accuracy assessment [2,14], and describes the classification accuracy of classifiers. Moreover,
CM can clearly get the number of correct classification and misclassified of each feature and category.
The assessment indexes of CM include the overall accuracy (OA), kappa coefficient, user’s accuracy (UA)
and producer’s accuracy (PA). The OA is a statistic with probabilistic significance, which represents the
probability that all classification results are consistent with the actual types of the corresponding regions
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on the ground for each random sample. The kappa coefficient analysis is an objective evaluation
index, which adopts a discrete multivariate technology and takes into account all factors of the matrix.
The UA measures commission error, and represents how well a pixel classified as a certain land cover
type matches the actual ground type. The PA measures omission error, and represents how well a land
cover class can be assigned to the landscape. [45,46]. CM is an n×n matrix, the OA, UA, PA, and kappa
coefficient can be defined as:

OA =
∑n

k=1
pkk/p, (2)

UA = pii/pu, (3)

PA = p j j/pp, (4)

kappa coefficient =
p
∑n

i=1 pii −
∑n

i=1(pupu)

p2 −
∑n

i=1(pupu)
(5)

where n is the total of classes, p is the total of samples, row i represents classified samples, column j
represents practical samples, pkk represents the total number of kth class correctly classified, pu represents
the sum of ith class from classification, pp represents the sum of jth class from practical samples.

Accuracy assessment scheme is show in Figure 7. The sample datasets are divided into calibration
datasets and validation datasets in this study. Note that there is no overlap between calibration datasets
and validation datasets, and they are used for three classifiers of five scenarios with the same location
and quantity. Calibration datasets were used to build the model of classifiers, validation datasets
were used to optimize the model and verify the classification accuracy, and test datasets were used to
output the classification map. We could analyze the classification results by classification accuracy and
classification map.
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3. Results

3.1. Classification Performance of Scenarios

Table 2 summarizes the classification accuracy regarding the five scenarios with different classifiers.
As shown in Table 2, the OA and the kappa coefficients of different scenarios changed from 47.18% to
84.75% and 0.31 to 0.80, respectively, which indicate that the classification accuracy significantly depends
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on the increase/decrease of the input bands as well as the classifiers selection. Note that scenario 5 with
RF model performs better than the other models in the suburban land cover classification. It has the
highest OA (84.75%) and the highest kappa coefficient (0.80). In addition, land cover discrimination
at class level was reflected by UA and PA. Table 3 gives the class level accuracies calculated by CM
for each land cover. As shown in Table 3, scenario 5 obtained the relatively maximum land cover
discrimination, and each classifier has its own advantage on particular classes. Figure 8 shows the
classification results for five scenarios with three machine learning methods.

As shown in Tables 2 and 3, the classification performances of each scenario are summarized
as follows:

(1) Scenario 1 only used spectral information in the aerial imagery. Most classes were badly
misclassified and confused, i.e., buildings and roads, or trees and grasses, because of similar
spectral reflectance values, this resulting very low UA and PA by analyzing scenario 1 in Table 3.
Additionally, in scenario 1, ANN gave the better performance than the other classifiers (OA =

50.18% and kappa coefficient = 0.35).
(2) When the nDSM was combined with spectral information of aerial imagery (scenario 2),

the accuracy of classification significantly improved. The OA and kappa coefficient of the
three classifiers were dramatically improved comparing with scenario 1, the lowest OA was
68.75% of KNN which increased 21.57% and the highest was 77.97% of RF which increased 27.16%,
the lowest kappa coefficient was 0.59 of KNN which improved 0.28 and the highest was 0.71 of
RF which improved 0.36 (Table 2). Correspondingly, the significant decreases of misclassified rate
between buildings and roads, and between trees and grasses were observed, where the UA and
PA of trees were over 90% (Table 3). However, the distinction between low buildings and trees
was not optimistic due to their few high differences.

(3) In order to overcome the confusion between low buildings and trees, scenario 3 contained RBG,
nDSM, and RM. In scenario 3, we found that RM plays a key role in distinguishing between
the low buildings and trees. In addition, the OA of three classifiers ranged from 70.37% to
81.81%, which was 1.62% higher than the lowest of scenario 2 and 3.84% higher than the highest.
The kappa coefficient was from 0.61 to 0.76, which was 0.02 higher than the lowest of scenario 2
and 0.05 higher than the highest (Table 2). The classification accuracies of the seven classes were
further improved.

(4) Previous research proved that IM has advantages in material surface differentiation [2,5,12,21,23].
To compare the effects of RM and IM in the suburban classification, we used IM in scenario 4
instead of RM in scenario 3. Few variations in OA and kappa coefficient were observed between
scenario 3 and 4. Additionally, crops and waters have higher classification accuracy than scenario
3, roads, barelands, and grasses have the nearly accuracy as scenario 3, while buildings and trees
have no higher accuracy than scenario 3 (Table 3).

(5) Considering RM and IM have their own advantages, scenario 5 combined all the variables
including RGB, nDSM, RM, and IM. Scenario 5 gave the best performance in classification among
all the scenarios. The lowest OA was 72.99% of KNN, the highest was 84.75% of RF with 80.61%
of ANN, the lowest kappa coefficient is 0.65 of KNN, and the highest was 0.80 of RF with 0.75 of
ANN. The UA and PA of all classes get almost the highest level using RF classifier. However,
there were some phenomena indicated that the classification results of KNN and ANN were
not stable than RF. For example, in the process of KNN classifier, the PA of bareland was 0.29%
lower than that of scenario 3 and 2.15% lower than that of scenario 4, the UA of the buildings was
0.82% lower than scenario 3, while the grasses was 1.39% lower than scenario 4; in the process of
ANN classifier, the PA of barelands was 1.12% lower compared with scenario 3 and 5.29% lower
compared with scenario 4, the UA of the roads and trees were not performance well than scenario
3 and 4, and the barelands accuracy was not higher than scenario 4.
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Table 2. Classification accuracies regarding five scenarios with different classifiers (note: the best
overall accuracy (OA) and Kappa Coefficient are shown in bold). RF: random forest; KNN: k-nearest
neighbor; ANN: artificial neural network.

Scenario
OA (%) Kappa Coefficient

RF KNN ANN RF KNN ANN

1 47.18 50.56 50.81 0.31 0.35 0.35
2 77.97 68.75 74.68 0.71 0.59 0.66
3 81.81 70.37 77.26 0.76 0.61 0.70
4 81.78 71.33 79.38 0.76 0.63 0.73
5 84.75 72.99 80.61 0.80 0.65 0.75

Table 3. Class level classification accuracies of three classifiers for each land covers. UA: user’s accuracy;
PA: producer’s accuracy; nDSM: normalized digital surface model; RM: surface roughness model; IM:
intensity model.

Land Cover
PA (%) UA (%)

RF KNN ANN RF KNN ANN

Scenario1: Aerial imageries spectral information(R, G, B)
Building 51.54 58.46 71.62 27.46 31.15 21.72
Road 49.88 50.87 47.29 59.05 65.46 70.47
Tree 52.51 53.95 54.62 58.09 64.41 68.18
Grass 38.58 43.32 43.23 42.46 45.6 44.1
Crop 41.67 44.44 0 15.96 4.26 0
Bareland 52.38 58.04 58.60 45.29 43.53 49.12
Water 35.62 40.98 0 26.80 25.77 0

Scenario2: Aerial imageries spectral information(R, G, B) + nDSM
Building 86.01 85.88 84.58 68.03 62.3 69.67
Road 69.65 56.46 64.17 67.13 69.36 64.35
Tree 91.5 89.11 90.26 96.78 78.94 96.56
Grass 70.41 58.6 62.86 82.54 79.15 85.68
Crop 56.52 51.61 0 27.66 17.02 0
Bareland 63.04 64.68 72.85 47.65 44.71 47.35
Water 80.58 48.65 0 85.57 37.11 0

Scenario3: Aerial imageries spectral information(R, G, B) + nDSM + RM
Building 93.3 91.33 90.29 79.92 64.75 76.23
Road 74.19 59.43 61.27 70.47 70.19 72.70
Tree 94.46 86.30 91.73 98.23 86.59 97.12
Grass 72.21 60.19 68.69 87.81 73.12 86.81
Crop 71.05 26.47 50 28.72 19.15 2.13
Bareland 66.39 64.17 73.19 47.06 47.94 50.59
Water 100 52 0 100 40.21 0

Scenario4: Aerial imageries spectral information(R, G, B) + nDSM + IM
Building 90.14 91.12 90.63 78.69 63.11 71.31
Road 74.26 60.83 67.09 69.92 69.64 73.82
Tree 93.89 82.12 90.75 97.12 83.48 96.78
Grass 73.25 60.61 69.85 87.06 75.38 84.42
Crop 75.51 78.38 0 39.36 30.85 0
Bareland 66.41 66.03 77.27 50 40.59 50
Water 100 96.97 93.07 100 98.97 96.91

Scenario5: Aerial imageries spectral information(R, G, B) + nDSM + RM+ IM
Building 94.17 94.55 94.04 86.07 63.93 84.02
Road 79.22 61.72 69.75 73.26 71.87 71.31
Tree 95.77 85.53 92.16 98 87.14 96.45
Grass 76.52 61.35 70.81 90.08 73.99 85.93
Crop 77.14 84.09 57.14 57.45 39.36 4.26
Bareland 70 63.88 71.98 51.47 42.65 49.12
Water 100 96.97 98.98 100 98.97 100
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3.2. Performances of Classifiers

Three classifiers were executed with their optimal parameters. In the implementation of RF
classifier, the value of ntree was set from 0 to 1000 at an interval of 100 in each scenario to determine
the optimal ntree value and produces the best output (Figure 9 left). While implementing the KNN,
validation datasets were used to iteratively test (the number of neighbors is between 1 and 20, including
1 but not including 20) the accuracy of the classification model which were constructed by calibration
datasets to obtain the optimal k value (Figure 9 right), Figure 10 illustrates the iterative process of
optimal k value acquisition of five scenarios. The classifiers were optimized to ensure the highest
classification accuracy of each scenario.
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Figure 9. Optimal ntree value of RF (left) and optimal k value of KNN in five scenarios (right).
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Figure 10. Iterative testing of optimal k value of KNN classifier using calibration data and validation
data for five scenarios, we select the n neighbor corresponding to the highest accuracy of validation as
the optimal k value (S1_cali_accuracy and S1_vali_accuracy represent the calibration accuracy and
validation accuracy of scenario 1, other legends follow this pattern).

The RF classifier performance was relatively prominent by analyzing and comparing the OA
and kappa coefficient of classification results, followed by ANN and KNN (Figure 11). RF achieved
the highest accuracy in scenario 2, 3, 4, and 5, except that it was not better than ANN in scenario 1.
In particular, the OA of RF in scenario 3 was 0.03% higher than in scenario 4, and the kappa coefficient
were both 0.76. However, the OA of KNN in scenario 4 was 0.96% higher than that of scenario 3,
the kappa coefficient was 0.02 higher, the OA of ANN was 2.12% higher than scenario 3, and the kappa
coefficient was 0.03 higher. These indicated that RM and IM have similar performance in RF classifier
(RM is slightly better), but in KNN and ANN, the addition of IM is more helpful to the improvement
of classification accuracy than RM, especially in ANN classifier.
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3.3. Variables Importance Representation

Different variables have different degrees of importance in different datasets, thus, the quantification
of the variable importance is not only an important issue of ranking variables before stepwise
estimate models, but also to interpret data and understand potential phenomenon in many application
problems [30]. To identify the relative variable importance in the models in this study, we used the
mean decrease impurity method by summing total impurity reductions at all tree nodes where the
variable appears, by comparing the variable importance of five scenarios.
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Figure 12. Variable importance from mean decrease impurity method in five scenarios in term
of proportion.

We defined the variable importance proportion (VIP) as the proportion of the importance of
each variable to the importance of the whole variable in each scenario, where the VIP reflected the
contribution for classification of each variable. Figure 12 describes the variable importance by mean
decrease impurity method in five scenarios in term of proportion. As shown in Figure 12, in scenario 1,
the VIP values of the three bands were similar. Scenario 2 combined RGB with nDSM, it can be seen
that nDSM plays a vital role in classification contribution, with the VIP value up to 49.15% far more
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than the other three bands. In scenario 3, although the VIP of nDSM remained the first, the contribution
of RM to classification cannot be ignored. In scenario 4, the VIP value of IM was 21.71%, which was
19.31% lower than that of nDSM. In scenario 5, the order of VIP value is nDSM > RM > IM > Blue >

Green > Red.

4. Discussion

Previous observational studies on land cover classification concentrations have focused primarily
on the urban region [2], such as the city of Fredericton in Canada [5] and the Macheng city in
China [13]. However, with the gradual improvement and expansion of urban area to the suburbs,
the suburban land cover classification has been ignored to some degree. Additionally, some scholars
have examined the satellite or aerial imagery and LiDAR fusion data in land cover classification [3,5–8].
Many researchers have focused on the introduction of new data source and variables or innovation
of classification methods [2,3,14–16]. Therefore, the new feature description should be explored.
Our research concentrated on the suburban land cover classification and the effects of the new feature
on classification results. The exploration of aerial imagery fused with all the LiDAR-derived models
using three classifiers (RF, KNN, and ANN) revealed that the fusion of RGB, nDSM, RM, and IM
performed best with significant increase in OA and kappa coefficient (Table 2, Table 3), among which
RF classifier executed outstanding (OA = 84.75%, kappa coefficient = 0.80).

LiDAR-derived models were widely used to enrich the information of imagery. Some researchers
have proved that the nDSM and intensity gave the better classification performance in land cover
research [2,5,14,22]. However, there are still much useful information about the LiDAR point clouds
should be discovered. Given the difference of surface fluctuations degree of ground objects (Figure 3),
RM was defined as a new variable for classification using three classifiers. Figure 13 shows subgraph
of classification results for the five scenarios obtained by using RF classifier. As shown in Figure 13c–e,
visually, RM performed better than nDSM and intensity in distinguishing low buildings from trees
in the same height. The low building roofs of Figure 13d was more legible than that in Figure 13c,e,
in which indicated that RM can indeed identify the different fluctuations of features. In addition,
the classification mapping of scenario 5 obtained the best output (Figure 13f) with the highest OA and
kappa coefficient (Table 2). More importantly, the VIP analysis showed that RM contributes more
to the classification than IM. These results suggest that RM can effectively improve the classification
accuracy of suburban land cover; the role of RM in classification is comparable to that of IM, and it is
promising to explore the LiDAR data for the land cover classification.

In a suburban land cover environment, the infrastructure is inadequate and the architectural
style is not uniform, such as the cement roads are often mixed with bare soil, the greenland planning
is confusing and the residential buildings with different heights, styles and materials. Additionally,
some other factors such as the training sample datasets quality, classification methods and the design of
classification scheme, affect the quality of classification outcomes [47]. These problems have hindered
the accuracy of suburban land cover classification, which is an important reason why the OA accuracy
of this paper has not reached more than 90%. In future studies, RM should be applied in different
scenes and methods to better test its feasibility in improving classification accuracy. In addition,
we should study more available variables to identify the complex ground objects. We should explore
more effective algorithms to improve the suburban land cover classification accuracy.
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Figure 13. Subgraph of classification results for the five scenarios obtained by using RF classifier:
(a) the corresponding aerial imagery of the subgraph; (b) scenario 1 classification result subgraph with
input data of RGB; (c) scenario 2 classification result subgraph with input data of RGB and nDSM;
(d) scenario 3 classification result subgraph with input data of RGB, nDSM, and RM; (e) scenario 4
classification result subgraph with input data of RGB, nDSM, and IM; (f) scenario 5 classification result
subgraph with input data of RGB, nDSM, RM, and IM.
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5. Conclusions

In this paper, the aerial imagery and LiDAR-derived models were fused to explore the suburban
land cover classification. We divided the study area into seven main land cover classes, i.e., building,
road, tree, grass, crop, bareland, and water. All the classes were classified under five scenarios with RF,
KNN, and ANN classifiers. The main conclusion of this study are as follows:

(1) The fusion of LiDAR-derived models (i.e., nDSM and IM) and spectral information of the aerial
imagery significantly increased the classification accuracy in suburbs, where the landscape is
disorderly distributed, the architectural style is not uniform, and the road repair is incomplete.

(2) A new LiDAR-derived model (i.e., RM) was constructed for the classification. RM performs
well in improving the accuracy of classification using three classifiers. Additionally, RM has
an advantage in distinguishing buildings from trees. Moreover, the contribution of RM to
classification is comparable to that of IM.

(3) The fusion of all the variables (i.e., RGB, nDSM, RM, and IM) yielded the best classification results
which were estimated by three classifiers, among which RF resulted in the highest classification
accuracy (OA = 84.75%, kappa coefficient = 0.80). In addition, the VIP showed that nDSM
contributed the most, followed by RM, IM, and spectral information.

In conclusion, we have successfully developed a framework for the fusion of aerial imagery
and LiDAR data for the suburban LULC classification. The results and methods could provide
meaningful and valuable references for the suburban land cover management and urban–rural
integration development.
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