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Abstract: Erythropoiesis is a rapidly evolving research arena and several mechanistic insights 

show therapeutic promise. In contrast with the rapid advance of mechanistic science, optimal 

management of anemia in patients with chronic kidney disease remains a difficult and polarizing 

issue. Although several large hemoglobin target trials have been performed, optimal treatment 

targets remain elusive, because none of the large trials to date have unequivocally identified 

differences in primary outcome rates or death rates, and because other reported outcomes indi-

cate the potential for harm (rates of stroke, early requirement for dialysis, and vascular access 

thrombosis) and benefit (reductions in transfusion requirements and fatigue).
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Introduction
Anemia is a typical feature of chronic kidney disease (CKD). In many countries, CKD 

is the commonest cause of anemia after that accounted for by iron, vitamin B
12

, and 

folate deficiencies, overt hemolysis, and ongoing bleeding. Although loss of renal 

erythropoietin production has traditionally been advanced as an explanation, there 

has been a gradual realization that other forces may be contributory. Although this is 

a nascent field, abnormal oxygen-sensing mechanisms and resistance to erythropoi-

etin may be a predominant issue in a sizeable proportion of patients with advanced 

CKD. This insight, which, as with many other conditions of relative hormonal defi-

ciency, has been slow to embed itself in clinical consciousness, and has considerable 

 implications. It suggests, for example, that greater efforts are needed to delineate the 

presence and causes of erythropoietin resistance when CKD and anemia intersect, 

both within individual patients and as part of the broader agenda for future research 

initiatives. A practical offshoot of this realization may be that anemia treatment 

algorithms predicated entirely on ever increasing doses of erythropoiesis-stimulating 

agents (ESAs) that ignore the issue of ESA resistance may not be optimal. Despite 

a profusion of mechanistic and therapeutic insights, treatment of anemia may be the 

singlemost controversial aspect of CKD management.

Somewhat tongue in cheek, as bigger and better randomized trials come and go, 

the notion that optimal indisputable anemia treatment strategies will become clear 

seems to recede ever further into the distance. Without wishing to diminish their 

potential importance, iron management protocols will not be considered in this article 

for space reasons and because, to date, randomized trials have focused completely 

on hemoglobin response, without meaningful consideration of differential effects on 
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conventional “hard” outcomes, including cardiovascular 

events, infectious events, and death. Similarly, epoetins that 

are considered biosimilar to epoetin alfa and beta will not be 

discussed here. The aspects considered in this review include 

the basic mechanistic constructs that underpin the bulk of 

current therapeutic development of ESAs, newer ESAs, 

hemoglobin target trials in CKD, and finally, some discussion 

about the implications of resistance to ESAs.

Erythropoietin: mechanistic 
constructs
Circulating erythropoietin consists of 165 amino acids in 

a single strand with two disulfide bonds and four carbohy-

drate chains, three of which are N-linked and one of which 

is O-linked.1 Plasma levels are inversely related to oxygen 

content; the half-life is 2–13 hours and metabolism takes 

place in the kidney, liver, and bone marrow. Ultimately, 

less than 10% of circulating erythropoietin is excreted by 

the kidneys.2–4

Although current understanding is incomplete, it is 

evident that erythropoietin gene (EPO) expression is tightly 

regulated by stimulators, including hypoxia-inducible tran-

scription factors (HIF) and hepatocyte nuclear factor 4α, and 

by inhibitors, including nuclear factor kappa B and GATA2.5 

HIF1, a key regulator of erythropoietin transcription, also 

regulates transcription of several other genes induced by 

hypoxia, including those for glycolytic enzymes, platelet-

derived growth factor, and vascular endothelial growth 

 factor.6 HIF1 binds to a hypoxia-response element residing 

on the 3´-flanking region of EPO.7 In the presence of hypoxia, 

HIF1 levels increase and the hypoxia-responsive genes 

become upregulated. In contrast, in the absence of hypoxia, 

the oxygen-sensitive HIF1α subunit is hydroxylated by prolyl 

hydroxylase, and degraded in the proteasome; ultimately, 

downregulation of EPO and other hypoxia-responsive 

genes occur.8 In this cascade of events, inhibition of prolyl 

hydroxylase should result in tonic, hypoxia-independent 

upregulation of EPO, and possibly several other hypoxia-

responsive genes.9

Following translation of the EPO gene, three N-linked and 

one O-linked carbohydrate chains are added to  erythropoietin. 

These chains normally exhibit heterogeneity in terms of the 

type of carbohydrate moieties incorporated, chain lengths, 

and branching configuration.10,11 The number of sialic resi-

dues also varies between healthy individuals, and up to four 

residues can be found on each N-linked carbohydrate chain, 

while up to two residues can be found on the O-linked chain, 

and variability in sialic acid composition has implications for 

the overall electrical charge of circulating erythropoietin.12 

In turn, overall electrical charge has effects on the circu-

lating half-life of erythropoietin and interactions with the 

erythropoietin receptor; in general, greater sialic acid content 

correlates with longer and greater potency.13

While marrow-based red blood cell-producing cells 

are thought to express the highest density of erythropoi-

etin receptors, erythropoietin receptors have been found in 

tissues throughout the body, including the kidney, brain, 

heart, retina, muscle, and vascular endothelium.14–16 Ligand-

receptor interaction leads to conformational changes in the 

dimeric transmembrane erythropoietin receptor, conforma-

tional changes and phosphorylation of tightly-associated 

Janus kinase 2 molecules, followed by phosphorylation of 

tyrosine moieties in the cytoplasmic domain of the eryth-

ropoietin receptor.17 Ultimately, the intracellular portion of 

the erythropoietin receptor becomes a docking complex for 

proteins exhibiting Src homology 2 (SH2) domains. After 

docking, SH2-containing proteins are activated by Janus 

kinase 2-mediated tyrosine phosphorylation and rendered 

capable of activating nuclear genes involved in cell growth 

and differentiation, and prevention of apoptosis.18–22

Newer erythropoiesis-stimulating 
agents
Darbepoetin, with its five amino acid substitutions and 

two extra carbohydrate chains, can incorporate as many as 

22 sialic acid residues, in contrast with native erythropoietin, 

which can incorporate 14 residues.23 Because darbepoetin 

has a longer half-life than erythropoietin, of approximately 

one day or more, it was anticipated that darbepoetin could be 

efficacious with longer dose intervals than with epoetins.24,25 

Multicenter, randomized, controlled trials have shown that 

darbepoetin once every 1–2 weeks is as effective in terms of 

attained hemoglobin levels as epoetin 2–3 times per week.26–29 

While the possibility of extended dose intervals is attractive 

for a compound requiring parenteral administration, several 

questions remain. For example, comparisons of costs and 

savings for optimized dosing schedules of different ESAs 

would be very helpful for clinical decision-making. In terms 

of basic mechanistic biology, it is unknown whether the non-

erythroid effects of darbepoetin in humans are similar to those 

of epoetins. Given its non-native chemical composition, there 

is a surprising lack of clinical information about the immuno-

genicity of darbepoetin. However, it is noteworthy that pure 

red cell aplasia has been described with this agent.30

In continuous erythropoietin receptor activator (CERA), 

a methoxypolyethylene glycol polymer chain is added to 
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the erythropoietin molecule via amide bonds between the 

N-terminal amino group of alanine and the σ-amino groups 

of a lysine at position 45 or 52, through a succinimidyl 

butanoic acid linker. CERA has a molecular weight twice 

that of erythropoietin and a half-life of over five days.31,32 

Randomized controlled trials in patients with anemia and 

CKD show that CERA, administered every 2–4 weeks, is not 

inferior to conventional ESA therapy in terms of hemoglobin 

response.33–38 As with darbepoetin, comparative nonerythroid 

effects and accurate rates of associated pure red cell aplasia 

have not been quantified in humans.

Several other synthetic proteins, modified erythropoietin 

derivatives, and peptide-based erythropoietin receptor acti-

vators are also being researched. For example, CNTO 528, 

an antibody fusion protein with a hematopoietic peptide 

attached to an IgG1 base (a “mimetibody”) has a half-life 

of approximately six days and shows erythropoietic activity 

in healthy men.39,40

Small erythropoietin-emulating peptides that interact with 

the erythropoietin receptor are also under active  investigation. 

For example, peginesatide, which consists of two peptide 

chains linked by a pegylation chain, appears to be distinct 

from erythropoietin in terms of antigen-antibody cross 

reactivity.41 In a rat model of antierythropoietin antibody-

mediated pure red cell aplasia, peginesatide administration 

led to correction of anemia.42 Similar findings were observed 

in humans in an open-label, uncontrolled study in which 

peginesatide was administered subcutaneously to 14 CKD 

patients with erythropoietin antibody-mediated pure red cell 

aplasia.43 Long-term clinical trials of peginesatide involving 

approximately 2600 CKD patients have been completed, and 

detailed study reports are awaited with interest.44

Insights into the biological underpinnings of erythro-

poiesis have led to the identification of several nonpeptide-

based (and potentially orally administered) candidates for 

the treatment of anemia in patients with CKD and other 

chronic diseases. As described above, while inhibition of 

prolyl hydroxylase should lead to enhanced erythropoietin 

production, nonselective inhibition could have pervasive 

regulatory effects on many genes, both known and unknown. 

An interesting proof-of-concept study with the orally 

active prolyl hydroxylase inhibitor, FG-2216, was recently 

reported.45 A single dose of FG-2216 was administered to 

six healthy volunteers, six anephric hemodialysis patients 

receiving conventional ESA therapy, and six hemodialysis 

patients with kidneys receiving ESAs. Erythropoietin levels 

increased 12.7-fold, 14.5-fold, and 30.8-fold, respectively, 

in the three groups. Even though study numbers are small, 

the findings in the anephric group are especially notable,  

and suggest that abnormal oxygen sensing may be at least as 

important in the pathogenesis of renal anemia as inadequate 

erythropoietin production.

The biological mechanisms described above implicate 

many gene-based pathways for increasing erythropoietin 

levels. However, uncontrolled erythropoietin production 

might be anticipated with many approaches. One notable 

study in erythropoietin-deficient transgenic mice described 

an intuitive approach to normalizing hemoglobin levels 

without incurring polycythemia, ie, use of a vector that adds 

a hypoxia-response element which, in turn, controls EPO 

transcription.46

Hemoglobin targets
Optimal management of anemia in patients with CKD 

remains a troublesome issue. This section discusses issues 

related to methodology and interpretation of the large num-

ber of published trials that most heavily influence current 

 treatment. It is not intended to be a systematic review or meta-

analysis, in part because several of these have already been 

published, and in part because of a belief that even the best 

of the available trials are so intrinsically different that simple 

aggregation of findings may not be advisable. As shown 

in Table 1, five large (.500 subjects) clinical trials have 

been reported to date, ie, US Normal Hematocrit47 (USNH), 

Canadian European Normalization of Hemoglobin48 (CENH), 

Cardiovascular Risk Reduction by Early Anemia Treatment 

with Epoetin Beta49 (CREATE), Correction of Hemoglobin 

and Outcomes in Renal Insufficiency50 (CHOIR), and Trial 

to Reduce Cardiovascular Events with Aranesp Therapy51 

(TREAT), targeting comparatively unique subsets of ane-

mic CKD patients with a distinctly heterogeneous array of 

interventions.

Hemoglobin target trials are nothing if not quirky and 

problematic. They differ profoundly from placebo-controlled 

trials using identical-looking pills, and these differences can 

impede interpretation and comparability with other trials. 

For example, target allocations are often not concealed (as 

with CHOIR, CREATE, USNH), a strategy that may reduce 

logistical complexity, especially when drugs are adminis-

tered parenterally in nonfixed doses that are adapted to on-

treatment biological analytes like hemoglobin. Even trials 

attempting to hide target allocation tend to become unmasked 

over time for several potential reasons. Because patients 

with CKD typically have other serious comorbid illnesses, 

they often have hemoglobin levels routinely drawn at other 

specialty clinics. Hence, even the most stringent efforts at 
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masking treatment allocation are unlikely to be completely 

successful. As a result, outcome comparisons that involve 

subjectivity on the part of patients and site investigators have 

to be viewed as less than pristine.

Nonrandomly assigned treatments, like iron and addi-

tional antihypertensive agents, are usually expected follow-

ing randomization, and highly imbalanced co-interventions 

can make it difficult to unravel the mechanisms underlying 

differences in trial outcomes. Immediate or delayed inter-

vention (CREATE and TREAT) is another trial design that 

systematically adds nonrandom elements. In the delayed 

intervention or rescue arms, treatment is determined by non-

random elements (time or a decrease in hemoglobin below 

a critical threshold). While the trigger for this intervention 

may be specified in advance by a well described algorithm, 

it clearly is not controlled by a notional coin toss.

Hemoglobin targets and principal treatment strategies 

for the five large trials are shown in Table 1. Regarding the 

critical issue of masked treatment allocation, only TREAT 

was placebo-controlled. Of the other trials, CENH incorpo-

rated concealment of treatment targets from patients. While 

concealed treatment allocation is intuitively important for 

outcomes like quality of life, it may also be important for rat-

ing “hard” clinical events. For example, basic physiological 

tenets teach us that polycythemia can cause vascular throm-

bosis and profound anemia can cause cardiac decompensa-

tion; familiarity with the assigned target hemoglobin may 

influence site investigators when confronted with common 

diagnostic challenges in advanced CKD, such as distin-

guishing nonspecific chest pain from angina pectoris and 

extracellular fluid volume overload from true heart failure. 

Unfortunately, blinded event committees have no control 

over what is written in case record forms at the site level and 

cannot correct site-level biases.

It has been known from the earliest days of treatment that 

ESAs can increase blood pressure levels, so active tracking 

of blood pressure levels, ESA doses, and hemoglobin levels 

would seem to be a reasonable safety requirement in clinical 

trials of aggressive hemoglobin management strategies.52 

The CENH trial incorporated centrally controlled real-time 

monitoring procedures for hemoglobin, iron, and blood 

pressure levels, with treatment recommendations returned 

to study sites within days of measurement. In TREAT, a 

point-of-care device was used for rapid measurement of hemo-

globin levels, which were entered into an interactive voice-

response system to determine the next dose of darbepoetin.

Table 1, which summarizes the treatment algorithms 

used to achieve target, shows that heterogeneity between 
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the  studies was large, to the extent that no two studies were 

strictly comparable. Although CREATE, CHOIR, and 

TREAT all examined patients with CKD not requiring dialy-

sis, CREATE used a strategy of delayed intervention in one 

treatment arm, while CHOIR used a typical parallel-group 

design without a time-varying therapeutic intent, and TREAT 

used a bit of both, with placebo control and the possibility of 

delayed intervention if anemia became sufficiently severe. 

Aggressiveness of ESA dosing varied greatly, even among 

apparently similar patients. For example, both the active 

and the control groups in CHOIR received a substantial 

initial dose of epoetin (10,000 U), and it is doubtful if many 

practicing clinicians would begin treating epoetin-naïve 

patients with such a large dose, particularly in the 50% of 

patients for whom the objective was to maintain current 

hemoglobin levels.

With regard to primary outcomes, no two studies were 

identical, although all but CENH share common elements 

(Table 1). While many trials these days use composite primary 

outcomes, it is always worthwhile to reflect on the individual 

components and their implications. In CHOIR, the primary 

outcome was time to first episode of death, myocardial 

infarction, heart failure hospitalization (provided dialysis 

was not employed for treatment), and stroke, with dialysis as 

a censoring event. With this design, episodes of heart failure 

that are severe enough to require dialysis are ignored, while 

less severe episodes are counted; it is certainly unusual that 

less severe episodes would be more likely to be included in 

treatment comparisons than more severe episodes. With the 

composite outcome designs employed in these studies, the 

first event is counted, and subsequent outcomes are ignored in 

situations where individuals experience multiple components 

of the composite outcome. All things being equal, it seems 

intuitively obvious to posit that patients who develop all the 

components of a composite outcome might receive more 

weight in outcome analysis. Composite outcomes can never 

exclude the possibility that serious but unknown treatment-

related effects may exist. As a result, comparisons of death 

rates, in isolation, need full attention, irrespective of the 

reported primary outcomes.

Table 1 also summarizes the hemoglobin levels achieved 

in these five studies. There has long been concern that 

very rapid increases in hemoglobin may be detrimental; 

first-month hemoglobin increments in the active treatment 

arms were notably higher in TREAT and CHOIR. During 

the maintenance phase, while no study maintained targeted 

hemoglobin levels, statistical separation was clear. ESA doses 

differed widely between the studies, with much higher doses 

in CHOIR than in CREATE, and much higher doses in USNH 

than in CENH. In the nondialysis CKD studies, these differ-

ences may be related to study design, because all patients in 

CHOIR were treated with epoetin alfa 10,000 U/week for 

three weeks, which was five times the starting dose used 

in the early intervention arm of CREATE. Blood pressure 

levels were higher in the active treatment arms in CHOIR 

and CREATE. While blood pressure levels were similar in 

the other studies, more antihypertensive agents were used in 

the high-target arm of CENH.

On unadjusted analysis, CREATE, TREAT, and USNH 

showed no differences in the primary outcome rates, whereas 

primary outcome rates were higher in the high hemoglobin 

target arm of CHOIR. Not unexpectedly, Table 1 shows that 

significant differences in baseline characteristics were present 

in each study. Given that several of these differences could 

be clinically important, it seems worthwhile to scrutinize the 

strategies used to deal with this issue. Of the three trials exam-

ining cardiovascular outcomes and death, USNH reported 

a comparison of the primary outcome with adjustment for 

baseline variables in the original publication, and the findings 

were very similar with and without covariate adjustment.2 

With CHOIR, while the original publication did not report 

an adjusted comparison of primary outcomes, a regulatory 

study report filed at ClinicalTrials.gov shows adjustment for 

baseline obviated statistical significance, with a P value of 

0.111, as opposed to 0.03 in the unadjusted analysis.53 The 

contrast between unadjusted significance and adjusted non-

significance leads to difficulties with overall interpretation 

of treatment effects, because it is impossible to reject the 

hypothesis that imbalanced assignment of factors other than 

study interventions caused the disparity in primary outcome 

rates seen on unadjusted analysis. TREAT also exhibited 

substantial baseline differences. While classical covariate 

adjustment was not undertaken, hazards ratios were reported 

that incorporated the strata used to randomize patients in 

the study–study site, baseline level of proteinuria, and an 

investigator-designated history of cardiovascular disease.

Quality of life was a secondary outcome in all of these 

trials, and although findings in this regard would never be 

considered definitive by purists, the available sample sizes 

were large. In addition, only TREAT attempted to conceal 

treatment allocation completely from patients, site investiga-

tors, and outcome assessors, and of the others, only CENH 

concealed treatments from study subjects. While four of these 

trials formally reported quality of life comparisons, no two 

trials used identical arrays of instruments. Three of the trials, 

including those that incorporated patient blinding, reported 
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quality of life benefits, predominantly in domains related to 

fatigue and vitality. In contrast, CHOIR showed a potential 

loss of quality life with the higher hemoglobin target for 

the emotional subscale of the Short Form-36  instrument; 

findings were likely clouded by important imbalances in 

baseline characteristics and the nonreporting of timing of 

study assessments and dropout rates. Critically, when it 

comes to assessing risks and benefits, none of the studies 

attempted to determine what differences in quality of life 

scales meant to patients.

Two of the studies examined left ventricular dimensions 

and found that hemoglobin targets had no effect. Transfusion 

rates, reported by all studies except CHOIR, were 37%–60% 

lower with higher targets. While no study showed an irre-

futable effect on primary study outcomes, several showed 

differences in important nonprimary event rates or in indi-

vidual components of the primary composite outcomes. For 

example, in CREATE, the risk of renal replacement therapy 

was greater in the immediate intervention arm, in spite of 

similar rates of change in glomerular filtration rate, vascular 

access loss was greater with higher targets in USNH, and 

stroke was greater in CENH. In TREAT, stroke rates were 

higher in the darbepoetin arm; for outcomes not incorporated 

in the primary outcome, darbepoetin was associated with 

higher rates of venous and arterial thromboembolism and 

higher rates of cancer-related death in subjects with cancer 

at baseline, without being associated with death attributed to 

cancer in the overall population and overall cancer rates.

Even though only five trials are examined in detail here, 

noteworthy differences were present at each level considered, 

ie, enrollment criteria, interventions, primary outcomes 

selected, treatment concealment, success of randomization, 

and study findings. In the presence of such distinct hetero-

geneity, it is questionable whether attempting to generate 

aggregate findings is a reasonable approach. It seems appar-

ent that an ideal approach to treating anemia in patients with 

CKD remains to be identified, and, despite years of research, 

much more investigation is needed.

Resistance to ESAs
There is a substantial amount of literature relating declining 

hemoglobin levels to adverse outcomes, including death, in 

patients with CKD.54 In addition, resistance to ESA, typically 

defined by high ratios of ESA dose to hemoglobin levels, is 

also associated with adverse outcomes.55,56 Two hypotheses 

are compatible with these observations, and have disturb-

ingly different treatment implications, ie, sicker patients 

need higher doses to achieve a given hemoglobin target and, 

assuming for a given patient that a given hemoglobin target 

can be achieved with different doses of ESA, higher ESA 

doses are harmful. In this regard, a recent subgroup analysis 

of the TREAT trial provides valuable insights.57 By design, 

patients receiving ESAs were excluded and fixed initial 

darbepoetin doses were employed. This subgroup analysis 

examined subjects in the active treatment arm, and reported 

higher rates of both the composite cardiovascular endpoint 

and death in those with a lesser hemoglobin response. Many, 

including the author of this report, have tended to interpret 

these findings as raising concern about current target-based 

strategies for treating anemia in patients with CKD.57 It seems 

difficult to make claims for dose-related harm, given that 

doses were fixed, and it is plausible that this is a beautiful 

demonstration of patient-related factors being responsible 

for a connection between hemoglobin response and harm, 

at least in this study.

Conclusion
Unraveling the biology of erythropoiesis has identified many 

potential therapeutic targets. Sadly, the quality and quantity 

of clinical trial information available to guide ESA use do 

not permit confident statements about optimally efficacious, 

safe, and cost-effective therapeutic strategies. With our ever 

increasing insight into the biology of erythropoietin, it seems 

natural to question whether different ESAs might have dif-

ferent nonerythroid effects at doses and intervals resulting in 

similar hemoglobin trajectories. If this is the case, the drug 

evaluation and approval of ESAs will need to go far beyond 

the research reported to date.

Disclosure
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