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Temporal variation in species abundances occurs in all ecological communities. Here, we explore
the role that this temporal turnover plays in maintaining assemblage diversity. We investigate a
three-decade time series of estuarine fishes and show that the abundances of the individual species
fluctuate asynchronously around their mean levels. We then use a time-series modelling approach to
examine the consequences of different patterns of turnover, by asking how the correlation between
the abundance of a species in a given year and its abundance in the previous year influences the
structure of the overall assemblage. Classical diversity measures that ignore species identities
reveal that the observed assemblage structure will persist under all but the most extreme conditions.
However, metrics that track species identities indicate a narrower set of turnover scenarios under
which the predicted assemblage resembles the natural one. Our study suggests that species diversity
metrics are insensitive to change and that measures that track species ranks may provide better early
warning that an assemblage is being perturbed. It also highlights the need to incorporate temporal
turnover in investigations of assemblage structure and function.
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1. INTRODUCTION
Growing concern about the state of the planet and the
impacts that we humans are having on it (Butchart
et al. 2010) has led to renewed interest in methods
used to track changes in biodiversity, which is generally
done in one of two ways (Magurran et al. in press).
The first approach is to combine information on the
status of individual species to provide an overview of
change, as, for example, the Living Planet Index
(Loh et al. 2005) does. These types of indicators are
popular with politicians and policy-makers and are
increasingly widely used, but can have the disadvantage
that conclusions are made on the basis of a non-random
selection of species. Alternatively, one can look at the
assemblage as a whole and monitor changes in biodiver-
sity in relation to baseline changes—that is in
comparison with the extent of temporal shifts in species
identities and species abundances that would occur in
an unperturbed assemblage.

Assemblage-based assessments track these shifts in
an ecologically coherent group of organisms, and as
such provide a link between biodiversity and ecosystem
function (Cardinale et al. 2007, 2009; Loreau 2010).
Temporal variation—turnover—in species abundances
(Srivastava & Vellend 2005; Loreau 2010) can help
maintain function if there is asynchrony in species
abundances such that species that decline are replaced
with those that have similar functional roles. Two
closely related hypotheses—the ‘portfolio effect’
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(Doak et al. 1998; Tilman et al. 1998) and the ‘insur-
ance hypothesis’ (Yachi & Loreau 1999)—argue that
ecosystem properties are more stable in diverse assem-
blages because there will be more species to
compensate for any changes that do occur.

Although an assemblage-wide assessment of biodi-
versity is appealing, there are a number of difficulties.
First, apart from a few well-known examples, such as
the Park Grass experiment (Lawes & Gilbert 1880;
Lawes et al. 1882) and the Continuous Plankton Recor-
der (Richardson et al. 2006), there are relatively few
long-term datasets in which biodiversity data have
been collected using consistent methods over a
number of decades (Wolfe et al. 1987; Magurran et al.
in press)—but this is now changing (e.g. Ernest et al.
2008). Second, although it is well known that all eco-
logical communities experience temporal turnover
(Darwin 1859; MacArthur & Wilson 1967), we still
have limited information on how assemblage biodiver-
sity changes through time (but see Grossman et al.
1982; Sale & Douglas 1984; Ross et al. 1985; Warwick
et al. 2002; Thibault et al. 2004; Pavoine et al. 2009 for
some exceptions). This arises not just as a consequence
of data shortage but also because models of species
abundance have focused on spatial rather than temporal
patterns (Magurran 2007). As a result, it can be difficult
to know whether reported changes in biodiversity are
greater than those that might have happened by chance.

In general, it seems that mature assemblages—that
is, those not undergoing any directional change such
as succession—tend to show high persistence in the
sense that species richness is maintained through
time (Ross et al. 1985). This constancy can be under-
lain by considerable temporal variation in species rank
This journal is q 2010 The Royal Society
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and species abundance (Grossman et al. 1982, 1990;
Ross et al. 1985), and thus is consistent with the idea
that temporal asynchrony in species abundances can
help stabilize community properties (Loreau 2010).
However, Cottingham et al. (2001) found that the
relationship between species richness and the regu-
lation of aggregate assemblage variables (such as
biomass and productivity) was more complex than
anticipated. Moreover, it appears that species abun-
dances do not always vary asynchronously. Valone &
Barber (2008), for instance, discovered that the abun-
dances of most pairs of species in an analysis of a range
of terrestrial assemblages tended to covary positively—
and attributed this to correlated responses to climatic
fluctuations. Houlahan et al. (2007) found that the
abundances of species in natural communities tended
to covary positively and argued that the absence of
compensatory dynamics is because abiotic factors,
including climate, are likely to be more important
than competition. On the other hand, Leary & Petchey
(2009) showed that experimental communities of pro-
tists that contained species with different responses to
environmental changes exhibited lower temporal vari-
ation in biomass. It is clear that our knowledge of the
natural pattern of change in ecological assemblages is
incomplete, and to address this, we need to examine
data that have been collected using consistent
methods, at regular intervals and ideally over decades
so that we can be sure that natural variation is
accounted for. Two factors warrant investigation: (i)
do species abundances in natural assemblages vary
asynchronously and (ii) which patterns of asynchrony
(i.e. turnover in species abundances) produce assem-
blages where the structure is consistent with that
found in nature and where assemblage properties are
maintained through time.

In this paper, we explore temporal changes in an
exceptionally well-documented assemblage of estuar-
ine fishes and compare these patterns with those
generated by a simulated fish assemblage with the
same set of species, in which we manipulate the
degree of within-species autocorrelation in abundance
across years. We initially focus on the empirical dataset
and begin by asking whether the abundances of the
individual species change asynchronously, as predicted
by the insurance and portfolio hypotheses discussed
above. Next, we relate this pattern to assemblage
structure with the expectation that this structure is pre-
served through time (i.e. that there will be no trend in
a range of diversity metrics). Then, using the simu-
lated data, we examine the conditions under which
the aggregated abundances of the individual species
produce an assemblage that resembles the natural
one. We do this because while asynchrony in species
abundances may be necessary to assure continuity of
assemblage properties, year-to-year changes in the
abundance of species will be constrained by their
ecology, with the result that only a limited range of
turnover scenarios are likely to be present in
natural systems. For this analysis, we assume that the
abundances of species in the assemblage vary indepen-
dently, as each oscillates around its historical mean.
Thus, we are asking how the correlation between the
abundance of a species in a given year and its
Phil. Trans. R. Soc. B (2010)
abundance in the previous year influences the struc-
ture of the overall assemblage. We assess assemblage
responses to these varying levels of autocorrelation
by using diversity measures that evaluate assemblage
structure in terms of the relative abundances of
species, but ignore species identities, and with metrics
that track individual species identities. As Whittaker
(1960) recognized, measures that take account of
species composition can uncover differences between
assemblages that indices that examine species richness
or species relative abundance might not pick up (see
also Grossman et al. 1982). We, therefore, expect the
metrics that track species identities to reveal a smaller
set of turnover scenarios in which the predicted
assemblage resembles the real one.
2. METHODS
(a) Data collection

The Bristol Channel estuarine fish assemblage has
been sampled monthly for 30 years (Henderson
2007; Henderson & Bird 2010). To date, greater
than 80 species and greater than 100 000 individuals
have been recorded.

Fish samples were collected from the cooling
water filter screens at Hinkley Point B power station,
situated on the southern bank of the Bristol Channel
in Somerset, England. The water intakes are in front
of a rocky promontory within Bridgwater Bay, and to
the east are the 40 km2 Stert mudflats. Depending
upon the tide, the fish were sampled from water
varying in depth from about 8 to 18 m. For a full
description of the intake configuration and sampling
methodology, see Henderson & Holmes (1991) and
Henderson & Seaby (1994). The filter screens have a
solid square mesh of 10 mm. Methodology has not
changed over the three decades of the study.

Quantitative sampling commenced in 1980 when
24 h surveys of the diurnal pattern of capture were
undertaken in October and November. From these
surveys, it was concluded that samples collected
during daylight were representative of the 24 h catch
(Henderson & Holmes 1990) and monthly quantitat-
ive sampling commenced in January 1981. The total
volume of water sampled per month, which has not
varied over the entire period, is 4.27 � 105 m3. To
standardize for tidal influence, all sampling dates
were chosen for tides halfway between springs and
neaps, with sampling commencing at high water (nor-
mally about 12.00 h). Fish were collected hourly from
two filter screens for a 6 h period, identified to species
and the number of individuals recorded.

The power station intakes at Hinkley Point are an
effective sampler because of their position at the edge
of a large inter-tidal mudflat in an estuary with extre-
mely powerful tides resulting in suspended solid levels
of up to 3 g l21 and little light below 50 cm depth.
The fishes, pelagic or benthic, are moved towards the
intake in the tidal stream, often as they retreat
from the inter-tidal zone where they feed, and it is
likely that they are unable to see or otherwise detect
the intake until they are too close to make an escape.
Light is clearly important for avoidance because at
power station intakes situated in clear water captures
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are higher at night. The efficiency of the sampling
method is discussed in Henderson & Holmes (1991).
(b) Data analysis

We ask whether species abundances vary asynchro-
nously by examining pairwise correlations, through
time, for both the core assemblage (i.e. species that
are present in majority of years; Magurran &
Henderson 2003) and the entire assemblage (all
species recorded). In both cases, we compare the
empirical median correlation coefficient with the
values generated by a randomization test (repeated
1000 times) in which the abundances of each species
are randomly shuffled among years.

To examine the link between the patterns of auto-
correlation and assemblage structure, we employ the
following time-series model (Crawley 2007):

Yt ¼ aYt�1 þ Zt;

where Yt is the abundance of each species at time t, Yt21

the abundance of species in the previous year, a the cor-
relation structure (within species, between years) and Zt

the noise in year t (set by a random number generator
with mean¼ 0 and s.d. ¼ empirical value).

Starting values are set at 0 and the output rescaled
by adding the empirical mean (for each species) to
obtain the predicted values. The model is run for
values of a between 21 (strong anti-correlations)
and þ1 (random walk) in steps of 0.05. In each case,
the autocorrelation value is equal for all species, while
noise is independent for each species. Moreover, there
is no among-species correlation included in the model,
and species dynamics are completely independent.
This analysis is repeated 1000 times and for both the
core and the entire assemblage. We run the model
for 50 years and use the last 30 years in our analyses.
While we appreciate that strong negative correlations
in the abundance of these estuarine fishes—many of
which are relatively long lived—are biologically unli-
kely, we include these in our analysis to provide an
insight into the consequences of these extreme values
for temporal trends in assemblage diversity.

We assess the structure of the resulting assemblages
by using three measures that place different weights on
the relative abundance of species. These measures,
which are well-known diversity statistics (Magurran
2004) and numerically related to one another (Hill
1973), are the exponential form of the Shannon
index (N1 in Hill’s terminology), the reciprocal form
of the Simpson index (N2) and the Berger–Parker
index (N1). The exponential form of the Shannon
index emphasizes the species richness component of
diversity, the reciprocal form of the Simpson index
emphasizes dominance, whereas the Berger–Parker
index is a pure measure of dominance (specifically
the relative abundance of the most abundant species).
Together they provide an informative overview of the
structure of the assemblage.

These diversity measures, however, ignore species
identities. To track change in composition, we use
two metrics, mean rank shift (MRS) and Bray–
Curtis dissimilarity. MRS (Collins et al. 2008) is a
measure of relative change in species rank abundance.
Phil. Trans. R. Soc. B (2010)
The Bray–Curtis dissimilarity is a widely used measure
of ecological distance (Southwood & Henderson 2000;
Magurran 2004; Jost et al. in press) that assesses
compositional similarity taking account of species
abundances. Whereas the Hill numbers provide a
value of diversity for each year of the series, MRS and
Bray–Curtis dissimilarity make comparisons between
consecutive pairs of years in the time series.

To compare the natural and simulated patterns, we
first calculate the 95 per cent confidence limits for a
given metric using the annual values in the empirical
time series. We then take the mean predicted value
for each level of autocorrelation and average these
across the last 30 years of the simulated series (as
above). These predicted values are then plotted in
relation to the 95 per cent confidence limits of the
empirical values (figure 4) as a simple method of
examining the agreement between the observed and
expected diversity metrics.

All analyses use the statistical programming language
R (R Development Core Team 2008). Hill’s diversity
numbers and Bray–Curtis dissimilarity were calculated
using the vegan (Oksanen 2010) package.
3. RESULTS
The structure of this estuarine assemblage has
remained essentially unchanged through the study
period (figure 1). This is true for the core species, as
well as for the assemblage as a whole. Although
some of our metrics show year-to-year variation, in
no case is there a significant linear trend in the time
series. This constancy at the assemblage level is main-
tained despite substantial changes in abundance of
individual species, as figure 2a clearly reveals. The
conservation of the assemblage’s structure (which is
also apparent in figure 2b) is not a product of temporal
cross-correlations (either positive or negative) in
species abundances. Pairwise correlations computed
among species (through years) for the core assemblage
(Magurran & Henderson 2003), and the entire assem-
blage, do not appear to differ from chance in a
biologically meaningful way. The median correlation
coefficient (Pearson’s r) for the empirical dataset
(core species) is 20.019. The 2.5 and 97.5 per cent
quantiles (based on the randomization test) are
20.048 and 20.018, respectively. Equivalent values
for the entire assemblage are 20.057 (quantiles
20.060 and 20.053).

There is thus no strong signal of cross-correlation
(either positive or negative) in species abundances
through time. This outcome, which confirms that
changes in the abundances of the species in the assem-
blage are effectively asynchronous, is consistent with a
recent investigation of the dynamics of the dominant
species in a range of vertebrate and invertebrate com-
munities (Mutshinda et al. 2009). (Mutshinda et al.
included a sub-set of our dataset in their analysis and
reached a very similar conclusion.) This is not to say
that no species pairs are correlated through time. For
example, the abundances of two co-generic taxa, the
pout, Trisopterous luscus, and poor cod, T. minutus,
both rise and fall in concert, but show only modest
temporal correlation (r ¼ 0.31, n ¼ 28) because they
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Figure 1. Change in the Hinkley fish community through time: overall community view. (a) Species richness per year of time
series (Hill’s N0 index); (b) exponential form of the Shannon index (Hill’s N1 index), annual values; (c) reciprocal of Simpson

diversity index, annual values; (d) Berger–Parker index (Hill’s N1 index), annual values; (e) MRS index, sequential pairs of
years; ( f ) Bray–Cutis dissimilarity values between sequential pairs of years. The different metrics exhibit year-to-year
variation but in no case is there a significant linear trend: (a) y ¼ 0.090x þ 37.61, R2 ¼ 0.045; (b) y ¼ 0.006x þ 6.90,
R2 ¼ 0.0007; (c) y¼ 0.0031xþ 4.35, R2 ¼ 0.004; (d) y¼ 0.015x þ 2.91, R2 ¼ 0.039; (e) y¼ 20.012xþ 5.22, R2¼ 0.03;
( f ) y¼ 20.0014x þ 0.356, R2¼ 0.009.
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periodically switch their relative abundances. There
are also instances of correlations in the abundances
of closely related species in other communities
(Sugihara et al. 2003).

Our model predicts temporal patterns of species
abundances that are consistent with the observed
values. When a is around 0 (i.e. where the abundance
of a species in one year is uncorrelated with its abun-
dance in the previous year, resembling white noise)
the results are similar to the empirical pattern. When
a approaches 21 (strong anti-correlations) or a

approaches 1 (a classic random walk) predicted
abundances begin to diverge from the observed
values. This result is particularly striking when we
examine the 30 year trends of the Hill diversity num-
bers. In each case, and across a broad range of
autocorrelation values, the same level of diversity is
maintained through time (figure 3a–c). Moreover,
when 20.8 , a , 0.8, predicted mean diversity falls
within the confidence limits of the empirical values
Phil. Trans. R. Soc. B (2010)
(figure 4a–c, f–h). This is true for both the core
assemblage and the entire assemblage. In other
words, the structure of the assemblage is retained as
long as the autocorrelation in abundances between
successive years is not too strong.

In contrast, metrics that take species identities into
account reveal that the empirical assemblage is repli-
cated over a narrower range of conditions. While
both Bray–Curtis dissimilarity and MRS remain con-
stant through time for a given value of a (figure 3d,e),
the relationship between the extent of autocorrelation
and the predicted value of the metric is an asymmetric
one. As figure 4d,e and i, j indicates, only positive
values of a lead to predictions that lie within the
empirical confidence limits. This is particularly evi-
dent for MRS. Here, the predicted core assemblage
resembles the empirical one when a � 0.5
(figure 4i). The still narrower band of matching
MRS values for the entire assemblage (figure 4d) is
due to the occasional species which shift between



0.00000001

0.000001

0.0001

0.01

1

0 10 20 30 40 50

species rank

1

10

100

1000

10 000(a)

(b)

0 10 20 30
years

re
la

tiv
e 

ab
un

da
nc

e
ab

un
da

nc
e

Figure 2. (a) Temporal variation in the abundance of the 15
species that are present in every year of the time series; (b)

rank abundance plot where values for first-ranked species
disregarding species identity, second-ranked species, third-
ranked species, etc. have been averaged across the time
series. Grey bars show the 95% confidence limits around
these mean values.

Temporal turnover and diversity A. E. Magurran & P. A. Henderson 3615
being present at a low rank and being absent
(Magurran & Henderson 2003).
4. DISCUSSION
Our results show that abundances of species in an
estuarine assemblage of fishes change asynchronously
through time. We compared this pattern with a
model that varied the level of autocorrelation in
species abundances and used three informative diver-
sity measures to describe different aspects of the
species abundance distribution. Our model was able
to replicate empirical patterns of diversity, not just in
terms of the predicted level of diversity but also its con-
stancy through time, for each of these three measures.
Furthermore, this result was repeated for a wide range
of autocorrelation values. In other words, we found
that there are many different ways in which species
abundances can change asynchronously and still
produce an assemblage that is indistinguishable—
based on diversity indices—from the natural one.

Our model incorporates MacArthur’s (1960) predic-
tion that species typically return to their equilibrium
Phil. Trans. R. Soc. B (2010)
level following a rise or decline in abundance. We are
not making any assumption about whether the assem-
blage as a whole is in equilibrium here, but simply
reflecting the fact that in the natural assemblage species
tend to vary around their mean abundances. Because
these changes in species abundances occur asynchro-
nously, they are also consistent with the portfolio
effect, as well as with the insurance hypothesis and its
expectation that niche differences will cause species to
respond to environmental variations in different ways
and with different lags (Yachi & Loreau 1999; Loreau
2010). However, we have not formally explored the
compensatory dynamics hypothesis (Tilman et al.
1998) which argues that ecosystem function is pre-
served as a result of negative covariance in species
abundances and is in any case not well supported by
empirical data (Houlahan et al. 2007). Although we
have not shown that niche differences in this estuarine
assemblage cause this asynchronicity, we have evidence
that niche differences exist and underpin the relative
abundances of species (Magurran & Henderson 2003;
Henderson & Magurran 2010). Interestingly, the main-
tenance of structure through time is to a large extent
due to the presence of the core species (figure 2b)—
which are also the most common ones and contribute
in excess of 98 per cent of the overall abundance in
any given year (Magurran & Henderson 2003). It is
increasingly recognized that common species make a
significant contribution to assemblage structure and
function (Gaston & Fuller 2008) and this is borne out
by our work. On the other hand, the richness of the
assemblage is maintained by the presence of the
infrequent species; these predominantly rare species
contribute a constant fraction of the overall richness
of the assemblage through time (Magurran &
Henderson 2003).

The conclusions we reach about the maintenance of
assemblage structure using diversity measures contrast
with those obtained with metrics that take account of
species identities. In these latter cases, there is a
more limited set of circumstances in which temporal
turnover produces patterns that replicate those
seen in nature. Thus, while the structure of the
assemblage, in terms of the relative abundances of
species, appears insensitive to variation in the rate of
temporal turnover, there is a much smaller set of con-
ditions that generate realistic year-by-year changes in
species rankings and species composition.

An intriguing finding is that the metrics that track
species composition suggest that the natural assem-
blage structure is generated by a positive
autocorrelation of around 0.5. This value implies
that the community metric has some predictability
and the time series is dominated by longer wavelengths
and has some memory or inertia to change. In fact, the
reddening of population time series is a commonly
observed feature. Kaitala et al. (2001) argue that red-
dened or pink population time series are a product
of spatial structure and migration between popu-
lations. This must certainly be the case for the
Hinkley data where there is a continual influx of
migrants (Magurran & Henderson 2003). In addition
to the role of metapopulation dynamics in reddening
time series, we need also to consider the role of



8

(a) (b)

(c)

(d) (e)

5.0
4.5

4.0
3.5
3.0
2.5
2.0
1.5

2.8

2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2

25
20

15
10

5
–1.0

–0.5
0

0.5
1.0

1.0
25

20
15

10
5

–1.0
–0.5

0
0.5

1.0

7

6

5
di

ve
rs

ity

di
ve

rs
ity

di
ve

rs
ity

di
ss

im
ila

ri
ty

M
R

S

4

3
2
1
25

20
15years

years

25

1.2 40

35

30
25
20
15
10

5
0

1.0

0.8

0.6

0.4

0.2

20
15

10
5

years

25
20

15
10

5

years

years10
5

–1.0
–0.5

0
a

a

–1.0
–0.5

0
0.5

1.0

a
–1.0

–0.5
0

0.5
1.0

a

a

0.5
1.0

Figure 3. Predicted values of (a) N1, exp Shannon index, (b) N2, 1/Simpson index, (c) N1, Berger–Parker index, (d) Bray–
Curtis dissimilarity and (e) MRS over 30 years in relation to varying values of a.

3616 A. E. Magurran & P. A. Henderson Temporal turnover and diversity
reddened environmental variables. Almost all physical
time series influencing fishes at Hinkley, such as sea
water temperature, solar radiation and North Atlantic
Oscillation, have pink spectra. Finally, it is important
to note that all longer-lived species have populations
with memory. The number of offspring produced in
any year is not just a product of events at reproduction
but events over a number of previous years that have
influenced the quality and abundance of the adults.
This is the inertia or memory that can produce pink
noise. It is therefore possible that an autocorrelation
of around 0.5 is an emergent property of a community
which has (i) some memory (the number of a species
next year is linked to past reproductive success), (ii)
metapopulation dynamics that tend to produce
slower, longer-term changes, and (iii) a response to
environmental variables with pink spectra.

A large number of metrics have been developed to
assess the changes that occur in ecological commu-
nities as a result of human disturbance. A
significant fraction of these have focused on changes
in the species abundance distribution. For example,
it has been suggested that an intact assemblage will
have a lognormal pattern of species abundances,
Phil. Trans. R. Soc. B (2010)
whereas an impacted one will be closer to a log-
series distribution (May 1975). Unfortunately empiri-
cal data reveal a wide range of assemblage responses
(Gray 1987; Tokeshi 1993; Dornelas et al. 2010). We
suggest that because species abundance distributions
are unlikely to change as long as the species richness
of the assemblage is preserved, classical diversity
measures may not be sensitive measures of disturb-
ance. Like Collins et al. (2008) and MacNally
(2007), we conclude that other indicators, such as
those that track species ranks or changes in species
composition, may provide better early warning that
the assemblage is entering a transitional state, or
has already been impacted.

Our results remind us that comparisons between
the observed and expected distributions of relative
abundances of species in an ecological assemblage
will not necessarily be the best way of distinguishing
between competing mechanistic models (McGill
et al. 2007). We also note that we still have a very
incomplete understanding of how ecological commu-
nities change through time. There have been
numerous attempts (e.g. Motomura 1932; May
1975; Tokeshi 1996; Harte et al. 1999; Hubbell
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Temporal turnover and diversity A. E. Magurran & P. A. Henderson 3617
2001; McGill 2003) to account for the characteristic
shape of species abundance distributions. However,
although some of the pioneers in the field (notably
Fisher et al. 1943; Preston 1960) included temporal
dynamics in their models, most attention has been
directed to spatial patterns (but see Rosenzweig
1995; Lande et al. 2003; Magurran & Henderson
Phil. Trans. R. Soc. B (2010)
2003; Thibault et al. 2004 for some exceptions).
These findings suggest that models that track temporal
changes need to account for shifts in species compo-
sition as well as changes in species abundance. We
anticipate that this new generation of models will
become increasingly important in monitoring and
managing changes in biodiversity.
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Finally, we note that species complementarity—one
of the explanations for increased productivity in
diverse communities (Tilman 1997; Tilman et al.
1997, 2001; Hector et al. 1999)—has been shown to
become increasingly important with time (Loreau
et al. 2003; Cardinale et al. 2007; Fargione et al.
2007). The complementarity hypothesis argues that
there are niche differences which mean that species
exploit the available resources in different, and comp-
lementary, ways (Fargione et al. 2007). However, rapid
changes in abundance could reduce complementarity
and impair function. We agree with Schwartz et al.
(2000) that the rate of temporal turnover in species
abundances may play a critical role in ecosystem func-
tioning and deserves more study. Temporal turnover
may also be a variable that needs to be taken into
account when assessing the capacity of natural
communities to exhibit resilience in the face of
environmental change (Thrush et al. 2009).
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