
 

 

Vol: 37(3), Article ID: e2022021, 15 pages 
https://doi.org/10.5620/eaht.2022021 

Copyright © 2022 The Korean Society of Environmental Health and Toxicology & Korea Society for Environmental Analysis This is an Open Access article 

distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/ licenses/by-nc/4.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.  

 eISSN: 2671-9525 

Original Article 

Evaluation of the toxicological effects of atrazine-metolachlor in male 

rats: in vivo and in silico studies  
Ebenezer Tunde Olayinka1, Ayokanmi Ore1, Kayode Ezekiel Adewole 2,* , Oyepeju Oyerinde1 

 
1 Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University Oyo, Oyo State Nigeria 
2 Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria 

*Correspondence: kayowolemi@gmail.com 

 

Received: July 20, 2021 Accepted: July 25, 2022 

 
Keywords: herbicide, atrazine, metolachlor, cardiotoxicity, testicular toxicity, androgen receptor  
 

Introduction 
 Atrazine (ATR)-metolachlor (MET) is an herbicide composed of a mixture of ATR emulsion and MET used to 

control a broad array of weeds mainly in cultivated farmlands. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-

triazine, Figure 1) is a selective herbicide that is effective against broadleaf weeds while metolachlor (MET) controls grasses; 

but used together as a mixed herbicide, ATR-MET provide efficacious management of weeds appearing as broadleaves and 

grasses [1,2]. Thus, instead of using two different herbicides, one for broadleaf and the other for grasses, ATR-MET as a 

combination herbicide is used; this is effective, saves time and resources. ATR, on its own is an herbicide in widespread 

application globally, and the common formulations with MET include 200 g/L of ATR+200 g/ MET suspension-emulsion, 

270 g/L ATR+150 g/L MET suspension-emulsion, 370 g/L ATR+290 g/L MET suspension concentrate [2]. It is considered an 

environmental contaminant [3] because it has been detected in groundwater, food, drinking water, the atmosphere and even 

in human body; with atrazine detected in 20% of indoor air evaluated at concentration of about 200-300 ng/m for atrazine, 

using an air sampler [4-6]. In spite of its wide occurrence, the harmful effects of ATR exposure on humans are still not 

completely clear, although epidemiological studies have shown that exposure to ATR may adversely affect reproductive 

and developmental progression [7], while various animal studies have shown the adverse effect of ATR on the endocrine, 

reproductive and the development of the central nervous systems [4]. For instance, it has been shown that ATR reduces the 

number and motility of sperms in rats and in man [8-10], impedes reproductive maturation in both male and female rats [3, 

11], decreases prostate and seminal vesicle weights in rats [3,11]. The hepatotoxicity of atrazine has also been reported by 

some studies. For example, in Wistar strain of albino rats, atrazine was shown to cause hepatotoxicity which was revealed 

by increased manifestation of hepatic disease indices including dose dependent reduction in serum glucose concentration, 

increase in total serum lipids, and the activities of serum alanine amino transferase (ALT), alkaline phosphatase (ALP) and 

gamma-glutamyltransferase (GGT) [12,13].  

 Metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-metoxy-1-methylethyl) acetamide, Figure 2) on the other 

hand is a discriminatory herbicide from chloroacetamide group which hinder seed germination by inhibiting mitosis and 

cell division [14], as well as preventing the synthesis of chlorophyll, fatty acids, lipids and proteins [15]. Like atrazine, 
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induced-testicular toxicity (reduced sperm motility, count, and daily sperm production and increased live/dead ratio) 

was accompanied with testicular oxidative stress (diminished level of reduced glutathione, activities of glutathione-S-

transferase, superoxide dismutase and catalase and increased level of malondialdehyde). Furthermore, ATR-MET 

induced cardiovascular toxicity (increased levels of plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and 

triglycerides) with concomitant induction of renal toxicity (increased plasma creatinine and urea levels), and 

hepatotoxicity (increased plasma bilirubin, alkaline phosphatase, acid phosphatase, alanine aminotransferase and 

aspartate aminotransferase). Binding energy and amino acid interactions from in silico study revealed that MET 

possessed endocrine-disrupting capacity. In conclusion, exposure to atrazine-metolachlor could promote 

cardiovascular, renal, hepatic, as well as reproductive impairment in experimental male albino rats. 
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metolachlor has also been found to linger on agricultural soil, in surface waters as well as groundwater [16-18]. Studies have 

also shown that metolachlor could adversely affect the functions of the male reproductive system by various mechanisms 

including modulation of testosterone production via increase in the activity of aromatase enzyme in a human cell line, as 

well as via other mechanisms [15,17-19]. 

 

 
Figure 1. Structure of atrazine. 

 

 
 

Figure 2. Structure of metolachlor. 

 

 As stated above, ATR-MET is ATR in combination with MET, however, little is known about the toxicity of this 

formulation. Investigation of alterations in cardiovascular, hepatic and renal disease indices, antioxidant parameters, male-

related organ toxicity and related enzymes, and increases of lipid peroxidation levels, offer rapid means to assess toxic effect 

and mechanism of action of chemicals, including herbicides. These biochemical end points have been used to evaluate 

potential adverse effect of chemicals to explain their adverse outcomes. Accordingly, this study was undertaken to evaluate 

the effect of varying combinations of ATR and MET on selected organ disease indices, including cardiovascular, hepatic, 

renal and the male reproductive system. To achieve this, the study used cardiovascular, hepatic, renal and testicular toxicity 

and antioxidant indices in male rats to investigate the toxic effects of the administration of varying concentration of ATR-

MET. The study also employed molecular docking to characterize the structural binding of atrazine and metolachlor with 

androgen receptor (AR) to predict their potential endocrine-disrupting effects in AR signalling. 

 

Materials and Methods 
Animals and reagents 
 Twenty-four albino male rats (Ratus novergicus) with an average weight of 140 g used for this study were 

purchased from the Animal Holding Unit of the Department of Biochemistry, University of Ibadan, Nigeria. ATR-MET is a 

product of First Chemical Co Ltd, Changxing, Zhejiang China. GSH, 1-chloro-2, 4-dinitrobenzene (CDNB), 5’, 5’-dithio-bis-

2-nitrobenzoic acid (DTNB), thiobarbituric acid (TBA), epinephrine and hydrogen peroxide were purchased from Sigma 

Chemical Company (London, UK). ALT, AST, ALP, GGT, urea, creatinine, bilirubin, total cholesterol, HDL-cholesterol, 
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LDL-cholesterol and triglycerides kits were obtained from Randox Laboratories Ltd, Antrim UK. All other chemicals and 

reagent were of analytical grade and were obtained from British Drug House, Poole, UK. 

 

Animal handling and treatment  
 The experimental animals were handled and used in accordance with the international guide for the care and use 

of laboratory animals [20]. They were kept in normal laboratory conditions under natural light–dark cycle with access to 

food and water ad libitum all through the time of the experiment. The animals were randomly assigned into four groups (of 

6 rats each), which were designated A (control), B, C and D. The control rats in group A were administered physiological 

saline orally for 21 days while rats in groups B, C and D were orally administered ATR-MET 1 (67.5 mg ATR+37.5 mg MET  

kg/BW), ATR-MET 2 (135 mg ATR+75 mg MET kg/BW) and ATR-MET 3 (270 mg ATR kg/BW+150mg MET kg/BW) daily 

for 21 days respectively. These doses were set independently based on earlier studies [21,22]. The drugs were administered 

as homogenous aqueous suspensions in normal saline. All the animals were sacrificed 24 hours after the twenty-first day of 

drug administration. 

 

Collections of plasma and tissue samples 
 The rats were sacrificed by cervical dislocation. Blood samples were collected by ocular puncture into heparinized 

tubes. The blood samples were centrifuged for 10 min at 4000 g (Cencom bench centrifuge) to obtain the plasma which was 

thereafter kept frozen for the estimation of cardiovascular indices (lipid profile), renal and liver function test, as well as 

other marker enzymes. The testes were removed from the animals, rinsed in ice-cold 1.15% KCl, blotted and weighed, and 

thereafter used to prepare sub-cellular fraction. 

 

Preparation of sub-cellular fraction 
 The testes were weighed, macerated and homogenized in 4 volumes of ice-cold 0.1 M phosphate buffer (pH 7.4). 

The homogenates were centrifuge at 12,500 g for 15 mins using an Eppendorf refrigerated centrifuge. The supernatant, termed 

the post mitochondria fractions (PMF), was obtained and stored frozen for subsequent analysis. 

 

Analysis of sperm parameters  
 Testicular sperm number, progressive sperm motility assay, and volume. 

 Testicular sperm was obtained by mincing the cauda epididymis and the testis in normal saline and filtering 

through a nylon mesh. The spermatozoa were counted using the Neubauer haemocytometer following the methodology as 

described by Pant and Srivastava [23]. The motility of epididymal sperm was evaluated visually at 400xmagnification within 

2-4 min of isolation from the cauda. Motility estimations were performed from the entire field in each sample. The mean 

was used as the final motility score and data were expressed as percentages [24]. 

 

Morphological and live-dead examination of spermatozoa 
 A portion of the sperm suspension placed on a glass slide was smeared out with another slide, fixed in 95% ethanol, 

and stained with 1% eosin and 5% nigrosine for morphological and viability observation. At least 100 sperms from each rat 

were examined for abnormalities in different regions of spermatozoa according to the method described by [25]. 

 

Daily Sperm Production (DSP) rate  
 The testis was weighed, decapsulated and homogenized in ice-cold 0.9% sodium chloride. The homogenate was 

filtered through a nylon mesh to remove connective tissue, and the filtrate was used to count the number of homogenization-

resistant spermatids/sperm in each sample in duplicate using a haemocytometer. DSP was calculated by dividing the total 

number of spermatids/sperm per gram testis by 6.1 days, the duration of step 19 spermatids in the seminiferous tubules [26]. 

 

Assay of biochemical parameters  
 The protein content of the samples was determined according to the Biuret method, using bovine serum albumin 

as standard [27]. Briefly, the biuret method depends on the principle that when a solution of protein is treated with Cu2+ in 

moderately alkaline medium, a purple colored chelate is formed between Cu2+ and the peptide bonds of the protein with 

maximum absorbance at 540 nm. The intensity of the purple color is proportional to the amount of protein present.  

Activities of ACP according to the method of Tietz et al. [28], ALP by the method of Wright et al. [29], AST and ALT following 

the principle described by Reitman and Frankel [30], the levels of creatinine and urea by the method described by Tietz et 

al. [28] were determined by using Agape Diagnostics, Switzerland GmbH assay kits following the manufacturer’s 

instruction. Catalase activity was determined according to the method of Sinha, 1972 [31]. Briefly, a reaction mixture of 2 

mL of hydrogen peroxide (800 μ moles), 2.5 mL of 0.01 M phosphate buffer (pH 7.0) and 0.5 mL of diluted sample (1:50) 

was rapidly constituted at 25 °C, 1 mL of reaction mixture was withdrawn and promptly added to 2 mL dichromate/acetic 
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acid solution at intervals of 1 min to measure the residual H2O2 in the solution. The chromic acetate generated was quantified 

at 570 nm and the residual H2O2 estimated extrapolating from the standard curve for hydrogen peroxide. The activity of 

catalase was expressed as micromole of H2O2 used up/min/mg protein. 

 The activity of SOD was estimated by the method of Misra and Fridovich [32]. Briefly, 1 mL of the sample was 

diluted in 9 mL of distilled water to get a 1:10 dilution; 0.2 mL of the diluted enzyme preparation was added to 2.5 mL of 

0.05 M carbonate buffer (pH 10.2) and allowed to equilibrate in the spectrophotometer. The reaction was started by the 

addition of 0.3 mL of newly prepared 0.3 mM epinephrine to the mixture which was quickly mixed by inversion, the 

reference cuvette contained 0.2 mL of distilled water, 2.5 mL of carbonate buffer and 0.3 mL of epinephrine. The increase in 

absorbance at 480 nm was monitored every 30 s for 150 s. The activity of SOD in the sample was expressed as follows: 

 

 Percentage inhibition=(
increase in absorbance of sample

increase in absorbance of blank
) ×100      (1) 

 

 One Unit of SOD activity is taken as the amount of SOD necessary to cause 50% inhibition of the oxidation of 

adrenaline to adrenochrome over an interval of 60s.  

 SOD activity (Unit/mg protein)=(df=dilution factor). The level of GSH was determined by the method described 

by Jollow et al. [33]. Briefly, the reaction mixture contained 1.8 mL of distilled water, 0.2 mL of sample and 3 mL of 4% 

sulphosalicylic acid. The reaction mixture was allowed to stand for 5 minutes, filtered, 1 mL of the filtrate was added to 4 

mL of 0.1 M phosphate buffer and finally, 0.5 mL of Ellman’s reagent (5,5′-dithiobis-(2-nitrobenzoic acid), DTNB), (0.04% in 

0.1 M phosphate buffer, pH 7.4) was added. A blank was prepared with 4 mL of the 0.1 M phosphate buffer, 0.5 mL of the 

Ellman’s reagent and 1 mL of diluted sulphosalicylic acid. The absorbance was read at 412 nm and the GSH concentration 

in the samples was estimated by extrapolation from the GHS standard curve. GST activity was determined by the method 

of Habig et al. [34]. Briefly, the assay mixture contained of 30 μL of reduced GSH (0.1 M), 2.79 mL phosphate buffer (0.1 M, 

pH 6.5), 150 μL of CDNB (3.37 mg/ mL) and 30 μL of tissue sample. The absorbance of the reaction mixture was measured 

at 340 nm against the blank after 60 seconds. The activity of the enzyme in the PMF was estimated using the following 

equation:  

 

 GST activity (µg mole/min/mg protein) =(
𝐴𝑏𝑠/𝑚𝑖𝑛

9.6
)×

1

0.03 × 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑚𝑔)
     (2) 

 

Where: 9.6 is the molar extinction coefficient of CDNB (mmolcm−1) and 0.03 is the volume of tissue sample in mL. Lipid 

peroxidation was assayed by measuring the thiobarbituric acid reactive (TBAR) products present in the test sample using 

the procedure of Varshney and Kale [35]. Briefly, the reaction mixture is made up of 1.6 mL Tris-KCl buffer, 0.5 mL of 30% 

TCA, 0.4 mL of the test sample, 0.5 mL of 0.75% TBA. The temperature of the mixture was raised to 95 °C and maintained 

at same for 1 h in a water bath. The mixture was then cooled on ice and centrifuged at 3000 rpm. The clear supernatant was 

collected and the absorbance read against a reference blank of distilled water at 532 nm using a spectrophotometer. Lipid 

peroxidation in nmole/mg protein was estimated using the following equation: 

 

MDA = 
𝐴𝑏𝑠 × 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒

E532 × 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
        (3) 

 

 Where: E532 is the molar extinction coefficient for MDA=1.56 × 105 M−1 cm−1. The concentrations of total cholesterol, 

HDL- and LDL-cholesterol and triglyceride concentrations were assayed using the CHOD-PAD enzymatic colorimetric 

method described by Trinder [36] according to the manufacturer’s instruction Randox diagnostic kits, UK [36]. 

 

Molecular docking of selected compounds with protein targets 

Protein preparation 
 The crystal structures of androgen receptor (AR) with PDB ID of 1e3g was retrieved from the protein databank 

(http://www.rcsb.org) and prepared by eliminating existing ligands and water molecules while the absent hydrogen atoms 

were added using the Autodock v4.2 program, Scripps Research Institute. The search grid was expanded above the target 

proteins and the parameters of the atomic solution were determined. Polar hydrogen charges of the Gasteiger type were 

allocated and the non-polar hydrogens were integrated with the carbons and the internal degrees of freedom and torsion 

were formed, after which the protein was saved in PDBQT format. 

 

Ligand preparation 
 The structure data file (SDF) formats of testosterone, metolachlor and atrazine were obtained from the PubChem 
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database (www.pubchem.ncbi.nlm.nih.gov) and converted to mol2 chemical format with Open Babel program [37]. The 

ligands’ alpha carbons were detected when the internal degrees of freedom and torsion were set to zero, and then converted 

using Autodock tools to PDBQT format. 

Molecular docking 
 Docking of the compound to androgen receptor as well as the assessment of binding affinities was done using 

Vina GUI (Trott& Olson, 2010). The PDBQT format of the protein and the ligands were dragged into their respective columns. 

The grid center for docking was detected as X=9.54, Y=21.48, Z=36.52 with the dimensions of the grid box, 65.64×67.134× 

96.46 for M3 muscarinic acetylcholine receptor, X=124.98, Y=-17.37, Z=129.67 with the dimensions of the grid box, 58.98× 

64.41×99.26 for prostaglandin E2 receptor 3. Subsequently, the program was run and cluster analysis based on root mean 

square deviation (RMSD) values for starting geometry was conducted and the lowest energy conformation of the more 

populated cluster was found to be the most accurate solution. The pose with the strongest affinity for each cluster was taken 

as the representation of this cluster. The compounds were then ranked by their affinity scores. Thereafter, molecular 

interactions between the protein targets and the compounds that have the highest binding affinity were viewed with 

Discovery Studio Visualizer, 2020. 

 

Statistical analysis 
 All data were expressed as mean±SD of six replicates. The data were subjected to one way analysis of variance 

(ANOVA) and complemented with student’s t-test using sigma plot® statistical software. Values were considered 

significantly different with respect to control data at p<0.05. 

 

Results  
Effect of ATR-MET administration on plasma creatinine and urea 
 Table 1 shows the effects of administration of ATR-MET on the levels of plasma creatinine and urea. 

Table 1. Effects of ATR-MET treatments on plasma creatinine, urea in rats.  

Treatment Creatinine (mg/L) Urea (mg/dL) 

Control 2.55±0.05 39.25±1.25 

ATR-MET 1 4.90±0.05 (92%)* 47.10±0.98 (20%)* 

ATR-MET 2 5.40±0.05 (111.7%)* 51.58±0.46 (31.4%)* 

ATR-MET 3 6.05±0.13 (137%)* 56.00±0.5 (42.7%)* 

ATR-MET 1=(67.5 mg atrazine+37.5 mg metolachlor) 

ATR-MET 2=(135 mg atrazine+75 mg metolachlor) 

ATR-MET 3=(270 mg atrazine+150 mg metolachlor) 
*Significantly different from the control (p<0.05) while values in parenthesis represent percentage (%) increase. 

 

 ATR-MET-1, ATR-MET-2 and ATR-MET-3 significantly increase the level of plasma creatinine by 92%, 111.7% 

and 137% respectively compared with control (p<0.05). Plasma urea level significantly increased by the administration of 

ATR-MET -1, ATR-MET -2 and ATR-MET -3- treated groups by 20%, 31.4% and 42.7% respectively, compared with control 

(p<0.05). 

 

Effect of ATR-MET administration on the activities of plasma ALP, ALT and AST level bilirubin 
 The effects of ATR-MET administration on the activities of plasma ALP, ALT and AST and level of bilirubin are 

presented in Table 2. 

Table 2. Effects of administration of Xtravest® on the activities of plasma alkaline phosphatase (ALP), alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) and level bilirubin in rats. 

Treatment ALP (U/L) ALT (U/L) AST (U/L) Bilirubin(mg/dL) 

Control 285.5±1.93 45.5±0.48 86.75±0.52 0.15±0.005 

ATR-MET 1 340±2.5 (19%)* 54.4±0.48 (19.8%)* 107.75±0.52 (24.2%)* 0. 26±0.009 (73.3%)* 

ATR-MET 2 375±4.08 (31.3%)* 62.5±0.48 (37.4%)* 113.25±0.94 (30.5%)* 0.30±0.008 (100%)* 

ATR-MET 3 396.25±2.56 (38.8%)* 66.8±1.25 (46.8%)* 120.25±0.52 (38.6%)* 0.33±0.008 (120%)* 

ATR-MET 1=(67.5 mg atrazine+37.5 mg metolachlor) 

ATR-MET 2=(135 mg atrazine+75 mg metolachlor) 

ATR-MET 3=(270 mg atrazine+150 mg metolachlor) 

http://www.pubchem.ncbi.nlm.nih.gov/
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*Significantly different from the control p<0.05, while values in parenthesis represent percentage (%) increase. IU = 

International Unit. It is a unit of measurement for the effect on a particular biological activity or effect being considered, 

including quantitation of vitamins, hormones and the components of blood such as enzymes. 

 

 Administration of ATR-MET (ATR-MET -1, -2 and -3) significantly increased the plasma ALP activity in the rats 

by 19%, 31.3% and 38.8% respectively compared with control (p<0.05). Also, Plasma ALT activity was significantly increased 

by 19.8%, 37.4% and 46.8% by ATR-MET -1, -2 and -3 compared with control (p<0.05). Furthermore, plasma the activity of 

AST was increased significantly, following ATR-MET-1, -2 and -3 by 24.2%, 30% and 38.6% respectively when compared 

with control (p<0.05). Similarly, plasma bilirubin also increased significantly by ATR-MET-1, -2 and -3 by 73.3%, 100% and 

120% respectively when compared with control (p<0.05). The activity of plasma ACP following administration of ATR-MET 

is shown in Figure 3. The ACP activity was significantly increased in ATR-MET-1, -2 and 3-treated groups by 71.4%, 87.6% 

and 108% respectively when compared with the control (p<0.05). 
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Figure 3. Influence of ATR-MET treatments on plasma acid phosphatase (ACP) activity in rats: TR-MET 1=67.5 mg 

Atrazine+37.5 mg Metolachlor; ATR-MET 2=135 mg Atrazine+75 mg Metolachlor; ATR-MET 3=270 mg Atrazine+ 150 

mg Metolachlor. *Significantly different from the control, p<0.05.  

 

Effect of ATR-MET administration on lipid profile 

 The effects of ATR-MET treatment on plasma lipids profile in rats is shown in Table 3. 

Table 3. Effects of administration of ATR-MET on plasma lipids profile in rats.  

Treatment 
Total cholesterol 

(mg/dL) 

HDL-cholesterol 

(mg/dL) 

LDL-cholesterol 

(mg/dL) 
Triglyceride (mg/dL) 

Control 85±0.5 44.5±0.48 13.6±0.9 16.75±0.94 

ATR-MET 1 104±1.63 (22.4%)* 81.8±0.97(83.7%)* 17.3±0.82 (27%)* 22.5±0.95 (34.3%)* 

ATR-MET 2 114.75±0.83 (35%)* 91±0.5 (104.5%)* 18.4±0.68 (35%)* 27±0.82 (61.2%)* 

ATR-MET 3 123.5±0.95 (45.3%)* 101±0.85(128%)* 19.6±0.23 (44%)* 34.5±1.25 (105.9%)* 

ATR-MET 1=(67.5 mg atrazine+37.5 mg metolachlor) 

ATR-MET 2=(135 mg atrazine+75 mg metolachlor) 

ATR-MET 3=(270 mg atrazine+150 mg metolachlor) 
*Significantly different from the control (p <0.05), while values in parenthesis represent percentage (%) increase. 

 

 Administration of ATR-MET-1, ATR-MET-2 and ATR-MET-3 significantly increased plasma total cholesterol, 
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LDL-cholesterol and HDL-cholesterol concentrations by 22.4%, 27% and 83.7%; 35%, 35% and 104.5%; and 45.3%, 44% 

and128% respectively compared to control (p<0.05). Similarly, plasma triglyceride level was significantly increased 

following administration of Xtravest-1, -2, and -3 by 34.3%, 61.2% and 105.9% respectively compared with control (p<0.05). 

 

The effect of administration of ATR-MET on sperm parameters 
 The effects of administration of ATR-MET on sperm motility, live/dead ratio, sperm volume, sperm count and 

daily sperm production (DSP) in rats was shown in Table 4. Administration of ATR-MET at different concentration (ATR-

MET-1, -2 and -3) significantly decreased sperm motility, and live/dead respectively by 15%, 42.3% and 54.2%; 3.1%, 15.3% 

and 40% when compared with control (p<0.05). There were no significant changes in the volume of the sperm in all the 

groups that were treated with ATR-MET at different concentration when compared with the control. Furthermore, 

administration of different concentration of ATR-MET-1, -2 and -3 significantly reduced sperm count and daily sperm 

production (DSP) by 48.7%, 67.4%, and 87.8%; and 10%, 22%, and 46.7% respectively when compared with the control 

(p<0.05). 

 

Table 4. Effects of administration of ATR-MET on sperm motility, live/dead ratio, sperm volume, sperm count and 

daily sperm production (DSP) in rats 

Treatment Sperm motility (%) Live/dead  

ratio (%) 

Sperm 

volume(cc) 

Sperm count (×106) DSP (× 106) 

Control 92.5±2.39 98±0.81 5.17±0.013 154±2.52 22±1.29 

ATR-MET -1 80±2.5 (15%)* 95±0.5 (3.1%)* 5.17±0.05 105±1.29 (46.7%)* 20±2.64 (10%)* 

ATR-MET -2 65±4.08 (42.3%)* 85±0.58 (15.3%)* 5.15±0.05 92±1.29 (67.4%)* 18±0.96 (22%)* 

ATR-MET -3 60±2.89 (54.2%)* 70±0.8 (40%)* 5.15±0.05 82±1.29 (87.8%)* 15±1.71(46.7%)* 

ATR-MET 1=(67.5 mg atrazine+37.5 mg metolachlor) 

ATR-MET 2=(135mg atrazine+75 mg metolachlor) 

ATR-MET 3=(270 mg atrazine+150 mg metolachlor) 
*Significantly different from the control, p<0.05, while values in parenthesis represent percentage (%) decrease. 

 

The effect of administration of ATR-MET on testicular antioxidant 
 The effects of administration of ATR-MET on testicular SOD and catalase activities in rats are shown in Table 5. 

Testicular SOD activity was significantly decreased following administration of ATR-MET-1, -2 and -3 by 48.5%, 100% and 

292% respectively compared with control (p<0.05). Also, testicular catalase activity was significantly decreased following 

administration of ATR-MET-1, -2 and -3 by 59%, 94% and 169% respectively compared with control(p<0.05). 

Table 5. Effects of administration of ATR-MET on superoxide dismutase and catalase activities in rats. 

Treatment Superoxide dismutase units Catalase activity (µmole H2O2 consumed/min) 

Control 9.8±0.13 0.35±0.03 

ATR-MET 1 6.6±0.22 (48.5%)* 0.22±0.01 (59%)* 

ATR-MET 2 4.9±0.33 (100%)* 0.18±0.01 (94%)* 

ATR-MET 3 2.5±0.13 (292%)* 0.13±0.02 (169%)* 

ATR-MET 1=(67.5 mg atrazine+37.5 mg metolachlor) 

ATR-MET 2=(135 mg atrazine+75 mg metolachlor) 

ATR-MET 3=(270 mg atrazine+150 mg metolachlor) 
*Significantly different from the control, (p<0.05), while values in parenthesis represent percentage (%) decrease. 

 

 The effect of administration of ATR-MET on testicular GST activity is shown in Figure 4 following treatment with 

ATR-MET at different concentration (ATR-MET -1, ATR-MET -2 and ATR-MET -3). The activity of GST was significantly 

decreased by 24.5% in ATR-MET 1, 35.9% in ATR-MET 2, 54.9% in ATR-MET 3-treated group compared with the control 

(p<0.05). The testicular GSH level following treatment with ATR-MET is shown in Figure 5, while the level of testicular lipid 

peroxidation (MDA level) following treatment with ATR-MET is shown in Figure 6. The GSH level was significantly 

decreased by 20%, 42.5% and 119.5% in respectively in ATR-MET1, 2 and 3-treated groups when compared with the control 
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(p<0.05). The MDA level was significantly decreased by 21.6%, 26.1% and 48.5% respectively in ATR-MET 1, 2 and 3-treated 

groups when compared with the control (p<0.05). 
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Figure 4. Influence of ATR-MET treatments on testicular glutathione-S-transferase (GST) activity in rats.: ATR-MET 1 

=67.5 mg atrazine+37.5 mg metolachlor; ATR-MET 2=135 mg atrazine+75 mg metolachlor; ATR-MET 3=270 mg atrazine 

+150 mg metolachlor; The values are Means±SD (range) for five rats in each group. *Significantly different from the 

control, p<0.05.  
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Figure 5. Influence of ATR-MET treatments on testicular reduced Glutathione (GSH) in Rats.: ATR-MET 1=67.5 mg 

atrazine+37.5 mg metolachlor; ATR-MET 2=135 mg atrazine+75 mg metolachlor; ATR-MET 3=270 mg atrazine+150 mg 

metolachlor. *Significantly different from the control, p<0.05.  
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Figure 6. Influence of ATR-MET treatments on testicular lipid peroxidation (MDA) in Rats.: ATR-MET 1=67.5 mg 

atrazine+37.5 mg metolachlor; ATR-MET 2=135 mg atrazine+75 mg metolachlor; ATR-MET3=270 mg atrazine+150 mg 

metolachlor. *Significantly different from the control, p<0.05. 

In silico studies 
 The result of the in silico study undertaken showed of the binding tendency of atrazine, metolachlor and 

testosterone for AR to gain an insight into their androgen disruptive effect are shown in Table 6. The result showed a binding 

affinity of testosterone for AR is -7.7 kcal/mol, while that of atrazine is -5.8 kcal/mol, and that of metolachlor is -10.8 kcal/mol. 

The amino acid interactions of testosterone and metolachlor on the androgen receptor are shown in Figure 7 and Figure 8 

respectively. Figure 7a revealed that testosterone exhibited hydrogen bond interactions with GLN798, LYS847 and SER851 

AR, while exhibiting hydrophobic bond interactions with ARG846 and ARG855, while in Figure 8a it was revealed that 

metolachlor formed hydrogen bonds with SER851 and ARG855, hydrophobic bonds with ARG855, ILE842 and an 

electrostatic force of attraction with GLU803 of this receptor. 

Table 6. Binding affinities of testosterone, atrazine, metolachlor for androgen receptor.  

S/N Compounds Binding affinity 

S Testosterone -7.7 

1 Atrazine -5.8 

2 Metolachlor -10.8 

 

 
(a) 

 
(b) 

Figure 7. Interaction between amino acids in the binding site of androgen receptor and (a) testosterone in 3D and (b) 

testosterone in 2D 
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(a) 

 
(b) 

Figure 8. Interaction between amino acids in the binding site of androgen receptor and (a) metolachlor in 3D and (b) 

metolachlor in 2D. 

 

Discussion 
 Herbicides, including atrazine and metolachlor are produced and used each year around homes and in the 

agricultural sector. Although a lot of attention has been devoted to elucidating the mechanisms of atrazine toxicity, there 

are limited reports on the toxicity of its combination with metolachlor. The ATR-MET treated animals showed reduced 

epididymal and testicular sperm number and sperm motility. These animals also suffered impaired spermatocytogenesis 

with a concomitant drop in the rate and efficiency of spermatozoa production and the viability of spermatozoa already in 

storage, in agreement with an earlier study by Simic et al. [39]. The effect of ATR-MET on these sperm parameters indicates 

that the androgen-secreting capacity in the treated animals was affected. It is known that decrease in sperm count with an 

associated increase in the percentage of abnormal sperms is associated with infertility in males [40, 41]. Although the adverse 

effects of atrazine on the reproductive capacity of various animal models are well-reported [10, 42], the effect of ATR-MET, 

which is a combination of atrazine and metolachlor has not been fully understood. The results obtained from this study 

indicate that this herbicide could also cause some level of reproductive damage in rats. 

 The spermatozoa, like most cells have developed a robust antioxidant defense system consisting of enzymes such 

as catalase, SOD and components like GSH which scavenge and suppress the formation of ROS, while estimation of end 

products of lipid peroxidation such as MDA is an index of the extent of oxidative damage to cellular structures [43,44]. 

Oxidative stress happens in tissues when oxidative reactions surpass antioxidant reactions, leading to the loss of the delicate 

balance between them [45]. The increased level of MDA decreased level of GSH and reduced activities of SOD, catalase and 

GST in a dose-dependent fashion noticed in the testes homogenates of the ATR-MET-treated animals validate the capacity 

of the herbicide to cause tissue oxidative damage. This is attributable to the preponderance of polyunsaturated fatty acid in 

the testis which predisposes it to oxidative stress [46]. Increased MDA level along with altered antioxidant defense 

machinery such as diminution of GSH level in tissues signals the onset of oxidative stress that may precipitate many 

peroxidative harm, which is especially a critical issue in the testis because of its vulnerability to oxidative assault [46]. 

Superoxide dismutase and catalase act as the first line of defense to the cells, while SOD speed up the dismutation of 

cytotoxic superoxide radicals to H2O2, catalase converts the harmful H2O2 to water and oxygen [44]. The decrease in testicular 

SOD and catalase activities in animals treated with the herbicide was accompanied with a significant increase in MDA level, 

as well as reduced GSH level and the activity of GST relative to the control animals. These observations show the ability of 

the herbicide to overwhelm the antioxidant system of the animals to induce oxidative stress in the testes because over 

production of ROS and lipid peroxides may cause over utilization of GSH and inhibition of antioxidant enzymes [47,48], 

while alteration in the activity of testicular SOD might lead to growth arrest and impaired function of the testis and 

spermatogenesis [49,50]. The decreased activity of catalase in the testis would allow more of the H2O2 to be converted to 

toxic hydroxyl radicals [51], which might contribute to severe oxidative damage to the cellular membrane of spermatozoa 

of the atrazine-metolachlor treated animals, resulting in the impaired motility.  

 The results obtained from this study also showed that ATR-MET induced cardiovascular, hepatic, renal and 

testicular toxicity in male rats in, with concurrent alterations in testicular antioxidative parameters. The increase in plasma 

total cholesterol concentration following the administration of ATR-MET corroborates various earlier reports on the effect 

of toxic agents on plasma level of total cholesterol [52]. This generally suggests deleterious effect on heart conditions 

including high blood pressure and coronary heart diseases [53]. The elevated plasma HDL-cholesterol, LDL-cholesterol and 

triglyceride following the administration of ATR-MET also indicate the cardiotoxicity of this herbicide. For example, 

oxidation of LDL in the vascular endothelium initiates the formation of plaque, a major culprit of cardiovascular diseases. 
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Cholesterol is transported, by LDLs, from where it is produced in the liver to other body tissues, where it is detached from 

the lipoprotein for subsequent utilization by the cells. LDL-cholesterol is principally responsible for atherosclerotic 

formation in the blood vessels, especially in the arteries where they cause hardening of the vessels which can also cause 

heart attack [53]. Therefore, the elevation in plasma LDL-cholesterol concentration occasioned by the administration of ATR-

MET suggests that this herbicide may predispose subjects to some cardiovascular diseases. Also, the administration of ATR-

MET significantly increased plasma triacylglycerol concentration relative to control, and concurrent increase in plasma 

triacylglycerol and plasma LDL is said to be a critical coronary risk index [54]. 

 Furthermore, result obtained from this study shows that ATR-MET induced marked increase in renal and hepatic 

damage biomarkers as evidenced by the significant increase in plasma urea and creatinine levels (renal indices), as well as 

ALT, AST activities and bilirubin level (hepatic biomarkers). The increased levels of urea and creatinine may indicate acute 

or chronic kidney disease which may be associated with long duration of symptoms; absence of acute illness, anaemia, 

hyperphosphataemia, hypocalcaemia [55]. The activities of ALT, AST and the level of bilirubin are useful tools to investigate 

chemical and drug-induced liver injury, elevation of these indices indicate the liver damaging effect of the administered 

herbicide in this study [56]. The cytotoxic effect of ATR-MET administration is also revealed by the increased plasma activity 

of ALP and ACP. These two enzymes are commonly used as a marker enzyme for the integrity of the plasma membrane 

and endoplasmic reticulum [57,58]. Excess of phosphatases is harmful to the survival of the cells since this may lead to 

arbitrary hydrolyzation of orthophosphate monoesters [53]. The elevation in the activities of ALP and ACP observed in this 

study suggests that the integrity of the membrane systems of the animals’ hepatic tissue has been compromised by the 

administration of the herbicide in a dose-responsive manner, corroborating other hepatic indices that the herbicide could 

be hepatotoxic. 

 In addition to in vivo studies, molecular docking was used to characterize the structural binding of atrazine, 

metolachlor and testosterone with AR to probe the possible endocrine-disrupting ability of these compounds in AR 

signalling. Like testosterone, metolachlor interacted with the ligand-binding pocket of AR via hydrogen bonding and 

hydrophobic interactions, but with an additional pi-pi (electrostatic) interaction. The binding energy of metolachlor with 

AR was higher than that of testosterone, a native ligand of this receptor (Table 8). The amino-acid residue interactions of 

metolachlor had very high similarity compared to that of testosterone; common hydrogen bonding interaction with amino-

acid SER851 and common hydrophobic interaction with ARG855 of AR (Figures 7a and 8a). This structural binding pattern 

suggested the potential of metolachlor to disrupt AR signalling, which could cause androgen-related reproductive 

impairment, a similar pattern reported by Beg and Sheikh on the endocrine disruption capacity of di(2-ethylhexyl) phthalate 

and its metabolites (Beg and Heikh, 2020). This study has used in vivo and in silico evaluations to probe the safety of ATR-

MET. The results obtained serve as a basis for further studies on the toxic potentials of ATR-MET in other experimental 

models, especially in humans. 

 From the results obtained in this study, it may be concluded that exposure to ATR-MET, a combination of atrazine 

and metolachlor could promote cardiovascular, renal, hepatic as well as reproductive impairment in the male rats, implying 

possible similar toxic effects in humans, a concern that deserves further investigation.  
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