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Evaluation of frozen tissue-derived 
prognostic gene expression 
signatures in FFPE colorectal cancer 
samples
Jing Zhu1,2, Natasha G. Deane1,2, Keeli B. Lewis1, Chandrasekhar Padmanabhan1, 
M. Kay Washington2,3, Kristen K. Ciombor4,5, Cynthia Timmers4, Richard M. Goldberg4,5, 
R. Daniel Beauchamp1,2,6,7 & Xi Chen8,9

Defining molecular features that can predict the recurrence of colorectal cancer (CRC) for stage II-III 
patients remains challenging in cancer research. Most available clinical samples are Formalin-Fixed, 
Paraffin-Embedded (FFPE). NanoString nCounter® and Affymetrix GeneChip® Human Transcriptome 
Array 2.0 (HTA) are the two platforms marketed for high-throughput gene expression profiling for FFPE 
samples. In this study, to evaluate the gene expression of frozen tissue-derived prognostic signatures 
in FFPE CRC samples, we evaluated the expression of 516 genes from published frozen tissue-derived 
prognostic signatures in 42 FFPE CRC samples measured by both platforms. Based on HTA platform-
derived data, we identified both gene (99 individual genes, FDR < 0.05) and gene set (four of the 
six reported multi-gene signatures with sufficient information for evaluation, P < 0.05) expression 
differences associated with survival outcomes. Using nCounter platform-derived data, one of the six 
multi-gene signatures (P < 0.05) but no individual gene was associated with survival outcomes. Our 
study indicated that sufficiently high quality RNA could be obtained from FFPE tumor tissues to detect 
frozen tissue-derived prognostic gene expression signatures for CRC patients.

CRC is the second leading cause of cancer-related deaths in the United States when both sexes are combined1. For 
patients diagnosed with localized disease, the 5-year relative survival rate is relatively high at 90.3%. However, 
after the cancer has spread regionally to involve adjacent organs or lymph nodes (stage III), the 5-year survival 
rate drops to 70.4%2. Randomized clinical trials have shown survival benefit for stage III colon cancer patients 
treated with adjuvant chemotherapy3 but not consistently for stage II colon cancer patients4. However, in these 
trials, a substantial subset stage III colon cancer patients if treated by surgery alone would not recur in five years5 
and it also appears that a subset of high-risk stage II colon cancer patients may benefit from adjuvant treatment6.

To identify high-risk stage II CRC patients and low-risk stage III CRC patients, researchers have studied a 
substantial number of molecular biomarkers over the past decade. For single gene or tumor phenotype biomarker, 
microsatellite instability (MSI) high is a validated prognostic biomarker in early stage colorectal cancer while the 
prognostic value of BRAF or KRAS mutation depends on microsatellite status and tumor location7. However, only 
approximately 15% of early-stage CRC patients are MSI high8.

In addition to single gene biomarkers, the prognostic value of multi-gene signatures from supervised gene expres-
sion analysis has been widely evaluated. OncotypeDX Colon Cancer9, ColoPrint10, Veridex11 and GeneFx Colon12 
are signatures that have been evaluated in independent studies. However, a recent study by Di Narzo, A. et al.13  

1Vanderbilt University, Department of Surgery, Nashville, 37232, USA. 2Vanderbilt University, Vanderbilt Ingram 
Cancer Center, Nashville, 37232, USA. 3Vanderbilt University, Department of Pathology, Nashville, 37232, USA. 
4The Ohio State University Comprehensive Cancer Center, Columbus, 43210, USA. 5Ohio State University, Division 
of Medical Oncology, Department of Internal Medicine, Columbus, 43210, USA. 6Vanderbilt University, Department 
of Cell and Developmental Biology, Nashville, 37232, USA. 7Vanderbilt University, Department of Cancer Biology, 
Nashville, 37232, USA. 8University of Miami Miller School of Medicine, Division of Biostatistics, Department of Public 
Health Sciences, Miami, 33136, USA. 9University of Miami Miller School of Medicine, Sylvester Comprehensive 
Cancer Center, Miami, 33136, USA. Correspondence and requests for materials should be addressed to R.D.B. (email: 
daniel.beauchamp@vanderbilt.edu) or X.C. (email: steven.chen@miami.edu)

Received: 08 April 2016

Accepted: 24 August 2016

Published: 14 September 2016

OPEN

mailto:daniel.beauchamp@vanderbilt.edu
mailto:steven.chen@miami.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 6:33273 | DOI: 10.1038/srep33273

showed that these gene expression-based risk scores provide prognostic information but add little additional 
clinical value to the established risk factors of T-stage, N-stage and MSI status. Moreover, contradictory results 
relating to low or high risk were observed for individual patients when applying the four different risk scores13.

To identify novel prognostic signatures in future studies, gene expression profiling using FFPE samples is 
needed to facilitate studies of much larger sample sizes, since most available clinical samples are FFPE preserved 
samples. Moreover, a number of prognostic gene expression signatures have been derived from fresh frozen tis-
sues10,14–31. To make use of this valuable data resource for assisting with novel prognostic signature development 
in the future studies, it will be necessary to re-evaluate these gene expression signatures in FFPE samples.

Nanostring nCounter® 32 and Affymetrix GeneChip®  Human Transcriptome Array 2.0 (HTA)33 are two avail-
able platforms that enable gene expression profiling of FFPE samples. The nCounter platform focuses on cus-
tomized targeted gene expression profiling while the HTA platform measures the genome-wide gene expression. 
In this study, 516 genes derived from multiple published frozen tissue-derived CRC prognostic signatures were 
evaluated for their prognostic value based on the gene expression patterns in RNA extracted from FFPE CRC 
primary tumor samples and measured by both platforms.

Results
Sample collection. In total, a dataset of 500 stage II or III CRC patients with archived tumor samples and 
complete pathological information was obtained from the Vanderbilt Translational Pathology and Imaging Core. 
Patients with stages I and IV were excluded from the dataset and other patient samples were excluded if one of the 
following criteria was present: (1) if metastatic disease was documented within 3 months of resection of the pri-
mary CRC; (2) non-adenocarcinoma tumor histology; (3) history of chemotherapy administered prior to surgical 
resection; (4) insufficient availability of electronic medical records (lack of adequate documentation of operative 
report, pathology report and correct medical record number); (5) unavailable or inadequate tumor specimens 
(including lack of tumor in sample or < 80% tumor cells on the tissue sections cut from the FFPE block and sam-
ples not of the primary resection); (6) inadequate clinical follow-up (at least 3 years postoperative follow-up if no 
recurrence); (7) failure of RNA extraction and (8) highly degraded (less than 20% of the RNA sample containing 
fragments of at least 300 base pairs in length). Ultimately, we identified 194 acceptable primary stage II and stage 
III FFPE preserved CRC specimens and these specimens were associated with a 7.4-year mean patient follow up.

nCounter platform development. A custom nCounter®  assay (Nanostring Technologies, Seattle, WA) 
was designed for quantitative assessment of expression of 536 gene elements. We included gene elements from 
27 published and 6 unpublished signature gene lists related to CRC recurrence, CRC metastasis and colonic stem 
cells10,14–31, selecting those that were presented in ≥2 gene lists. In total, 460 genes were present in at least 2 gene 
lists and 459 out of these 460 were from published gene lists. All these genes along with their tissue origin, plat-
form initially used for signature identification and the relevance to the current study were listed in Supplementary 
Table S1. Additional 69 candidate genes of interest related to epithelial-mesenchymal transition and the study 
of metastatic behavior in cancer cells (e.g., CDH1) were also added to the assay. The final codeset contains 536 
genes (Supplementary Table S2) including seven housekeeping genes with the least variant expression elements 
in our pilot nCounter studies34. Based on our gene list, NanoString Technologies, Inc. (Seattle, WA) designed 
the optimized 50-base nCounter gene-specific capture probes for the platform using proprietary methods based 
upon transcript frequency. A full list of gene symbols and the probe design for these 536 genes can be found in 
Supplementary Table S2. This multiplexed assay is reported to detect expression of up to 800 transcripts at very 
low mRNA concentrations (0.1 f M/1 copy per cell)32 even in RNA samples that are significantly degraded, as long 
as at least 20% of the sample has RNA fragments of 300 base pairs or longer35. Therefore, the 194 CRC samples 
with 20% to 91% (median value is 37%) of the RNA sample containing fragments of 300 base pairs or longer in 
length were hybridized to the custom nCounter®  assay. To examine the reproducibility of the nCounter platform, 
we generated one more set of technical replicates (RNA samples from the same extraction) for 32 samples and 
measured their gene expression using nCounter platform for inter-assay comparisons.

Gene expression profiling based on HTA platform. After performing gene expression profiling of 
all 194 FFPE tumor samples on the nCounter platform, 89 of the 194 samples had sufficient sample remain-
ing for subsequent gene expression profiling based on the Affymetrix HTA platform. Among these 89 samples, 
61 samples are technical replicates (mRNA samples from the same extraction) and 28 are biological replicates 
(mRNA samples from the same FFPE tumor block but different extractions). For gene expression analysis using 
FFPE-derived RNA samples, Illumina (llumina Inc., San Diego, CA) recommends using RNA samples containing 
at least 30% 200-base pair or longer RNA fragments36. Using this criterion, we removed samples with less than 
30% 200 base-pair RNA fragments or labeled as tube almost empty and this process yielded 84 samples with 43% 
to 95% (median value is 65.5%) 200-base pair or longer RNA fragments. Finally, we performed gene expression 
profiling for the 84 of the 194 FFPE-derived CRC tissues using GeneChip®  Human Transcriptome Array 2.0 
(Affymetrix, Santa Clara, CA). These 84 samples had also been evaluated by the nCounter assay as described 
above.

Data preprocessing. For the NanoString nCounter data, samples with average count ≤ 1000 and missing 
rate (the percentage of genes with the average expression count ≤  the average count of a synthetic negative con-
trol gene set + 3 standard deviations of negative control gene set) ≥ 20% based on raw count data were removed 
to ensure data quality. Then, using R package NanoStringNorm37, we performed quality control (remove sam-
ples with low counts in positive control genes, high counts in negative control genes and high counts in House 
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Keeping genes) and normalization. The batch effects were adjusted by the ComBat approach available in the 
Bioconductor package SVA38. Negative values caused by batch effect adjustment were replaced by 0.

For HTA data, we normalized the raw data at the gene level using Robust MultiChip Averaging (RMA) algo-
rithm as implemented in the Affymetrix®  Expression ConsoleTM Software 1.3 and then mapped the probe set 
identifiers to gene symbols based on the annotation file downloaded within the Expression Console application. 
Probe sets mapped to multiple genes were eliminated. When multiple probe sets were mapped to the same gene 
symbol, the probe set with largest interquartile range was kept. Then, we adjusted the batch effects using the 
ComBat function available in the Bioconductor package SVA38. Negative values caused by batch effect adjustment 
were replaced by 0.

In this study, in order to make direct comparison between nCounter and HTA gene expression data, we sum-
marized both datasets at the gene level and used gene symbol to link NanoString nCounter IDs and Affymetrix 
Probe IDs.

Quality of gene expression data measured by nCounter and HTA. After data pre-processing, 99 
out of 194 CRC samples measured by nCounter platform and all the 84 CRC samples measured by HTA platform 
have gene expression data with sufficient quality for comparative analysis. Among these remaining samples, 42 
CRC samples and 516 genes were measured by both platforms. These 42 pairs of CRC samples contained 30 
pairs of technical replicates (mRNA samples from the same extraction, the FFPE block storage time from date of 
resection to RNA extraction is the same for samples measured by both platforms) and 12 pairs of biological rep-
licates (mRNA samples from the same FFPE tumor block but different extractions, the FFPE block storage time 
from date of resection to RNA extraction is one year later for samples measured by HTA platform than that for 
samples measured by nCounter platform) (Supplementary Table S3). The distributions of signal intensities (nor-
malized and log2 transformed gene expression data) for 42 pairs of matched samples across 516 common genes 
are displayed with boxplots in Fig. 1. The expression patterns of the 42 common samples within each platform 
were comparable and had different scales between different platforms. It should be noted that the difference in 
the absolute gene expression values from these two platforms is due to the different measurement scales on these 
two platforms, not indicating different data quality. No obvious outlier with extremely small interquartile range 
was observed.

To examine the reproducibility of the nCounter platform, we generated one more set of technical repli-
cates (mRNA samples from the same extraction) for 32 samples and measured their gene expression using the 
nCounter platform. To control for the quality of the nCounter data, samples with average count greater than 1000 
and less than 20% of genes with the average expression count ≤  average count of a synthetic negative control gene 
set + 3 standard deviations of negative control gene set were selected. Among these 32 pairs of technical replicates, 
five pairs of technical replicates have gene expression data with sufficient quality for correlation analysis. The scat-
terplots of the normalized counts between the each pair of the replicates with the Pearson correlation coefficient 
(r) were shown in Supplementary Fig. S1. The high correlation (r =  0.95–0.97) indicates that the gene expression 
data measured by nCounter platform are reproducible after data quality control. However, only 15.6% of the rep-
licate pairs passed the quality control parameters.

Sample-wise and gene-wise correlations between gene expression data measured by nCounter 
platform and HTA platform. For each of the 42 pairs of FFPE-derived CRC samples measured by both 

Figure 1. The signal intensity distributions of the 42 pairs of matched CRC samples measured by both 
nCounter platform and HTA platform. The distributions of signal intensities of 42 pairs of matched CRC 
samples (30 technical replicates and 12 biological replicates) measured by nCounter platform (a) and HTA 
platform (b).
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nCounter and HTA, we calculated the Pearson correlation coefficient based on normalized, log2 transformed 
gene expression values across 516 genes that were common to both platforms. The Affymetrix GeneChip®  
Human Transcriptome Array 2.0 covers the entire transcriptome (25095 genes), however, we restricted the ana-
lytical comparison to only those genes that were included in the nCounter codeset. The mean correlation between 
42 pairs of matched CRC samples is 0.51 with 95% bootstrap confidence interval (0.49, 0.53), while the maximum 
and minimum correlations are 0.59 and 0.38, respectively. The heatmap in Fig. 2a displays all the pairwise corre-
lations between the 42 pairs of matched CRC samples measured by both nCounter and HTA platforms.

In addition to sample-wise correlation, we also calculated the Pearson correlation coefficient for each of the 
516 genes across 42 common samples measured by both nCounter and HTA platforms. As shown in Fig. 2b, the 
mean gene-wise correlation coefficient of the 516 genes is 0.29 with 95% bootstrap confidence interval (0.27, 0.3), 
while the maximum and minimum correlations are 0.79 and − 0.28.

Evaluation of the frozen tissue-derived prognostic signatures based on the nCounter platform 
and the HTA platform. To evaluate the frozen tissue-derived prognostic signatures in FFPE-derived CRC 
tissues, we examined the association of gene expression with 5-year overall survival (OS) outcomes and 5-year 
disease free survival (DFS) outcomes for each of the 516 common genes using a Cox proportional hazard model. 
After extracting the P values of the log-rank tests from the Cox proportional hazard models, we compared the 
cumulative distribution functions (CDF) for the -log10 (P value) of the 516 common genes from both platforms. 
As shown in Fig. 3a, for the association with OS, the CDF of the − log10 (P value) for the nCounter data lies above 
that of the HTA data (P =  3.01e–12, one-sided Kolmogorov-Smirnov test) and the increase of the CDF of the 
− log10 (Pvalue) of the HTA data is higher than that of the nCounter data after P =  0.05 (the vertical line). This 
result indicates that more signature genes associated with OS can be found using HTA data with P value <  0.05 
based on these 516 common genes. Evaluation of the gene expression data and the association with DFS as shown 
in Fig. 3b, again demonstrates that the CDF of the − log10 (P value) for the nCounter data lies above that of 
the HTA data (P <  2.2e–16, one-sided Kolmogorov-Smirnov test) and the increase of the CDF of the − log10  
(P value) of the HTA data is much larger than that of the nCounter data after P =  0.05 (the vertical line). Similar to 
the OS results, more signature genes associated with DFS can be found using HTA data with P value <  0.05 based 
on these 516 common genes (see Cox regression results in Supplementary Table S4).

In addition to p values, we also compared the log hazard ratios for the 516 common genes based on nCounter 
and HTA data. As shown in Fig. 3c,d, for the association with both OS and DFS, there is no correlation between 
the log hazard ratios computed based on nCounter data and HTA data for the same gene. Moreover, among the 
516 genes compared across both platforms, 194 genes show opposite direction of association with OS outcomes 
based on data from the two platforms (red dots in Fig. 3c), while 188 genes show opposite direction of association 
with DFS outcomes based on data from these two platforms (red dots in Fig. 3d).

We next examined the subsets of genes (of the 516 total) significantly associated with clinical outcomes based 
on the nCounter platform and the HTA platform. Using a false discovery rate (FDR) 0.05 as the threshold, 36 of 

Figure 2. The sample-wise and gene-wise correlations based on 42 pairs of matched CRC samples. (a) The 
heatmap shows all the pairwise correlations (Pearson correlation coefficients) between the 42 pairs of matched 
samples measured by nCounter and HTA platforms. (b) The histogram shows the gene-wise correlations 
(Pearson correlation coefficients) for the 516 common genes measured by both nCounter and HTA platforms 
across 42 pairs of matched CRC samples.
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the 516 common genes are significantly associated with OS based on the HTA platform (FDR <  0.05, log-rank 
test) while no individual gene of the 516 common genes was found to be significantly associated with OS based on 
the nCounter platform (Fig. 4a). With the same threshold, 97 of the 516 common genes are significantly associ-
ated with DFS based on the HTA platform. Similarly, no individual gene is significantly associated with DFS based 
on the nCounter analysis data (Fig. 4b). By combing the 36 genes significantly associated with OS and 97 genes 
significantly associated with DFS, we identified 99 unique genes whose up- or down- regulations are significantly 
associated with poor survival (DFS and/or OS). Among these 99 genes, 48 genes are from multi-gene prognostic 
signatures with up- or down- regulation information available from the original papers. We found that 29 of the 
48 genes showed gene expression changes associated with survival in the same direction across studies using 
frozen tissue samples and FFPE samples (hazard ratio (HR) > 1 (< 1) based on data from FFPE samples and up 
(down) regulated in the patients with tumor recurrence in the previous frozen sample based study).

Figure 3. Association between gene expression patterns and clinical outcomes based on nCounter platform 
and HTA platform. The association between gene expression and five-year overall survival (OS) and disease 
free survival (DFS) were measured by Cox proportional hazard model and represented by the resulted P 
values and log Hazard ratios. The cumulative distribution functions for − log10(Pvalue) of 516 common genes 
from both nCounter platform (red) and HTA platform (blue) were shown in (a) for OS and (b) for DFS. The 
vertical lines in (a,b) represent P value 0.05 on the x-axis. P values for two-sample Kolmogorov-Smirnov test 
were shown in (a,b). Scatterplots of log Hazard ratios for 516 common genes from both nCounter platform 
and HTA platform were shown in (c) for OS and (d) for DFS. R2 from linear fitting were shown in (c,d). Blue 
dots represent genes with positive (or negative) log Hazard ratios based on both platforms. Red dots represent 
genes with positive log Hazard ratios based on one platform but negative log Hazard ratios based on the other 
platform.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:33273 | DOI: 10.1038/srep33273

In addition to examining the single-gene level signatures, we also evaluated the performance of previously 
reported frozen tissue-derived multi-gene prognostic signatures in FFPE derived samples based on the nCounter 
platform and the HTA platform. In total, six previously reported multi-gene signatures have sufficient informa-
tion from the original papers enabled such evaluation. First, we removed genes showing gene expression changes 
associated with survival in the opposite directions across studies using frozen tissue samples and FFPE samples in 
each multi-gene signature. During this process, different genes might be filtered based on HTA platform-derived 
data and nCounter platform-derived data, separately. Then, on the basis of the average of median normalized 
gene expression levels of each multi-gene signature, we classified patients into two groups (high risk group with 
above median expression and low risk group with below median expression).

Kaplan-Meier estimates of OS and DFS showed that based on HTA platform-derived data, four of the six 
available multi-gene signatures from Wang, Y. et al.30, Barrier, A. et al.17, Merlos-Suarez, A. et al.25 and Smith, J. J. 
et al.28 can divide patients into high-risk and low-risk groups with significantly different DFS (P <  0.05, log-rank 
test, Figs 5d and 6b,d,f) and three of the four multi-gene signatures from Wang, Y. et al.30, Barrier, A. et al.17 and 
Merlos-Suarez, A. et al.25 can divide patients into high-risk and low-risk groups with significantly different OS 
(P <  0.05, log-rank test, Figs 5c and 6a,c). Based on nCounter platform-derived data, one of the six published 
multi-gene signatures from Wang, Y. et al.30 can divide patients into high-risk and low-risk groups with signifi-
cantly different DFS and OS (P <  0.05, log-rank test, Fig. 5a,b). The performances of multi-gene signatures from 
Barrier, A. et al.17, Merlos-Suarez, A. et al.25 and Smith, J. J. et al.28 based on nCounter platform-derived data are 
shown in Figure S2. When checking the overlapping patients from high/low-risk groups predicted by gene sig-
natures from Wang, Y. et al.30, Barrier, A. et al.17, Merlos-Suarez, A. et al.25 and Smith, J. J. et al.28 based on HTA 
and nCounter platform, separately, we found 71%, 52%, 57% and 52% of the total patients were classified into the 
same risk group (Supplementary Tables S6–9).

The four multi-gene signatures from Wang, Y. et al.30, Barrier, A. et al.17, Merlos-Suarez, A. et al.25 and Smith, 
J. J. et al.28, which are filtered based on HTA platform-derived data and nCounter platform-derived data, sepa-
rately and used in this study are shown in Supplementary Table S5. In addition, we also evaluated the association 
between gene expression patterns and clinical outcomes for multi-gene signatures with sufficient information 
from the original papers without filtering. As shown in Supplementary Table S10, two multi-gene signatures 
from Merlos-Suarez, A. et al.25 and Smith, J. J. et al.28 can divide patients into high-risk and low-risk groups with 
significantly different DFS (P ≤  0.05, log-rank test) based on HTA platform and one multi-gene signature from 
Barrier, A. et al.17 can divide patients into high-risk and low-risk groups with significantly different OS (P ≤  0.05, 
log-rank test) based on nCounter platform. This result highlights the robustness of the multi-gene signatures 
from Merlos-Suarez, A. et al.25, Smith, J. J. et al.28 and Barrier, A. et al.17 in dividing patients into groups with 
significantly different DFS or OS.

Discussion
Performing gene expression profiling for FFPE samples is crucial for developing robust gene expression signa-
tures that could be readily translated through testing in clinical trials. Nanostring nCounter®  and Affymetrix 
GeneChip®  Human Transcriptome Array 2.0 are the two available platforms that enable targeted and genome 
wide gene expression profiling of FFPE samples, separately. In this study, based on these two platforms, we eval-
uated the prognostic value of 516 genes that were derived from multiple published frozen tissue-derived CRC 
prognostic signatures and present on both platforms.

Based on HTA platform-derived data, our results showed that (1) 36 and 97 of the 516 common genes are 
significantly associated with OS and DFS at the single gene level (FDR <  0.05, log-rank test), respectively; (2) 
60% of these survival associated genes which have direction information from the original papers showed gene 

Figure 4. Overlapping of genes significantly associated with clinical outcomes based on nCounter platform 
and HTA platform. The association between gene expression and five-year OS and DFS were measured by 
Cox proportional hazard model. (a) Using a false discovery rate 0.05 as the threshold, there are 36 of 516 genes 
significantly associated with OS based on HTA platform while no gene was found to be significantly associated 
with OS based on nCounter platform. (b) With the same threshold, there are 97 of 516 genes significantly 
associated with DFS based on HTA platform, while no gene was found to be significantly associated with DFS 
based on nCounter platform.
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expression changes associated with survival in the same direction across studies using frozen tissue samples 
and FFPE samples; and (3) four of the six reported multi-gene signatures, for which sufficient information from 
the original papers enabled such evaluation, can divide patients into high-risk and low-risk groups with signif-
icantly different DFS (P <  0.05, log-rank test) and three of the four multi-gene signatures can divide patients 
into high-risk and low-risk groups with significantly different OS (P <  0.05, log-rank test). Based on nCounter 
platform-derived data, no individual gene was found to be significantly associated with survival at the single gene 
level (FDR <  0.05, log-rank test), but one of the six published multi-gene signatures can divide patients into two 
groups with significantly different DFS and OS (P <  0.05, log-rank test). These results indicate that sufficiently 
high quality RNA could be obtained from FFPE tumor tissues to detect frozen tissue-derived prognostic gene 
expression signatures for CRC patients. According to Table S1, most of the public signatures were identified based 
on gene expression microarray (mainly used Affymetrix platforms). To measure gene expression, microarray 
requires cDNA synthesis, labeling, hybridization, and intensity measurement. Then, to reduce the technical var-
iations and biases introduced in each step, normalization is required before comparisons between samples39. A 
popular method, RMA including background correction, quantile normalization, and expression summarization 
for each probe set using median polish on a linear model40 is frequently used for Affymetrix arrays normaliza-
tion39. In contrast, the nCounter System directly measures the mRNA expression levels by dual probe hybridiza-
tion without RNA amplification. The difference between microarray and the nCounter technology might cause 

Figure 5. Performance of frozen tissue-derived prognostic signature from Wang, Y. et al. in FFPE-derived 
samples based on nCounter platform and HTA platform. Kaplan-Meier estimates of OS (a,c) and DFS (b,d) 
according to the risk prediction by gene signature from Wang, Y. et al. based on nCounter platform (7 of 10 
available genes) and HTA platform (5 of 10 available genes, 42 samples were divided into two groups with 21 
samples in each group).



www.nature.com/scientificreports/

8Scientific RepoRts | 6:33273 | DOI: 10.1038/srep33273

Figure 6. Performance of frozen-tissue derived prognostic signatures from Barrier, A. et al., Merlos-
Suarez, A. et al. and Smith, J. J. et al. in FFPE-derived samples based on HTA platform. Kaplan-Meier 
estimates of OS (a,c and e) and DFS (b,d and f) according to the risk prediction by gene signatures from Barrier, 
A. et al. (22 of 34 available genes), Merlos-Suarez, A. et al. (6 of 9 available genes) and Smith, J. et al.  
(23 of 31 available genes) based on HTA platform (42 samples were divided into two groups with 21 samples in 
each group).
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the better performance in rediscovering the previously published prognostic signatures identified mainly using 
microarray.

In our previous study, we found moderate sample-wise correlation between paired FFPE samples measured 
by the nCounter platform and fresh-frozen samples measured by the Affymetrix Human Genome U133 Plus 2.0 
platform34. Similarly, in the current study, we also observed moderate correlations between paired FFPE samples 
measured by the nCounter and HTA platforms (mean Pearson correlation coefficient is 0.51, mean Spearman 
correlation coefficient is 0.54). Since nCounter used single probe designed for each transcript while HTA used 
multiple-probe design, the different probe design methods might cause the moderate correlations between sam-
ple pairs (also between gene pairs) in the cross platform comparisons. Although different normalization methods 
were used for different platforms, this should not change the gene ranking within each sample. Thus, the correla-
tion pattern between samples will not be affected by different normalization methods. A previous study showed 
a high correlation coefficient (r =  0.9) between matched fresh-frozen and FFPE samples when both samples were 
measured by the nCounter platform35. In this study, we also found high correlation between the gene expressions 
of FFPE-derived technical replicates both measured by the nCounter platform.

The degree of RNA degradation is a challenging issue in gene expression analysis using FFPE-derived samples. 
As shown in the Supplementary Table S3, the median storage times of the paraffin blocks of tissues (from the date 
of resection to the date of RNA extraction) for the 42 pairs of FFPE-derived samples measured by the nCounter 
platform and the HTA platform are 14.5 years and 15.5 years. The technical replicates were extracted at the same 
time (same storage time) and the biological replicates were obtained one year later. To reduce the effect of RNA 
degradation, we used a consistent procedure for sample preparation and conducted strict quality control analysis 
before submitting samples (Supplementary Table S3). In addition, the inherent tumor heterogeneity might also 
cause the moderate sample wise correlation. In our study, the median sample wise correlation between 30 pairs of 
technical replicates is 0.53, while the median sample wise correlation between 12 pairs of biological replicates is 
0.51 (the difference is not statistically significant).

Since the surgical specimens are routinely preserved by fixation in formalin, archived FFPE tumor tissues 
remain the most available tissue specimen source for biomarker study in CRC, at least on a retrospective basis, 
and for practical purposes on any large-scale multi-center prospective study. Our study showed that sufficiently 
high quality RNA can be obtained from FFPE preserved archival tumor tissues to detect gene expression sig-
natures originally described from fresh frozen tissues with consistent expression patterns in FFPE tissues and 
correlation with clinical outcomes for CRC patients. For example, frozen tissue derived gene expression signa-
tures from Wang, Y. et al.30, Merlos-Suarez, A. et al.25 and Barrier, A. et al.17 could divide patients into high-risk 
and low-risk groups with significantly different DFS and OS based on their gene expression patterns in FFPE 
tissues (P <  0.05, log-rank test). Our previously identified 34-gene prognostic signature using frozen tissues28 
could divide patients into high-risk and low-risk groups with significantly different DFS based on gene expression 
patterns in FFPE tissues (P <  0.05, log-rank test). The difference of OS between the high-risk and low-risk groups 
is not statistically significant (P =  0.22) that may be due to the small sample size (n =  21 in each group). We will 
further test the association with OS by increasing the sample size in a future study.

Our study provides interesting prognostic gene expression signature candidates that show consistent associa-
tion with clinical outcomes across frozen and FFPE CRC tissues. This work needs to be further validated in larger 
cohorts of FFPE samples. Improvements in technology such as the single cell level RNA sequencing approaches41 
might increase the percentage of genes robustly detected as biomarkers across both frozen and FFPE tumor 
tissues. This work provides a path for validation of gene expression signatures in large numbers of FFPE tumor 
tissue samples that are annotated by patient treatments and outcomes in order to identify both prognostic and 
predictive gene expression biomarkers to help guide treatment decisions.

Methods
Sample preparation. Human CRC tissues were collected and annotated according to established protocols 
and approved by the appropriate Institutional Review Boards (IRB) at Vanderbilt University Medical Center 
(VUMC). All tissues were collected over the time period from 1999–2011. Tumor stage was assessed by American 
Joint Commission on Cancer (AJCC) 7th Edition guidelines42. Written informed consent has been obtained from 
the subjects since 2003. A waiver of consent under Vanderbilt University IRB#101531 allowed inclusion of cases 
from 1983 to 2003 who did not consent. Study inclusion was determined by appropriate IRB approved investors 
and this information was de-identified and HIPAA-compliant prior to release of data to key study personnel.

Archived CRC FFPE samples used in this study were stored at room temperature until sectioned for RNA 
extraction. The first 10 μ m of the tissue was discarded before cutting sections for RNA extraction. Five-micron 
sections were mounted on uncharged glass slides. Separate tissue sections from the top and bottom of the serial 
sections used for RNA extraction were stained with H&E for quality control from each tissue block. RNA was 
purified from 5 μ m thick tissue sections containing greater than 80% tumor using High Pure FFPE RNA Micro 
Kit (Roche) according to manufacturer’s instructions. A minimum of 4 sections per sample were required. After 
extraction, total RNA samples were submitted to Vanderbilt Technologies for Advanced Genomics for quality 
control analysis by an Agilent Bioanalyzer instrument.

Data Analysis. We examined the association of gene expression with five-year OS and DFS outcomes using 
the Cox proportional hazard model available in the R package survival. The P values are from log-rank tests. The 
resulting P values were adjusted for multiple-hypothesis testing using the Benjamini-Hochberg method43. All 
the analyses were performed in R (version 3.1.0). Both nCounter and HTA data are available in Gene Expression 
omnibus (GEO) database (GSE78248).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:33273 | DOI: 10.1038/srep33273

References
1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J Clin 65, 5–29, doi: 10.3322/caac.21254 (2015).
2. DeSantis, C. E. et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64, 252–271, doi: 10.3322/caac.21235 

(2014).
3. Cunningham, D. et al. Colorectal cancer. Lancet 375, 1030–1047, doi: 10.1016/S0140-6736(10)60353-4 (2010).
4. O’Connor, E. S. et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. Journal of clinical oncology: 

official journal of the American Society of Clinical Oncology 29, 3381–3388, doi: 10.1200/JCO.2010.34.3426 (2011).
5. Ragnhammar, P., Hafstrom, L., Nygren, P., Glimelius, B. & S. B.-g. S. C. o. T. A. i. H. Care. A systematic overview of chemotherapy 

effects in colorectal cancer. Acta oncologica 40, 282–308 (2001).
6. Figueredo, A., Coombes, M. E. & Mukherjee, S. Adjuvant therapy for completely resected stage II colon cancer. The Cochrane 

database of systematic reviews, CD005390, doi: 10.1002/14651858.CD005390.pub2 (2008).
7. Dienstmann, R., Salazar, R. & Tabernero, J. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual 

patients. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 33, 1787–1796, doi: 10.1200/
JCO.2014.60.0213 (2015).

8. Goldstein, J. et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability 
(MSI-H). Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 25, 1032–1038, doi: 10.1093/
annonc/mdu100 (2014).

9. O’Connell, M. J. et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage 
II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. Journal of clinical oncology: 
official journal of the American Society of Clinical Oncology 28, 3937–3944, doi: 10.1200/JCO.2010.28.9538 (2010).

10. Salazar, R. et al. Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer. Journal of Clinical 
Oncology 29, 17–24, doi: 10.1200/Jco.2010.30.1077 (2011).

11. Jiang, Y. et al. Development of a clinically feasible molecular assay to predict recurrence of stage II colon cancer. The Journal of 
molecular diagnostics: JMD 10, 346–354, doi: 10.2353/jmoldx.2008.080011 (2008).

12. Kennedy, R. D. et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed 
paraffin-embedded tissue. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 29, 4620–4626, 
doi: 10.1200/JCO.2011.35.4498 (2011).

13. Di Narzo, A. F. et al. Test of four colon cancer risk-scores in formalin fixed paraffin embedded microarray gene expression data. 
Journal of the National Cancer Institute 106, doi: 10.1093/jnci/dju247 (2014).

14. Anastassiou, D. et al. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained 
in vivo. BMC cancer 11, 529, doi: 10.1186/1471-2407-11-529 (2011).

15. Bandres, E. et al. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes’ B colon cancer patients. 
Oncology reports 17, 1089–1094 (2007).

16. Barrier, A. et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. Journal of clinical oncology: official 
journal of the American Society of Clinical Oncology 24, 4685–4691, doi: 10.1200/JCO.2005.05.0229 (2006).

17. Barrier, A. et al. Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling. Oncogene 26, 2642–2648, 
doi: 10.1038/sj.onc.1210060 (2007).

18. Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337, doi: 
10.1038/nature11252 (2012).

19. Eschrich, S. et al. Molecular staging for survival prediction of colorectal cancer patients. Journal of clinical oncology: official journal 
of the American Society of Clinical Oncology 23, 3526–3535, doi: 10.1200/JCO.2005.00.695 (2005).

20. Fritzmann, J. et al. A Colorectal Cancer Expression Profile That Includes Transforming Growth Factor beta Inhibitor BAMBI 
Predicts Metastatic Potential. Gastroenterology 137, 165–175, doi: Doi 10.1053/J.Gastro.2009.03.041 (2009).

21. Grade, M. et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct 
differences between lymph node-negative and lymph node-positive colon carcinomas (vol 67, pg 41, 2007). Cancer research 67, 
1877–1877 (2007).

22. Ki, D. H. et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. International Journal of Cancer 121, 
2005–2012, doi: 10.1002/Ijc.22975 (2007).

23. Lin, Y. H. et al. Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. 
Clinical cancer research: an official journal of the American Association for Cancer Research 13, 498–507, doi: 10.1158/1078-0432.
CCR-05-2734 (2007).

24. Loboda, A. et al. EMT is the dominant program in human colon cancer. BMC medical genomics 4, 9, doi: 10.1186/1755-8794-4-9 
(2011).

25. Merlos-Suarez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell stem 
cell 8, 511–524, doi: 10.1016/j.stem.2011.02.020 (2011).

26. Oh, S. C. et al. Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer. Gut 61, 
1291–1298, doi: 10.1136/gutjnl-2011-300812 (2012).

27. Shi, M., Beauchamp, R. D. & Zhang, B. A network-based gene expression signature informs prognosis and treatment for colorectal 
cancer patients. PloS one 7, e41292, doi: 10.1371/journal.pone.0041292 (2012).

28. Smith, J. J. et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon 
cancer. Gastroenterology 138, 958–968, doi: 10.1053/j.gastro.2009.11.005 (2010).

29. Tripathi, M. K. et al. Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Cancer research 
74, 6947–6957, doi: 10.1158/0008-5472.CAN-14-1592 (2014).

30. Wang, Y. et al. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. Journal of clinical 
oncology: official journal of the American Society of Clinical Oncology 22, 1564–1571, doi: 10.1200/JCO.2004.08.186 (2004).

31. Zhu, J. et al. Deciphering genomic alterations in colorectal cancer through transcriptional subtype-based network analysis. PloS one 
8, e79282, doi: 10.1371/journal.pone.0079282 (2013).

32. Fortina, P. & Surrey, S. Digital mRNA profiling. Nature biotechnology 26, 293–294 (2008).
33. Human Transcriptome Array 2.0., Available at: http://www.affymetrix.com/catalog/prod760002/AFFY/Human+ Transcriptome+ 

Array+ 2.0-1_1. (Accessed: 18th January 2016).
34. Chen, X. et al. Comparison of Nanostring nCounter(R) Data on FFPE Colon Cancer Samples and Affymetrix Microarray Data on 

Matched Frozen Tissues. PloS one 11, e0153784, doi: 10.1371/journal.pone.0153784 (2016).
35. Reis, P. P. et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol 11, 46 

(2011).
36. Evaluating RNA Quality from FFPE Samples. Technical note., Available at: http://www.illumina.com/content/dam/illumina-

marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf. (Accessed: 
18th January 2016) (2015).

37. Waggott, D. et al. NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. 
Bioinformatics 28, 1546–1548, doi: 10.1093/Bioinformatics/Bts188 (2012).

38. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. 
Biostatistics 8, 118–127, doi: 10.1093/biostatistics/kxj037 (2007).

http://www.affymetrix.com/catalog/prod760002/AFFY/Human+Transcriptome+Array+2.0
http://www.affymetrix.com/catalog/prod760002/AFFY/Human+Transcriptome+Array+2.0
http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:33273 | DOI: 10.1038/srep33273

39. Loewe, R. P. & Nelson, P. J. Microarray bioinformatics. Methods in molecular biology 671, 295–320, doi: 10.1007/978-1-59745-551-
0_18 (2011).

40. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 
4, 249–264, doi: 10.1093/biostatistics/4.2.249 (2003).

41. Grun, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255, doi: 10.1038/
nature14966 (2015).

42. Colon and Rectum Cancer Staging (American Joint Committee on Cancer, 7th Edition), Available at: https://cancerstaging.org/
references-tools/quickreferences/Documents/ColonSmall.pdf. (Accessed: 18th January 2016).

43. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 
Series B Stat Methodol 57, 289–300 (1995).

Acknowledgements
This work is supported by NCI R01 CA158472 and NCI P50 CA95103. We thank Dr. Chanjuan Shi for reviewing 
and annotating the H&E slides for this study. We thank Vanderbilt Translational Pathology and Imaging Core 
for pulling and sectioning blocks and Vanderbilt Technologies for Advanced Genomics for RNA sample quality 
control analysis.

Author Contributions
R.D.B., X.C., N.G.D. and J.Z. conceived the experiment(s). K.B.L., C.P., M.K.W., K.K.C., C.T. and R.G. conducted 
the experiment(s). R.D.B., X.C., N.G.D. and J.Z. analyzed the results. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhu, J. et al. Evaluation of frozen tissue-derived prognostic gene expression signatures 
in FFPE colorectal cancer samples. Sci. Rep. 6, 33273; doi: 10.1038/srep33273 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

https://cancerstaging.org/references-tools/quickreferences/Documents/ColonSmall.pdf
https://cancerstaging.org/references-tools/quickreferences/Documents/ColonSmall.pdf
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Evaluation of frozen tissue-derived prognostic gene expression signatures in FFPE colorectal cancer samples
	Results
	Sample collection. 
	nCounter platform development. 
	Gene expression profiling based on HTA platform. 
	Data preprocessing. 
	Quality of gene expression data measured by nCounter and HTA. 
	Sample-wise and gene-wise correlations between gene expression data measured by nCounter platform and HTA platform. 
	Evaluation of the frozen tissue-derived prognostic signatures based on the nCounter platform and the HTA platform. 

	Discussion
	Methods
	Sample preparation. 
	Data Analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  The signal intensity distributions of the 42 pairs of matched CRC samples measured by both nCounter platform and HTA platform.
	Figure 2.  The sample-wise and gene-wise correlations based on 42 pairs of matched CRC samples.
	Figure 3.  Association between gene expression patterns and clinical outcomes based on nCounter platform and HTA platform.
	Figure 4.  Overlapping of genes significantly associated with clinical outcomes based on nCounter platform and HTA platform.
	Figure 5.  Performance of frozen tissue-derived prognostic signature from Wang, Y.
	Figure 6.  Performance of frozen-tissue derived prognostic signatures from Barrier, A.



 
    
       
          application/pdf
          
             
                Evaluation of frozen tissue-derived prognostic gene expression signatures in FFPE colorectal cancer samples
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33273
            
         
          
             
                Jing Zhu
                Natasha G. Deane
                Keeli B. Lewis
                Chandrasekhar Padmanabhan
                M. Kay Washington
                Kristen K. Ciombor
                Cynthia Timmers
                Richard M. Goldberg
                R. Daniel Beauchamp
                Xi Chen
            
         
          doi:10.1038/srep33273
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep33273
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep33273
            
         
      
       
          
          
          
             
                doi:10.1038/srep33273
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33273
            
         
          
          
      
       
       
          True
      
   




