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Abstract 

Ubiquitin‑conjugating enzyme E2 M (UBE2M) and ubiquitin‑conjugating enzyme E2 F (UBE2F) are the two NEDD8‑
conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the 
activity of target proteins. The activity of E2 enzymes requires both a 26‑residue N‑terminal docking peptide and a 
conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell‑expressed develop‑
mentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non‑cullin substrates, UBE2M 
and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M‑defective in cullin 
neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the 
mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the 
treatment of cancers.
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Introduction
NEDD8 is an ubiquitin-like polypeptide with extensive 
sequence identity (60%) and homology (80%) with ubiq-
uitin [1–5]. Structurally, NEDD8 exhibits four β-sheets 
characterized by one α-helix and two  310 helices [1, 6] and 
has two domains: a flexible carboxy-terminal tail domain 
and a globular ubiquitin-fold domain (UFD). The Gly–
Gly sequence in the tail end conjugates to target proteins 
and uses different extended structures to combine with 
neddylation and deneddylation enzymes [7–12].

Protein neddylation, which involves transfer of 
NEDD8 to a lysine residue of the substrate, is a process 
that changes the substrate’s activity, conformation, and 
subcellular localization, not for degradation [13–16]. 
In many cancers, overactivation of the neddylation 

pathway causes an increase in the levels of tumor-pro-
moting factors and a decrease in the levels of tumor 
suppressors, thereby promoting the occurrence of 
tumors and worsening prognosis (Fig.  1a) [17–24]. In 
mammalian cells, like ubiquitylation, neddylation starts 
with ATP-dependent activation of the NEDD8 C-termi-
nus by an E1 NEDD8-activating enzyme (NAE) result-
ing in the formation a thioester-linked E1-NEDD8 
complex. The NAE consists of a heterodimer of NAE1 
(APPBP1) and ubiquitin-like modifier activating 
enzyme 3 (UBA3, NAEβ) subunits [9, 25–28]. Then, 
activated NEDD8 is transferred to a NEDD8-conju-
gating enzyme (E2), including the well-studied enzyme 
UBE2M (also known as UBC12) and the less character-
ized enzyme UBE2F [29–32], to form another thioester 
via a transthiolation reaction. Finally, a NEDD8 E3 
ligase that binds both the E2-NEDD8 complex and the 
substrate transfers NEDD8 over to the ε-amino group 
of the lysine residue in the target protein to form an 
isopeptide bond. In light of their mechanistic strategy, 
the majority of the NEDD8 E3 ligases contain inter-
esting novel gene (RING) finger domains, including 
RING-box protein 1 (RBX1, ROC1) [33–36], RING-box 
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protein 2 (RBX2, ROC2) [29, 37–42], murine double 
minute 2 (MDM2) [43–45], casitas B-lineage lymphoma 
(c-CBL) [46–49], F-box protein 11 (FBXO11) [50–52], 
inhibitor of apoptosis (IAP) [53–55], RNA polymerase 
II transcription factor B subunit 3 (TFB3) [56], tripar-
tite motif 40 (TRIM40) [57], ring finger protein 168 
(RNF168) [58], and ring finger protein 111 (RNF111) 

[59, 60] domains. Interestingly, DCN1, a protein con-
served from yeast to mammals, is also a NEDD8 E3 
ligase but retains its catalytic activity despite not con-
taining a RING finger domain [61–64]. Furthermore, 
neddylated substrates can be deneddylated by dened-
dylases, such as NEDD8 protease 1 (NEDP1) [7, 65–
69] and COP9 signalosome (CSN) [70–76]. Hence, 

Fig. 1 Overview of the neddylation pathway. a Impact of neddylation in cancers. b The process by which NEDD8 is conjugated to its substrates. 
NEDD8 is activated by an NAE in an ATP‑dependent manner, transferred to E2 and then conjugated to a lysine residue of the substrate protein 
with the aid of E3 ligase. Then, NEDD8 is removed by a deneddylase from the substrate and recycled. c The C‑terminal carboxylate of NEDD8 is 
conjugated to the active cysteine residue of the E2 enzyme in the catalysis of E1. The E2‑NEDD8 conjugate reacts with a lysine residue on the 
substrate to form the NEDD8 linkage
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neddylation is a reversible process, as NEDD8 can be 
recycled [2, 11, 77–79] (Fig. 1b).

The neddylation E2 enzymes UBE2M and UBE2F are 
only twice as large as NEDD8, and they primarily take 
part in two types of reactions: transthiolation-transfer 
from a thioester to a thiol group and aminolysis-transfer 
from a thioester to an amino group (Fig. 1c). By cooperat-
ing with E1 and other E3 enzymes, the E2 enzymes are 
specific for NEDD8 in catalysis of the neddylation reac-
tion [65, 80]. Therefore, the two E2 enzymes are central 
players in this enzymatic reaction, in addition to being 
carriers of NEDD8.

This review discusses the structure of neddylation-
related E2 enzymes and summarizes the current under-
standing of their mechanism and effect in biological 
processes. UBE2M and UBE2F may become promising 
targets for cancer treatment.

Structure and basic biology of UBE2M and UBE2F
UBE2M
Full-length UBE2M (human) includes 183 amino acids 
and consists of two regions: a 26-residue N-terminal 
docking peptide and an ~ 150-residue conserved E2 cata-
lytic core domain. And UBE2M functions as a unique E2 
ubiquitin-conjugating enzyme in neddylation. Unlike E2s, 
the 26-residue N-terminal docking peptide of UBE2M 
is specific for the NEDD8 pathway, as UBE2M’s N-ter-
minal docking peptide is conserved across species and 
cannot be found in other E2s (Fig.  2a, b) [81]. Further-
more, crystallographic studies [9, 82] of APPBP1-UBA3-
UBE2M have revealed that the NAE has three domains: 
(1) an adenylation domain with an ATP-binding site, (2) 
a domain surrounding the catalytic cysteine, and (3) a 
C-terminal domain. The E1–E2 interaction occurs in a 
bipartite manner: UBE2M’s N-terminal peptide and core 
domain bind to the NAE to complete the transfer of the 
NEDD8 from E1 to E2 [81, 83, 84]. The E2’s core domain 
binds to the C-terminal ubiquitin fold domain, and resi-
dues 1–13 of UBE2M’s N-terminal extension and cooper-
ates with a big docking groove in the adenylation domain 
of E1, which is stabilized via many hydrogen bonds. 
Although the adenylation domain of UBA3 is conserved 
among ubiquitin-like protein (UBL)-activating enzymes, 
the E1-E2 interaction is likely to be unique to the NEDD8 
pathway since UBE2M’s N-terminal extension is unique 
(Fig. 2c) [81].

UBE2F
Full-length human UBE2F includes 185 amino acids and 
functions as a unique E2 ubiquitin-conjugating enzyme 
for neddylation. Similar to UBE2M, UBE2F has an N-ter-
minal extension and a conserved catalytic core domain. 
However, its features are different from those of UBE2M; 

for example, the N-terminal α1 helix of the UBE2F’s core 
domain has an offset orientation, the catalytic cysteine 
is inserted in a loop following the catalytic Cys116 resi-
due, and the C-terminal extension has an α helix instead 
of a two-stranded β sheet (Fig.  2a, d) [29]. The interac-
tion between UBE2F and the NAE bears great similarity 
to the UBE2M and NAE interaction: both the N-termi-
nal extension and core domain bind to the NAE. How-
ever, the sequence of UBE2M’s N-terminal extension that 
binds to the UBA3 docking groove is Leu4-Phe5-X-Leu7, 
whereas the interaction between the UBE2F’s N-terminal 
extension and UBA3 is through the sequence Met-Leu2-
X-Leu4 (Fig. 2e) [29].

Relationship between UBE2M and UBE2F
UBE2M and UBE2F, which serve as two E2 enzymes, 
transfer NEDD8 to NEDD8 E3 ligases. Structurally, they 
are similar to each other and can combine with other 
enzymes in the same catalytic manner. They both play key 
roles in the neddylation of cullins to activate cullin-RING 
ligases (CRLs) [10]. However, they are indeed two inde-
pendent E2 enzymes and display distinct functions [29]. 
UBE2M couples with RBX1 to induce the neddylation of 
cullin1, cullin2, cullin3, cullin4A, and cullin4B and trig-
gers corresponding CRLs, which can influence the levels 
of its substrates, such as p21, p27, Bim, and WD repeat 
domain phosphoinositide-interacting protein 2 (WIPI2), 
to take part in autophagy, the cell cycle and DNA repair 
[29, 85–88]. UBE2F can pair with RBX2 to activate the 
ligase CRL5 by forming a UBE2F/RBX2/cullin5 complex, 

Fig. 2 Structural analysis of UBE2M and UBE2F. a Primary sequence 
map of UBE2M and UBE2F. b Structure of UBE2M (PDB 2NVU). c 
Structure of the NAE‑UBE2M complex. The NAE contains NAE1 and 
UBA3 (PDB 2NVU). d Structure of UBE2F (PDB 2EDI). e Structure of the 
UBA3 and UBE2F complex (PDB 3FN1)
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leading to the enrichment of NOXA, thereby partici-
pating in apoptosis progression and inhibiting cancer 
cell growth [89]. UBE2M shows intrinsic specificity for 
RBX1, but RBX2 shows an intrinsic specificity for UBE2F 
[3, 29]. Notably, MLN4924 [90–95], which is also known 
as pevonedistat, is a first-in-class inhibitor of the NAE 
used in cancer treatment and regulates UBE2M and 
UBE2F in different ways; MLN4924 causes a dose- and 
time-dependent increase in UBE2M levels but a decrease 
in UBE2F levels [89].

In addition, Zhou et  al. [96] found that UBE2M is 
a stress-inducible protein that can be promoted by 
hypoxia-inducible factor 1α (HIF-1α) and transcrip-
tion factor AP-1 (AP-1) and plays a dual role as an E2 
for ubiquitylation and neddylation to degrade UBE2F 
(Fig. 3). Under normal physiological conditions, UBE2M 
serves as a neddylation E2 that can couple with cullin3 
and Kelch-like ECH-associated Protein 1 (Keap1) to trig-
ger UBE2F polyubiquitylation and degradation. How-
ever, under stressed conditions, UBE2M forms a novel 

E2–E3 complex, UBE2M/DJ-1/Parkin (DJ-1, also known 
as Parkinson disease protein 7; Parkin, E3 ubiquitin-pro-
tein ligase parkin), with the inducement by HIF-1α and 
AP-1, and promotes the ubiquitylation and degradation 
of UBE2F. Then, CRL5 is deactivated, and the substrate 
NOXA can be enriched, leading to the promotion of 
apoptosis and cell growth inhibition of lung cancer cells. 
Taken together, these findings indicate that UBE2M can 
decrease the amount of UBE2F via two E3 ligases, lead-
ing to the inactivation of CRL5 mediated by CRL3, which 
demonstrates cross-talk between the E2 and E3.

UBE2M and UBE2F in cancer
UBE2M and UBE2F play crucial roles in various biologi-
cal processes by recruiting E3 ligases and targeting the 
substrates of cullins and non-cullins. Several studies have 
revealed that UBE2M and UBE2F are both overexpressed 
in multiple types of cancers, such as hepatocellular car-
cinoma, lung adenocarcinoma, osteosarcoma, ovarian 
cancer, and squamous cell carcinoma (Table 1) [97–101], 
and bioinformatics analysis of The Cancer Genome Atlas 
(TCGA) datasets has revealed that their expression is 
upregulated in cancer tissues compared with normal 
tissues [102–104]. They both act as oncogenes by pro-
moting the neddylation of specific substrates to regulate 
diverse signaling pathways, regulating several cell bio-
logical processes, such as DNA repair, genomic stability, 
apoptosis, autophagy, and the cell cycle.

Apoptosis and autophagy
UBE2M and UBE2F play an essential role in apopto-
sis and autophagy-mediated by CRLs. UBE2M couples 
with RBX1 and damage-specific DNA-binding protein 1 
(DDB1) to induce cullin4A neddylation and trigger the 
ubiquitin ligase CRL4A, which can induce the ubiquit-
ination and degradation of WIPI2, an autophagy-asso-
ciated protein, resulting in cell proliferation [105]. Thus, 
knockdown of UBE2M can block the autophagy process 
and inhibit cell proliferation [105]. UBE2F can also take 

Fig. 3 Cross‑talk between the E2 and E3 [89]. UBE2M, a 
stress‑inducible protein promoted by HIF‑1α and AP‑1, plays a dual 
role as an E2 for ubiquitylation and neddylation to degrade the 
UBE2F, leading to the inactivation of CRL5 mediated by CRL3

Table 1 Expression and clinical significance of UBE2F and UBE2M in tumors

Cancer Expression Function

UBE2M Osteosarcoma [98] Overexpressed Promotes cell viability

Hepatocellular carcinoma [19, 86] Overexpressed Associated with poor prognosis

Lung cancer [87] Overexpressed Associated with poor survival

Breast cancer [99] Overexpressed Worsens prognosis

Intrahepatic cholangiocarcinoma [101] Overexpressed Associated with prognosis

Osteoarthritis [100] Overexpressed Promotes apoptosis

Esophageal squamous cell carcinoma [88] Overexpressed Associated with poor survival

UBE2F Non‑small cell lung cancer [89] Overexpressed Associated with poor survival
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part in the cell apoptosis pathway by downregulating 
the expression of the proapoptotic protein NOXA [89]. 
By recruiting RBX2, UBE2F can trigger the neddylation 
and activation of cullin5, promoting the ubiquitylation 
and degradation of its substrate NOXA. Knockdown of 
UBE2F or its mutant (C116A) can induce the accumula-
tion of NOXA, inducing apoptosis of lung cancer cells 
(Fig. 4).

Cell cycle
In cancer cells, the expression of cell cycle inhibitor pro-
teins is usually downregulated, whereas proteins that 
promote cell cycle progression are generally overex-
pressed. Rescuing the levels of cell cycle inhibitor pro-
teins is the primary strategy for disrupting cell cycle 
progression [106–108]. As UBE2M and UBE2F have been 
reported to take part in the progression of the cell cycle, 
E2 enzyme abrogation can arrest cell cycle progression 
and inhibit cell growth [86, 87]. In lung cancer, knock-
down of UBE2M can promote the expression of cyclin-
dependent kinase inhibitor 1 (CDKN1A and CDKN1B) 
and cyclin-associated proteins (such as G2/mitotic-spe-
cific cyclin-B1, Cyclin-A2, G1/S-specific cyclin-D3, and 
Cyclin-dependent kinase 4 homolog) in cell cycle pro-
gression. Then, the cell cycle can be arrested at G2 phase 
and fail to progress to M phase [87]. In hepatocellular 
carcinoma (HCC), UBE2M can stabilize β-catenin and 
increase the level of its downstream protein cyclin D1 to 
promote the progression from G0/G1 phase to S phase 
(Fig. 4) [86].

DNA damage response
Neddylation can also contribute to the DNA damage 
response [58, 59]. For example, UBE2M participates in 
DNA damage repair and maintains genomic stability via 
multiple CRLs [85, 101]. As UBE2M can promote the 
neddylation of cullins and then activate CRLs, the abro-
gation of UBE2M expression leads to DNA double-strand 
breaks (DSBs) and increases cell sensitivity to DNA-
damaging agents. Scott et  al. found that knockdown 
of UBE2M leads to the blockage of cell cycle progres-
sion from G1 to S phase and is related to a delay in the 
S-phase-dependent DNA damage response [85]. Moreo-
ver, UBE2M expression abrogation can also attenuate 
nonhomologous end-joining (NHEJ) and inhibit cell pro-
liferation [109].

In addition, UBE2M can promote DNA repair via non-
cullins. RNF111 together with UBE2M can promote the 
neddylation of RNF168 and thereby induce the ubiqui-
tylation of histone H4, leading to the activation of DNA 
repair via 53BP1 and breast cancer susceptibility gene 
1 (BRCA1) [59]. It is worth mentioning that UBE2M/
RNF111-induced neddylation blocks the interaction 

between CtIP and BRCA1 and then inhibits the CtIP and 
BRCA1-mediated DNA end resection process, an essen-
tial process in the repair pathway [110]. Coincidentally, 
RNAi-mediated knockdown of UBE2M sensitizes the 
hormone-resistant prostate cancer cell line DU145 to 
radiation-induced DSBs [111] (Fig. 4).

Inhibitors of UBE2M
In various cancers, such as hepatocellular carcinoma, 
lung adenocarcinoma, ovarian cancer, and osteosar-
coma, neddylation is always overactivated [13, 15, 19, 78, 
112–114]. MLN4924 is an inhibitor of the NAE and used 
as an anticancer drug [10, 94, 115, 116]. To date, many 
studies revealed that MLN4924 plays a significant role in 
cell cycle arrest and the DNA damage response, inhibit-
ing angiogenesis and tumor growth and inducing apop-
tosis, autophagy, and senescence [117–119]. Although 38 
clinical trials have been performed and five completed 
phase I clinical trials demonstrated that MLN4924 is safe 
and feasible to date, there is an issue with the specificity 
of MLN4924, and cancer cells can develop resistance to 
MLN4924 [120–122].

To overcome the limitations of MLN4924, some stud-
ies have focused on discovering specific inhibitors against 
neddylation-related E2s to achieve more specific modu-
lation of cullin neddylation. Hence, the development of 
UBE2M-DCN1 protein–protein interaction inhibitors 
was pursued by medicinal chemists due to the druggable 
interaction between UBE2M and DCN1 (Fig. 5a; Table 2) 
[123].

To discover UBE2M-DCN1 inhibitors, Zhou and col-
leagues designed potent peptidomimetics by exten-
sively modifying the N-terminal 12-residue peptide of 
UBE2M, such as DI-404 (Fig.  5b) [124] and DI-591 
(Fig. 5c) [125]. At the biochemical level, DI-404 exhib-
ited a high affinity for DCN1 with a  Kd value of 6.7 nM 
and good solubility of 54 µM in PBS at pH 7.4. DCN1 
and RBX1 act as co-E3s to promote cullin neddylation 
[126–128]. A cellular study suggested that DI-404 can-
not regulate the levels of UBE2M and DCN1 but can 
reduce the association between UBE2M and DCN1. 
Notably, DI-404 can selectively inhibit the neddylation 
of cullin3 but not the neddylation of other cullins [125]. 
Due to the peptidic nature of DI-404, although DI-404 
showed a high binding affinity for DCN1, it only exhib-
ited moderate cellular activity. Thus, to address this 
problem and obtain more drug-like compounds, Zhou 
et  al. designed DI-591 through a series of structure-
based optimizations [125]. At the biochemical level, 
DI-591 can bind DCN1 with a Ki value of 12.4 nM and 
a Kd value of 30.6 nM, as DI-591 uses its bicyclic ring to 
interact with the subpocket of DCN1, exhibiting exten-
sive hydrophobicity. In addition, the propionyl group 
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and cyclohexyl group are crucial in forming hydropho-
bic interactions with DCN1. DI-591, which selectively 
inhibits the neddylation of cullin3 in a dose-dependent 
manner, shows a remarkable similarity to DI-404. Thus, 

DI-591 can increase the expression of nuclear factor 
erythroid 2-related factor 2 (NRF2), the substrate of 
CRL1 and CRL3, but fails to increase the levels of p21 
and Bim, the substrate of CRL1. In addition, DI-591 

Fig. 4 UBE2M and UBE2F in cancer. Inhibiting the activity of UBE2M and UBE2F can inhibit cell proliferation. UBE2M can promote cell cycle 
progression to induce cell growth by stabilizing β‑catenin and activating the neddylation of cullin1‑4. UBE2M can recruit RNF111 to disturb the 
CtIP‑BRCA1 interaction and promote H4 protein ubiquitylation via the neddylation of RNF168 to regulate DNA repair. UBE2F can reduce the level of 
NOXA by triggering CRL5 and then inhibit apoptosis and induce cell growth
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displayed no cytotoxicity in THLE2 human liver epithe-
lial cells [124].

Moreover, Guy and Schulman’s group identified non-
peptidic and potent small molecule UBE2M-DCN1 
inhibitors from over 600,000 compounds through a 
time-resolved fluorescence energy transfer (TR-FRET) 

assay (Fig.  5d) [129–131]. One of the identified mole-
cules, NAcM-HIT, can be docked in UBE2M’s N-acetyl-
Met-binding pocket in DCN1, breaking the interaction 
between UBE2M and DCN1. Based on the optimization 
of NAcM-HIT, an inhibitor, NAcM-OPT, was designed, 
which displays 100-fold better potency than NAcM-HIT. 

Fig. 5 UBE2M‑DCN1 inhibitors. a The crystal structure of the interaction between DCN1 and the UBE2M peptide is shown in yellow (PDB 3TDU). 
b–g Chemical structures of UBE2M‑DCN1 inhibitors
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NAcM-OPT can selectively reduce cullin1 and cullin3 
neddylation by binding DCN1 and DCN2 in cells and 
induce the expression of the two known substrates of 
CRLs, NRF2 and p21. Moreover, NAcM-OPT has strong 
potential in vivo because of its stability and oral bioavail-
ability. In addition, NAcM-COV is another inhibitor that 
was optimized from NAcM-HIT and can bind to DCN1 
irreversibly by targeting the Cys115 residue of DCN1. 
However, NAcM-COV cannot interact with DCN5 
because of its lack a cystine residue corresponding to the 
Cys115 residue of DCN1, emphasizing the critical role of 
the Cys115 residue. Consistently, treatment with NAcM-
COV reduced the steady-state levels of neddylated cul-
lin1 and cullin3 and enriched their substrates, which can 
inhibit cell growth. However, due to several disadvan-
tages of NAcM-like inhibitors, including (1) their lack of 
a three-dimensional character due to the presence of only 
one stereocenter and (2) the need for frequent and high 
doses to maintain appropriate concentrations in mouse 
models due to their moderate half-lives [129–131], Guy’s 
research group [133] designed and synthesized com-
pound 27 based on the structure of pyrazolopyridone 
(Fig. 5e). The researchers suggested that it has a greater 
degree of three-dimensional structure owing to its two 
chiral centers, allowing it to more easily dock into the 
binding pocket of DCN1. Thus, compound 27 is more 
potent than NAcM-like inhibitors and can engage cellu-
lar DCN1 and selectively decrease the neddylation of cul-
lin1 and cullin3.

In addition, Zhou et  al. identified compound DC-
1 from 1000 compounds [132]. Then, via an extensive 
structure–activity relationship (SAR) study, a novel 
small molecule inhibitor, DC-2, was discovered. DC-2 
(Fig. 5f ) can inhibit the interaction between UBE2M and 
DCN1 and disturb the neddylation of cullin3. Wang et al. 

obtained compound WS-383 by screening and optimiz-
ing a series of compounds [134]. WS-383 (Fig.  5g), a 
triazolo[1,5-α] pyrimidine-based inhibitor targeting the 
UBE2M-DCN1 interaction, selectively inhibits the ned-
dylation of cullin1 and cullin3 and increases the expres-
sion of p21, p27, and NRF2. All these compounds provide 
guidance to identify more potent UBE2M-DCN1 pro-
tein–protein interaction inhibitors.

Targeting E2 enzyme for anticancer therapy
The data from preclinical trials and clinical research [14, 
92] have revealed the potency, activity, and effectiveness 
of MLN4924, indicating that the neddylation pathway 
is a potentially powerful therapeutic target. However, 
resistance can also occur: Mutations in the ATP-bind-
ing pocket of UBA3 can inhibit the formation of the 
MLN4924-NEDD8 adduct [120], which reduces the 
response to it and limits its clinical application. Hence, 
other targets in the neddylation pathway are urgently 
needed as alternative strategies for targeting NAE1.

Targeting UBE2M for anticancer therapy
In recent years, some studies have indicated that UBE2M 
might be an attractive alternative therapeutic target. By 
using two available Affymetrix microarray datasets [135, 
136], Li et al. [87] identified that UBE2M, but not NAE1 
and UBA3, is overexpressed in multiple types of lung 
cancers and associated with poor survival outcomes, 
as UBE2M can induce cell proliferation. In contrast, 
UBE2M knockdown showed a powerful effect in inhib-
iting tumor growth and metastasis [85–87]. Moreover, 
the above-mentioned series of inhibitors have been dis-
covered to target the interaction between UBE2M and 
DCN1, resulting in the inactivation of the ligases CRL1 
and CRL3 and the enrichment of their substrates, such 

Table 2 Summary of inhibitors targeting UBE2M and DCN1

Compound IC50 (TR‑FRET) Effect Cell line Clinical trial

DI-404 [125] N/A Inhibits the neddylation of cullin3 Lung cancer cells N/A

DI-591 [124] N/A Inhibits the neddylation of cullin3 and increases the expression of NRF2 Liver cells N/A

NAcM-HIT [129] 8 μM Disturbs the interaction between UBE2M and DCN1 Lung cancer cells N/A

NAcM-OPT [130] 80 nM Inhibits the neddylation of cullin3 and cullin1 Liver cells N/A

NAcM-COV [131] < 40 nM Reduces the steady‑state levels of neddylated cullin1 and cullin3 Liver cells N/A

DC-2 [132] 15 nM Decreases the neddylation of cullin3 Lung cancer cells N/A

Esophageal cancer cells

Liver cancer cells

Breast cancer cells

Prostatic cancer cells

Compound 27 [133] 0.2 μM Disturbs the neddylation of cullin1 and cullin3 Lung cancer cells N/A

WS-383 [134] 11 nM Inhibits the neddylation of cullin1 and cullin3 Gastric cancer cells N/A
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as NRF2, p21, and p27. Therefore, these UBE2M-DCN1 
inhibitors, which have excellent potencies and pharma-
cokinetic characteristics, may have therapeutic potential 
for the treatment of human cancers. In summary, there is 
enough evidence to prove that UBE2M may be a promis-
ing therapeutic target for cancer treatment.

Targeting UBE2F for anticancer therapy
Another E2 enzyme, UBE2F, has not been studied exten-
sively. However, Zhou et al. [89] found UBE2F has poten-
tial as an anticancer target. First, UBE2F is overexpressed 
in non-small cell lung cancer (NSCLC) and can be used 
to predict patient survival outcomes. Overexpression of 
UBE2F promotes NOXA degradation, leading to inhibi-
tion of apoptosis and thus increasing cell survival. Thus, 
targeting the UBE2F/RBX2/CRL5 axis either with small-
molecule inhibitors such as MLN4924 or by genetic 
depletion of either component would inactivate CRL5 
to cause NOXA accumulation and apoptosis induction, 
thus antagonizing UBE2F-mediated growth-stimulat-
ing processes. Although there has been only one report 
about the biological role of UBE2F in cancer and while no 
inhibitors are available to target UBE2F, these results pro-
vide evidence that UBE2F may be a potential and novel 
target for cancer treatment.

Conclusion
This review discusses the current knowledge on the 
neddylation E2 enzymes UBE2M and UBE2F, includ-
ing their structures, binding partners, substrates, and 
roles in the diverse biological processes. In addition, it 
describes how neddylation-related E2 enzymes func-
tion in cells under both normal and pathological condi-
tions. Recent and ongoing investigations have proven 
that UBE2M and UBE2F are overexpressed in cancer cells 
and associated with cell proliferation and poor survival 
rates. UBE2M can facilitate cell cycle progression and 
autophagy by activating CRLs and reducing the levels of 
their substrates, leading to cell growth [86, 105]; moreo-
ver, UBE2M can also take part in NHEJ, and deletion of 
UBE2M leads to DSBs [59, 85, 101, 109, 110]. Coinciden-
tally, UBE2F in complex with RBX2 can also inhibit cell 
apoptosis, resulting in cell proliferation [89]. Therefore, 
small-molecule inhibitors targeting UBE2M-DCN1 have 
emerged. Moreover, a cellular biological study showed 
that UBE2M-DCN1 inhibitors may serve as promising 
compounds for cancer treatment by blocking the ned-
dylation of cullin1 and cullin3 and augmenting the lev-
els of tumor suppressors. Nevertheless, UBE2M-DCN1 
inhibitors, which were identified as discussed in this 
review, have not entered clinical trials, and it is critical to 
develop more specific and potent inhibitors.

Taken together, UBE2M may be a novel and appeal-
ing target, and UBE2F may become a potential target 
for cancer treatment. Unquestionably, they deserve to 
be studied further.
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