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Abstract

Background: So far, investigators have found numerous tumor suppressor genes (TSGs) and oncogenes (OCGs) that control
cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of
transcription factors (TFs) to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint
target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and
OCGs to TF gene regulation.

Methodology/Principal Findings: In this study, we developed a novel computational framework for identifying target
genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression
data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top
layer was comprised of modulators (TSGs and OCGs), the middle layer included TFs, and the bottom layer contained target
genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering
analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were
significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the
genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets
showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated
by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB
signaling pathway.

Conclusions/Significance: This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in
a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and
OCGs, suggesting a competitive regulatory mechanism acting upon apoptosis and the ErbB signaling pathway through
their specific target genes.
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Introduction

Cancer is characterized by uncontrolled cell growth, which is

caused by the accumulated genomic mutations in genes that

normally play important roles in controlling cell proliferation and

apoptosis [1]. Two major groups of protein-coding genes influence

cancer cell growth in opposite ways. The first group of genes

encode tumor suppressors, whose loss of function contributes to

the development of cancer [2]. The second group of genes are

oncogenes, whose gain of function can trigger cancer development

[3]. Hereafter, we abbreviated these two types of genes as TSGs

and OCGs. Many TSGs are the ‘‘guardian of the cell’’ because of

their critical roles in cell cycle checkpoints and inducing apoptosis

[2,4]. For instance, the well-known TSGs RB and TP53 are

regarded as anti-oncogenes because of their effects on actions

against known oncogenes in cell growth [5]. In a normal cell,

OCGs are located on chromosomes as proto-oncogenes. When

activated by point mutations or other mechanisms like gene

amplification, proto-oncogenes may be converted into OCGs to

stimulate cell proliferation and promote cell survival by interfering

with apoptosis [3].

In the past few decades, a substantial number of TSGs and

OCGs were characterized according to their functions in cell

proliferation and apoptosis [2,3,4]. However, the underlying

molecular mechanisms for these TSGs and OCGs to regulate

biological processes at transcription level are still not clear,

especially at the systems and cellular levels. It is well-known that

DNA-binding transcription factors (TFs) play major roles in

a gene’s transcriptional regulation [6]. TF activities are mainly
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regulated by other molecules at the post-translational level [7].

Previously, studies have shown that TSGs, such as RB1 and KL,

can affect the activity of TFs or growth factors as their post-

translational modulators [8,9]. In cancer tumorigenesis, the

majority of TSGs and OCGs do not belong to the category of

TFs; thus, they cannot directly regulate gene expression.

Therefore, modulating TFs at the post-translational level may

provide a mechanism for TSGs and OCGs to regulate gene

expression indirectly.

Ovarian cancer (abbreviated as OVC in this study) is the fifth

leading cause of cancer-related mortality with a prevalence of

1.4% to 2.5% in U.S. women [10]. The search for convincing

candidate genes in the past decade, although far from complete or

conclusive, has provided the foundation for systematic analyses of

their genetic contributions to OVC [11]. Additionally, genome-

scale technologies have generated vast quantities of gene

expression profiling and other genetic and genomic data from

hundreds of OVC samples [12,13,14,15]. These genetic and high-

throughput genomic data have provided us an opportunity to

identify a critical regulatory network that is vital to cancer

development [16,17]. Moreover, the carcinogenesis of the ovary

involves many specific etiological factors such as hormones and

ovulation [18], which brings into question how the gene regulatory

network integrates signals to respond to hormone stimuli. Our

hypothesis here was that a systematic integration of TFs and their

potential modulators (TSGs and OCGs) provides an efficient

approach to discover a gene regulatory network in OVC. This

regulatory network may provide the novel regulation model of

TSGs, OCGs and TFs on gene expression in critical tumorigenesis

processes such as cell cycle and hormone stimulus.

Here, we present a computational approach to construct

a hierarchical regulatory network from protein-protein interac-

tions (PPIs) and gene expression data using TFs as bridges to link

important modulators (TSGs and OCGs) to their potential target

genes. We applied this approach to construct a three-layer

regulatory network in OVC, in which the top layer included 29

TSGs and 13 OCGs, the middle layer included 15 TFs, and the

bottom layer included 65 joint target genes. Further regulatory

profile clustering analyses divided TSGs and OCGs into two

distinct branches. The TSGs were mainly involved in DNA

damage and repair, cell cycle, and apoptosis, while OCGs were

mainly clustered together in ErbB signaling transduction and

response to hormone stimuli. Additionally, OCG-specific target

genes were enriched in negative apoptosis regulators, while TSG-

specific target genes were enriched in ErbB signaling pathways.

These results revealed a distinct function pattern of TSGs and

OCGs, not only by their own opposite functions in cancer

development but also by the opposite enriched functions of their

specific target genes. We have, for the first time, reported

a competitive regulation pattern of TSGs and their targets

investigated in comparison to OCGs and their targets; in this

reported finding, we found the TSGs, OCGS, along with their

respective targets, have the tendency to react in opposition upon

apoptosis and the ErbB signaling pathway. Further investigation of

this finding is warranted.

Materials and Methods

Gene Collection and Curation of TSGs, OCGs and TFs in
OVC
To comprehensively collect the OVC-related genes, we parsed

and curated fourteen data sources, including the cancer mutation

database Catalogue of Somatic Mutations in Cancer (COSMIC,

version 55) [19], Online Mendelian Inheritance in Man (OMIM,

October, 2011) [20], Genetic Association Database (GAD,

October, 2011) [21], the database of Functional Census of

Human Cancer Gene (F-CENSUS, October, 2011) [22], the

online Dragon Database for Exploration of Ovarian Cancer

Genes (DDOC, October, 2011) [23], one comprehensive expert

review on OVC-related genes from Nature Reviews Cancer [11],

the literature database Generif [24], published genome-wide

association studies [25,26,27], and six candidate gene lists

produced by large-scale genomic platforms on OVC from The

Cancer Genome Atlas (TCGA) [12]. The details for gene

collection on each data source are described in Text S1, and

some approaches of gene collection and annotations were also

successfully applied in other diseases for candidate gene prioriti-

zation [28,29,30]. Finally, 1257 non-redundant OVC related

genes were curated for follow-up analysis (Table S1).

We manually curated TSGs and OCGs from classical reviews

on OVC and general cancer [2,4,11,31] and extracted known

human TFs from the TRANSFAC professional database (Release

2011.4) [32]. Among 1257 OVC genes, 100 unique regulators

were assigned, including 35 TSGs, 15 OCGs, and 50 TF genes.

Network Topological Analyses and Extraction
a Subnetwork Centered by TSGs, OCGs and TFs from
Human Interactome
We downloaded undirected human protein-protein interaction

(PPI) data from the Protein Interaction Network Analysis (PINA)

platform (June, 2011) [33]. In PINA, the data included self-

interactions, predicted interactions by computational methods,

and interactions between human proteins and proteins from other

species. In our pipeline, we only utilized the non-redundant

human PPIs with experimental supports after we removed

predicted PPI and self-interactions, as well as PPIs involving

proteins from other species. This process generated a human PPI

network with 11,654 nodes (proteins) and 72,630 links (PPIs).

To construct a subnetwork centered by TSGs, OCGs and TFs

and have an overview for the topological network properties of

these OVC genes, we first mapped all the related genes to the

human PPI network. For comparison, we compiled five gene lists

to perform network topological analyses. The first dataset included

467 known cancer genes from the Sanger Cancer Gene Census list

[34], among which 378 genes were mapped to the human PPI

network. Next, we divided our collected 1257 OVC genes into

four groups: known TSGs, known OCGs, TFs and the remaining

common OVC genes. In total, 33 TSGs, 14 OCGs, 50 TF genes,

and 905 common OVC genes were mapped to the PPI network.

Next, we calculated three basic topological measures for the five

gene lists. These measures included degree, betweenness central-

ity, and closeness centrality using the software Cytoscape [35].

The degree measures the connections of each protein in the

human PPI network [36]. The betweenness centrality represents

how frequently a protein locates on all shortest paths between two

other proteins [36]. Closeness centrality, also called shortest-path

distance, indicates the shortest steps for one node to reach another

[36]. To compare these topological properties among the five gene

lists, we performed two-tailed Kolmogorov-Smirnov tests (KS

tests) implemented in the R package 2.13.2 [37].

To evaluate the significance of network properties of each OVC

TSG, OCG and TF in the human PPI network, we applied an

empirical re-sampling approach. Here, we take the TSG gene list

as an example. First, for the 33 TSGs mapped to the human PPI

network, we randomly selected 33 nodes from any of the 1257

OVC genes in the human PPI network and calculated the three

topological properties (degree, betweenness and closeness). We

repeated this randomization process 10,000 times. Next, we

Ovarian Cancer Regulatory Network
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counted the number of random selected node sets (N) whose

average degree, betweenness or closeness were higher than the

observed average degree, betweenness and closeness, respectively.

Lastly, we calculated their empirical P-value using the N/10000

for the three types of topological properties, respectively. We

applied similar approaches to 14 OCGs, 50 TFs and 97 regulatory

genes (33 TSGs, 14 OCGs and 50 TF genes). The summarized P-

values were listed in Table S6.

Aside from these topological analyses, we extracted 2024 direct

interactors of the 97 regulatory genes (33 TSGs, 14 OCGs and 50

TF genes) from the human PPI network to form a subnetwork

comprising of 2121 genes for further analysis.

Construction of a Hierarchical Regulatory Network Based
on Gene Expression Profiles from TCGA
Recently, TCGA investigators examined gene expression from

489 high-grade serous OVC samples using three gene expression

microarray platforms (Affymetrix Exon 1.0 array, Agilent 244 K

whole genome expression array, and Affymetrix HT-HG-U133A

array) [12]. Next, they normalized and estimated the expression

for each sample and gene on each platform separately. After

subtracting the mean value across samples for the same gene, they

divided the expression value by the standard deviation across

samples and obtained relative gene expression scores. Lastly, the

relative expression data from three platforms were integrated into

a single, unified data set of 11,864 genes using a factor analysis

model without batch effects [12,38]. The final gene expression

data downloaded from the TCGA website is formatted as a matrix,

which is one row for each gene and one column for each of the

samples (https://tcga-data.nci.nih.gov/docs/publications/

ov_2011/).

Among the 2121 genes in the subnetwork centered by OVC

TSGs, OVC OCGs and OVC TFs, 352 genes (29 TSGs, 13

OCGs, 36 TF genes, and 274 interacting genes) overlapped the

11,864 gene expression profiles from TCGA. Next, we utilized

the software MINDy (Modulator Inference by Network Dynam-

ics) to predict the regulatory relationship between TSGs, OCGs

and TFs. MINDy was used to identify modulators of TFs with

expression profiles at the post-translational level based on

conditional mutual information [39]. MINDy requires four

inputs, including a gene expression matrix, a TF of interest,

a list of potential modulator genes, and a list of potential TF

targets. Therefore, an expression matrix with 352 genes in each

row and 489 OVC samples in each column was collected as the

first input for the software MINDy. The TFs of interest were the

36 TF genes from our extracted subnetwork. The potential

modulators contained 29 TSGs and 13 OCGs. The remaining

274 interacting genes in our subnetwork were regarded as

potential TF targets.

To reduce the false positives of TF-target relationships inferred

by MINDy, we further predicted TF-target pairs using

MATCHTM with a core score of 1.00 and a matrix score of

0.95 [32,40]. Take the example of TF HMGA2: MINDy

predicted 29 TSGs and 13 OCGs to regulate 106 and 79 target

genes via modulating HMGA2, respectively. We further pre-

dicted 82 target genes from the 1257 OVC-related genes using

MATCHTM. After comparing the 82 predicted target genes for

HMGA2, only 18 and 13 unique genes were co-regulated by the

29 TSGs and 13 OCGs, respectively. Finally, the overlapping

TF-target regulations formed the output network containing 29

TSGs, 13 OCGs, 15 TF genes and 65 joint target genes. In the

regulatory network, 3 TSGs, 3 OCGs, and 4 TF genes were also

inferred as target genes for other TFs. Therefore, 112 unique

genes were integrated into the network. In addition, the 4 known

TF genes FOXM1, MSX1, PPARG and STAT5A, were assigned as

target genes in our network, as they did not regulate any genes in

this regulatory network. The final network visualization of 112

genes was performed using the Cytoscape software [35].

Construction and Clustering of TF and Target Gene
Profiles of TSGs and OCGs
To analyze the downstream target genes of TSGs and OCGs,

we constructed a target profile for each TSG or OCG by

examining target genes as being present or absent as related to

our hierarchical regulatory network. For a given TSG or OCG,

if there is a regulatory relationship between the TSG/OCG and

one target gene, the assigned value for the target gene of the

TSG/OCG would be one; otherwise, it would be assigned a value

of zero. Thus, for a given TSG/OCG, a target profile includes

a string with 65 entries with 0 or 1. The same procedure was

applied to construct a TF profile for each TSG or OCG with 15

entries of 0 and 1. To investigate the regulatory patterns of TSGs

and OCGs, hierarchical cluster analyses were conducted on both

the target gene profile and TF profile using R package 2.13.2

[37].

Constructing Regulatory Subnetworks on Apoptosis, Cell
Cycle, Hormone Stimulation and Reproduction
To obtain a further understanding of specific functional

modules in our regulatory network, we focused on four biological

processes, which included apoptosis, cell cycle, hormone response,

and reproduction, since they have been reported to play important

roles in OVC and were also enriched in our regulatory network

[41,42,43]. We compiled four functional term lists on apoptosis,

cell cycle, hormone response, and reproduction using Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and SwissProt annotation terms from the DAVID online

tool [44]. Finally, based on the curated functional terms, we

collected 51 (apoptosis), 47 (cell cycle), 21 (hormone response), and

16 (reproduction) OVC genes in our hierarchical regulatory

network.

For the above four sets of collected genes, most of them could be

mapped to the top and bottom layers in our hierarchical

regulatory network. To extract the subnetwork for each process,

we first mapped the collected genes to the bottom layer, then

found the TFs (middle layer) that linked to these target genes, and

finally recruited the process-related TSGs and OCGs (top layer)

with links to these TFs. Utilizing this process, we obtained four

subnetworks.

Statistical Tests for Enriched Functional GO Terms and
Biological Pathways
To assess the function of the interesting gene sets, we conducted

functional enrichment tests using the online tool DAVID [44]. We

selected those GO terms or pathways with an adjusted P-value less

than 0.05 as calculated by the hypergeometric test followed by the

Benjamini-Hochberg method [45], which was implemented in the

DAVID tool.

To evaluate functional significance of the 112 genes in our final

subnetwork, we randomly selected 112 genes from 1257 OVC

genes and compare their corrected P-value distribution. In total,

we performed the randomization ten times and annotated each

gene list using DAVID. Based on the Benjamini-Hochberg

adjusted P-value, we compared the P-value distribution for our

112 genes and ten randomly selected gene lists (Figure S6).

Ovarian Cancer Regulatory Network
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Results

Overview of the Computational Pipeline to Construct
a Hierarchical Regulatory Network
As shown in Figure 1, our pipeline started with a compilation of

candidate genes, TSGs, OCGs, and TFs for a certain cancer, such

as ovarian cancer. Next, we extracted a subnetwork centered with

these known TSGs, OCGs, TFs, and their direct interactors from

the human PPI network. Then, gene expression profiles for the

genes involved in the subnetwork were inputted into MINDy to

infer TSGs and OCGs as post-translational modulators of TFs.

The output of MINDy was a regulatory network that comprised

the top layer with modulators (TSGs and OCGs), the middle layer

with TFs, and the bottom layer with joint target genes of the two

top layers. To further reduce the false positives of TF-target

relationships inferred from MINDy, we required that the

predicted TF-target pairs were also confirmed by the TF-target

prediction tool MATCHTM. The final output of this pipeline was

a combinatory regulatory network of TSGs, OCGs, their

modulating TFs, and regulating target genes. We applied this

computational pipeline to our curated 1257 OVC candidate genes

and, finally, constructed a three-layer regulatory network that

included 29 TSGs, 13 OCGs, 15 TF genes, and 65 joint target

genes.

TSGs, OCGs and TFs in OVC Show High Connectivity,
Betweenness and Closeness Centrality in the Human PPI
Network
Based on the comparison of the three topological properties

(degree, betweenness centrality, and closeness centrality) for five

cancer-related gene lists, we gained the first insights into the

architecture of OVC-related genes in human PPIs (see Materials

and Methods). Figure S1 displays the degree distribution of the five

datasets and all the proteins in the human PPI network. The

average degree of the 97 genes (OVC TSGs, OCGs and TFs) was

56.12, which was significantly higher than that of genes from the

cancer gene census (35.33, Kolmogorov-Smirnov test (KS test), P-

value = 3.3661022) or that of 905 OVC common genes (21.83,

KS test P-value= 7.1261028). To evaluate the significance of the

calculated topological properties, we applied an empirical re-

sampling approach to compute empirical P-values for each

properties (Table S6). Except the P-value of betweenness centrality

from TFs (0.08), all the remaining P-values were less than 0.01.

These empirical P-values suggested that the observed network

Figure 1. Schematic view of tumor suppressor genes (TSGs) and oncogenes (OCGs) regulatory network analysis. This figure shows the
TSG and OCG regulatory network construction and identification of critical downstream pathways modulated by TSGs and OCGs. Our pipeline
involves four main steps. 1) Collecting ovarian cancer (OVC)-related genes, tumor suppressors (TSGs), oncogenes (OCGs), and transcription factors
(TFs) from public databases and literature. 2) Extracting subnetworks centered on OVC TSGs, OCGs, and TFs from protein-protein interaction (PPI)
data. 3) Integrating genome-scale expression data to construct a hierarchical regulatory network with OVC-related TSGs, OCGs, TFs and target genes.
4) Analyzing downstream pathways and subnetworks with regulated genes to investigate the interplay of TSGs and OCGs in specific biological
processes. Modulator Inference by Network Dynamics (MINDy) is a software tool used for the identification of post-translational modulators of TFs
based on expression profiles. Protein Interaction Network Analysis (PINA) is a platform for protein interaction network construction.
doi:10.1371/journal.pone.0044175.g001
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features were unlikely generated by chance. Further KS tests

showed that the betweenness and closeness centralities of the 97

genes were all significantly higher than those genes from the

Cancer Gene Census and the 905 OVC common genes (P-values

,0.05, Table S2). Our comparison between 97 genes (OVC

TSGs, OCGs, and TFs) and other cancer genes implied that these

97 genes had higher local connections and shorter paths to other

proteins. Given their high degree, betweenness and closeness

centralities, a subnetwork with their direct interactors might be

enough to characterize the regulatory properties of the 97 genes.

An OVC-specific Regulatory Gene Network Modulated by
TSGs and OCGs
Starting from the 97 genes, we integrated the PPIs, gene

expression profiles, and TF-target prediction data from the

softwares MINDy and MATCHTM (see Materials and Methods).

A final three-layer regulatory network was constructed that

included 112 unique genes (29 TSGs, 13 OCGs, 15 TF genes

and 65 joint target genes) and 353 links (Figure 2A and Table S3).

Functional enrichment analyses showed that the 112 genes were

enriched in numerous functional categories related to carcinogen-

esis (Table S4). The most enriched functional categories were

related to OVC progression, such as ‘‘regulation of apoptosis’’

(adjusted P-value = 4.84610224), ‘‘regulation of cell cycle’’ (ad-

justed P-value= 8.10610220), ‘‘response to hormone stimulus’’

(adjusted P-value= 5.31610210), and ‘‘multicellular organism

reproduction’’ (adjusted P-value = 1.0661024). To evaluate the

functional analysis results of the 112 genes, we randomly selected

ten gene lists with 112 genes from 1257 OVC genes. As shown in

the Figure S6, most of corrected P-values from functional terms

annotated for our 112 genes were less than 0.01, which is distinctly

different from the ten randomly selected gene lists (Kolmogorov-

Smirnov test, P-values ,0.05). These highly enriched carcinogen-

esis-related functions demonstrated that our regulatory network

was closely related to OVC development and might be useful to

identify core cancerogenesis modules.

As shown in Figure 2B, the TFs’ in-degrees from TSGs and

OCGs had a high correlation with their out-degrees to their target

genes (Pearson’s correlation coefficient = 0.74, P-val-

ue = 1.6061023). Here, in-degree is defined as the number of

TSG/OCG nodes that immediately link to and regulate the TF

node, and out-degree is defined as the number of target gene

nodes that immediately link to and are regulated by the TF node.

For instance, the in-degree and out-degree of TF ETS1 were 34

and 14, respectively; that is, it was modulated by the 23 TSGs and

11 OCGs while it regulated 14 downstream target genes.

Additionally, the 14 target genes of ETS1 were enriched in

‘‘tyrosine protein kinase’’ based on GO annotation (adjusted P-

values = 2.1561023). Overall, our results suggest that TFs with

more inputs in our regulatory network could regulate more target

genes.

In this network, all regulatory signals from TSGs and OCGs

were passed to the middle layer (populated by TFs) and then

transferred to the bottom layer with target genes. However, 10 of

the 65 target genes also belong to TSGs, OCGs or TF genes in our

network. The 10 genes with multiple roles formed six regulatory

loops between TFs and TSGs/OCGs. The loops were E2F3 «
CHEK2, ETS1 « EGFR, ETS1 « ERBB2, ETS1 « SPARC,

HMGA2 « MYC, and HNF1B « MYC (Table S5). For

example, ETS1 formed three feedback loops with genes encoding

EGFR, ERBB2, and SPARC. Among the three genes, EGFR and

ERBB2 belong to the epidermal growth factor receptor (EGFR)

family (Figure 2C). We further recruited direct interactors of ETS1

related to the three feedback loops to form a subnetwork. There

were a total of 17 genes in the subnetwork specific to ETS1, which

were enriched with the GO biological processes terms ‘‘regulation

of cell proliferation’’ (adjusted P-value = 1.9461028) and ‘‘regula-

tion of cell cycle’’ (adjusted P-value = 9.7761026). These analyses

indicate that ETS1 might play important roles in cell proliferation

through its interactions with the EGFR family, which is consistent

with the results from previous studies of human cancer cells [46].

TSGs and OCGs were Involved in different Biological
Processes in OVC
To further identify the specific biological processes in which

TSGs and OCGs participate, we performed functional enrichment

analyses for TSGs and OCGs independently. The results indicated

that TSGs and OCGs were involved in different biological

processes during the carcinogenesis of OVC (Table 1). The 29

TSGs were mainly involved in cell cycle, DNA damage response,

positive regulation of apoptosis, and the negatively regulating

macromolecule metabolic process, whereas 13 OCGs were mainly

involved in signaling pathways, such as ErbB and response to

hormone stimulus, and, opposite to the TSG results, negative

regulation of apoptosis. Among the 112 genes in our network, 46

genes were mapped to the KEGG ‘‘pathway in cancer’’ (13 TSGs,

9 OCGs, 8 TF genes and 16 target genes) (Figure S3). The map

showed most of TSGs and OCGs regulated important carcino-

genesis processes. The majority of TSGs surrounded processes like

cell cycle, DNA repair and apoptosis; OCGs tended to interact

with the signaling input, while TF genes and target genes often

scattered across the map to connect TSGs and OCGs.

Previous studies have shown that TSGs are involved in

tumorigenesis because their products are generally involved in

cell cycle checkpoint, apoptosis, or the repair of damaged DNA

[2], and OCGs encode chromatin remodelers, growth factors and

receptors, signal transducers, and apoptosis regulators [3]. Our

results of functional analyses of OVC TSGs and OCGs were

consistent with their common roles in tumorigenesis. It is worth

noting that our analyses indicated that the OCGs had important

roles in the process ‘‘response hormone signals,’’ which is

important to accelerate cell proliferation during OVC develop-

ment, including gonadotropins, estrogens, androgens, progester-

one and insulin [18].

TSGs and OCGs had a Distinct Regulatory Pattern
To discover the difference in regulatory patterns between TSGs

and OCGs, we constructed two groups of regulatory profiles for

the 42 modulators (29 TSGs and 13 OCGs): one was based on 15

TFs that were either directly regulated or not regulated by TSGs

or OCGs, while the other was based on 65 target genes that were

either indirectly regulated or not regulated by TSGs or OCGs

through TFs (see Material and Methods). Based on these profiles,

hierarchical clustering analyses were performed. Figure S2 shows

the clustering results based on TFs’ profiles, and Figure 3 shows

the clustering results based on target genes’ profiles. The two

clustering results consistently demonstrated that the TFs’ 42

modulators were clustered into two distinct branches: one branch

contained all 29 TSGs (TS branch), and the other branch included

all 13 OCGs (OCG branch). These observations indicated that

TSGs and OCGs might play distinct roles in OVC progression,

which is consistent with the above observation that they were

involved in different biological processes.

Since target genes might play important roles in the generation

of the phenotypes, we further performed functional enrichment

analyses of TSGs or OCGs in sub-groups from target gene-based

clustering analysis (Figure 3). There were four clusters in the TSG

branch and two clusters in the OCG branch. In the first TSG

Ovarian Cancer Regulatory Network
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Figure 2. Network view of tumor suppressor genes (TSGs) and oncogenes (OCGs) in ovarian cancer. (A) Integrated hierarchical network
of ovarian cancer (OVC) related tumor suppressor genes (TSGs), oncogenes (OCGs), and transcription factors (TFs). The nodes in red (circle) represent
OVC-related TSGs, nodes in yellow (triangle) represent OVC-related OCGs, nodes in green (octagon) represent OVC-related TFs, and nodes in blue
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cluster, the seven genes were enriched with the GO biological

process term ‘‘DNA repair’’ (adjusted P-value = 4.4261024). In

fact, besides the five TSGs (TP53, NBN, MLH1, MEN1, and

BRCA1) annotated with DNA repair by GO annotations, the

remaining STK11 was related to ‘‘response to DNA damage

stimulus’’ based on GO annotation, and WWOX was also

reportedly involved in DNA damage during carcinogenesis [47].

Therefore, all seven TSGs in the first TSG cluster might play roles

in DNA damage and repair. The seven TSGs in the second cluster

mainly regulate macromolecular metabolism because of their

enrichment in the GO biological process terms ‘‘negative

regulation of macromolecule metabolic process’’ (adjusted P-

value = 0.0011) and ‘‘positive regulation of transcription from

RNA polymerase II promoter’’ (adjusted P-value= 0.0015). The

third TSG cluster was comprised of six genes, three of which

(CDKN2B, CHEK2, and RASSF1) were related to cell cycle and two

of which (CHEK2 and RUNX3) could induce apoptosis according

to GO annotations. Thus, the cluster might be related to cell cycle

and apoptosis. In the fourth TSG cluster, ten TSGs were enriched

with ‘‘positive regulation of programmed cell death’’ (adjusted P-

value = 0.0299). Among the ten genes, five of the TSGs (ATM,

APC, BRCA2, NF1, and PTEN) were annotated with positive effects

on apoptosis; the other three TSGs (PEG3, SPARC, and RPS6KA2)

were also reported to increase apoptosis in sporadic epithelial

OVC or other types of cancer [48,49,50]. Therefore, the TSGs

from the fourth cluster were grouped together, as they might

function in ‘‘induction of apoptosis.’’

In the OCG branch, the first cluster contained seven OCGs,

which were enriched in the GO biological processes ‘‘ErbB

signaling pathway’’ (adjusted P-value = 1.2461025) and ‘‘response

to hormone stimulus’’ (adjusted P- value = 1.1961024). For the

second cluster containing six OCG genes, there were no significant

biological functions observed. However, four of the six (AURKA,

FGF1, PIK3CA, and RAB25) were annotated with ‘‘intracellular

signaling cascade’’ by GO analysis. Thus, the cluster might be

related to intracellular signaling. These observations indicated that

the TSGs in OVC were mainly related to fundamental cell growth

processes, such as cell cycle, apoptosis, and DNA damage and

repair, while the OCGs were more specific to response signaling,

including ErbB.

Interestingly, target genes specifically regulated by TSGs and

OCGs showed competitively regulatory patterns in two biological

processes compared to their respective regulators (OCGs and

TSGs) (Figure 3). The first one was observed in the ErbB signaling

pathway. Although 29 TSGs mainly focused on DNA damage and

repair, regulating macromolecular metabolism, cell cycle, apopto-

(vee) represent target genes. The links in orange represent the regulations from the TSGs or OCGs to their modulating TFs. The green arrow lines
represent the regulations from the TFs to their target genes. (B) Plot of in-degree and out-degree of the 15 TFs in the three-layer regulatory network.
In-degree is defined as the number of nodes that immediately link to and regulate the node of interest, and out-degree is defined as the number of
nodes that immediately link to and are regulated by the node of interest. (C) A subnetwork with three feedback loops centered by ETS1. The color
and shape schema of nodes and links are the same as those in (A).
doi:10.1371/journal.pone.0044175.g002

Table 1. Gene Ontology (GO) terms and KEGG pathways overrepresented in tumor suppressor genes (TSGs), oncogenes (OCGs),
TSG-specific target genes, and OCG-specific target genes.

Biological function Adjusted P-valuea

29 tumor suppressor genes (TSGs)

GO: cell cycle 1.04610210

GO: positive regulation of apoptosis 2.5861026

GO: DNA damage response, signal transduction 3.0861026

GO: negative regulation of macromolecule metabolic process 5.8161026

GO: regulation of cell proliferation 8.8061026

13 oncogenes (OCGs)

KEGG: ErbB signaling pathway 2.5961027

GO: response to organic substance 1.4661025

GO: intracellular signaling cascade 2.4261025

GO: response to hormone stimulus 5.8561025

GO: negative regulation of apoptosis 9.2561024

16 TSG-specific target genes

KEGG: ErbB signaling pathway 9.3161024

14 OCG-specific target genes

GO: enzyme linked receptor protein signaling pathway 8.0161026

GO: negative regulation of apoptosis 5.0961026

GO: transmembrane receptor protein tyrosine kinase signaling pathway 5.1561026

GO: positive regulation of growth 4.261023

GO: regulation of growth 0.016

The functional enrichment test was performed by the DAVID tool [44]. For a gene set that had more than five functional terms with an adjusted P-value of less than 0.05,
the top five terms were listed in this table.
aAdjusted P-values: the P-values of the hypergeometric test were corrected by Benjamini-Hochberg multiple testing correction [45].
doi:10.1371/journal.pone.0044175.t001
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sis, and induced apoptosis, we observed that TSGs’ specific target

genes were enriched in the ErbB signaling pathway (adjusted P-

value = 9.3161024). This pathway was found to be enriched in the

13 OCGs (Table 1) and the first cluster in the OCG branch

(Figure 3). Another competitively regulatory pattern was observed

in apoptosis. Among the 14 target genes that were regulated by

OCGs only, negative regulators on apoptosis were found to be

statistically enriched (adjusted P-value = 5.0961026) (Table 1).

Taking together the six OCGs (EGFR, KRAS, PRKCI, ERBB2,

PIK3CA, and MYC) as negative apoptosis regulators, there were 14

negative regulators of apoptosis directly or indirectly related to

OCGs in our network (Figure 2A). In contrast, 14 TSGs and four

Figure 3. Downstream target gene profiles clustering with tumor suppressor genes (TSGs) and oncogenes (OCGs). The heat map
shows a two-color representation of the regulatory relationship between modulators (TSGs and OCGs) and downstream target genes. A red colored
cell in the grid indicates that the row TSG or OCG is inferred to regulate the column target gene. A blue colored cell in the grid indicates that the row
TSG or OCG has no influence on the column target gene. The modulators’ dendrogram represents a hierarchical clustering of TSGs and OCGs based
on their target gene profiles. The modulators’ dendrogram is divided into two branches with six clusters marked with different colors. The most
significant enriched functional annotations are marked along the right of each cluster. Take the first maroon cluster in the TSG branch as an example:
the enriched genes are involved in DNA damage and repair. The TSG-specific target genes are marked in red and the OCG-specific target genes are
marked with yellow in the top panel. In addition, the TSG-specific target genes are also represented in red and the OCG-specific target genes are
represented as a whole with yellow in the right panel. The arrow from TSG-specific target genes represents their regulatory effects on the ErbB
signaling pathway, and the arrow from OCG-specific target genes represents their anti-apoptosis effects as apoptosis negative regulators.
doi:10.1371/journal.pone.0044175.g003
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TSG-specific target genes were positive regulators of apoptosis.

Therefore, in the apoptosis subnetwork (Figure 4A), OCGs and

their specific targets have roles in the prevention of apoptosis,

whereas TSGs and their specific targets tend to promote apoptosis.

The results from this unique regulatory network analysis revealed

that, although some TSGs were involved in apoptosis and OCGs

were mainly involved in ErbB signaling (Figure 3), their specific

target genes might reverse the process functions in apoptosis and

the ErbB signaling pathway.

Interplay of TSGs, OCGs and their Modulating TFs to
Regulate Apoptosis, Cell Cycle, Reproduction and
Response to Hormone Stimulation
To better understand the molecular activities in the important

biological processes in OVC, we generated and analyzed four

subnetworks related to ‘‘apoptosis,’’ ‘‘response to hormone

stimulus,’’ ‘‘cell cycle,’’ and ‘‘reproduction’’ (see Materials and

Methods). For this purpose, we filled the regulatory gaps between

TSGs/OCGs (top layer) and target genes (bottom layer) with TFs

(middle layer) in each subnetwork if those TFs directly regulated

the target genes related to each biological process. In the apoptosis

subnetwork, there are 17 TSGs, 8 OCGs, 12 TF genes, and 17

target genes. Among the 12 TFs, nine were added as direct

regulators of target genes in the apoptosis subnetwork (Figure 4A).

For the nine added TF genes, seven of them were reported to take

part in apoptosis in various types of cancer or diseases; these seven

TFs are STAT3 [51,52,53], ETS1 [54], LEF1 [55,56], STAT4

[57], E2F3 [58], ATF3 [59], and HMGA2 [60], which have not

been annotated by GO yet. Notably, HMGA2 demonstrated its

function to increase apoptosis in OVC [60]. Similarly, in the

hormone stimulus subnetwork (Figure 4B), four added TFs, ATF3

[61], E2F3 [62], HMGA2 [63,64], and LEF1 [65], were reported

to respond to hormone stimuli. For the cell cycle subnetwork

(Figure S4A), three added TFs (STAT3, ATF3, and TBP) were

confirmed by previous studies [66,67,68]. In the reproduction-

related subnetwork (Figure S4B), three added TFs, STAT3,

BACH1, and LEF1, had evidence that they were related to the

reproductive system [69,70,71]. In total, 26 added TFs were from

the four subnetworks, and 17 TFs (65.38%) had literature evidence

to support the novel functions in their corresponding subnetworks.

The majority of TSGs and OCGs interplayed in multiple

related cellular processes, and they tended to co-regulate in close

relation to each other in those processes. In the cell cycle

subnetwork, 65% of TSGs, 50% of OCGs and 87.5% of TFs were

shared with those from the apoptosis subnetwork (Figures S5A, B,

and C). For the 22 genes in the reproduction subnetwork, 14 were

shared with 27 genes in the hormone stimulation subnetwork

(Figures S5A, B, and C). Therefore, TSGs and OCGs could co-

regulate cell growth related processes in opposite ways, such as in

cell cycle and apoptosis. Additionally, both TSGs and OCGs

might play important roles regarding the response to hormone

stimuli and reproduction.

Discussion

In this study, we explored the hierarchical regulatory networks

involving tumor suppressor genes, oncogenes, and transcription

factors in conjunction with the human protein interactome and

gene expression profiles. We developed a computational frame-

work for construction and analysis of the hierarchical regulatory

networks and successfully demonstrated it in a major type of

cancer, ovarian cancer. The key aspect of our approach was the

utilization of TFs as bridges to link the regulatory impact of TSGs

and OCGs to target genes, which was expected to address the

inherent indirect association of TSGs and OCGs to downstream

target genes. Our framework started with the extraction of a PPI

subnetwork centered with modulators (TSGs, OCGs and TFs),

and we then inferred regulatory relationships using gene

expression profiles. Based on these relationships, we constructed

a three-layer regulatory network that included TSGs, OCGs, TFs,

and their joint target genes. This general network analysis pipeline

is likely robust to recruit critical genes and their regulation in

tumorigenesis and can be applied to discover the regulatory

relationship between TSGs, OCGs, TFs, and target genes in other

types of cancer or other complex diseases. However, this process

involved multiple computational methods, such as clustering,

functional enrichment analysis of a gene set, and definition of gene

sets. Thus, as in many complicated computational analyses, one

should be cautious when interpreting the results.

Through the construction and analyses of the regulatory

networks and subnetworks, and functional enrichment analyses

of TSGs, OCGs, TFs, and their target genes, we observed that

TSGs could play functional roles in DNA damage and repair, cell

cycle, apoptosis, and the regulation of macromolecule metabolism,

while OCGs may be primarily involved in ErbB signaling and the

response to hormone stimuli. Furthermore, the TSG- and OCG-

specific targets showed a reversed functional distribution, i.e., the

TSG-specific target genes were enriched in the ErbB signaling

pathway, whereas the OCG-specific target genes were involved in

apoptosis. Taken together, these results suggested that TSGs might

regulate the biological processes that are mainly regulated by

OCGs via TSG-specific target genes, while OCGs could

participate in the regulation of the biological processes that are

mainly regulated by TSGs via OCG-specific target genes.

Therefore, there is a competitive regulation mechanism between

TSGs and OCGs, which could play an important role during

cancer development. Until now, based on our knowledge, there

has been no report of any competitive regulation model between

these two major types of genes in any type of cancer. Further

investigation in other types of cancer or disease is warranted.

Over the past few decades, the identification of disease

candidate genes and the investigation of their regulatory mechan-

isms are important in order to understand the biological processes

of disease, including those in cancer [72]. To provide a clearer

picture of OVC genetics, we performed a comprehensive review

and analysis of published literature and data, resulting in a total of

1257 genes identified as related to OVC. We hope the data

presented in this study will be a valuable resource for the OVC

research community to explore both TSGs and OCGs in various

cancerogenesis processes. We roughly ranked 1257 genes based on

the number of data resources (Table S1). Many well-known OVC

causal genes, such as BRCA1, BRCA2, TP53, and PTEN, were

ranked in the top positions. Therefore, the gene list, along with

investigators’ own datasets, might be a valuable resource for the

OVC research community to further investigate OVC. In

addition, the OVC-specific regulatory network generated in this

study might be comprised of important regulatory relationships

between hub TFs (highly connected TFs in the network), their

modulators (Figure 3C), and novel functions of TFs (Figure 4 and

S4); these relationships, in turn, could provide interesting clues for

further investigation. For instance, a number of feedback

regulatory loops are known to synchronize with cell proliferation

[73]. It is therefore interesting to observe that three feedback loops

centered with ETS1 and the EGFR family contain 12 genes that

are able to regulate cell proliferation. Although ETS1 which has

functions in stem cell development, cell senescence and death, and

tumorigenesis [74] – has important roles in our regulatory

network, there are few studies that focus on the roles of ETS1 in
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OVC [75]. In contrast, the other hub TF HMGA2 was extensively

studied recently as a promising biomarker in OVC [60,76].

Exploring regulatory relationships centered on ETS1 and

HMGA2 using targeted experiments may lead to new insight

regarding growth signaling networks in cell proliferation of OVC.

Supporting Information

Figure S1 Degree distribution in the human protein-
protein interaction network. The empirical cumulative

distribution functions (ECDFs) for degrees of different gene

datasets. The ECDF curves (black) represent the degree of all

the human genes in the protein-protein interaction network: the

blue curve represents the degrees of 1257 ovarian cancer (OVC)-

related genes; the green curve represents the 467 cancer census

genes; the red curves are the degrees of all the involved OVC

TSGs, OCGs and TFs; the orange, pink and navy curves represent

the degrees of the OVC TSGs, OCGs and TFs, respectively.

(TIF)

Figure S2 Transcription factor (TF) profile clustering
for tumor suppressor genes (TSGs) and oncogenes
(OCGs). The heat map shows a two color representation of the

regulatory relationship between modulators and TFs, and the

dendrogram represents a hierarchical clustering of modulators and

regulated TFs. A red colored cell in the grid indicates that the row

TSG or OCG is inferred to regulate the column TF. A blue

colored cell in the grid indicates that the row TSG or OCG has no

influence on the column TF.

(TIF)

Figure S3 Interplay of tumor suppressor genes (TSGs)
and oncogenes (OCGs) on a cancer pathway annotated
by KEGG. The genes with a red background and blue label are

TSG genes; the genes with a brown background and cyan label

are OCG genes; the genes with a green background and black

label are transcription factor (TF) genes; the genes with a yellow

background color and navy label are target genes.

(TIF)

Figure S4 Interplay of tumor suppressor genes (TSGs)
and oncogenes (OCGs) to regulate cell cycle and re-
production. (A) Cell cycle. (B) Reproduction. The nodes with

red circles are tumor suppressor genes (TSGs). The nodes with

orange diamond are oncogenes (OCGs). The nodes with green

octagon are TFs. The genes with blue vee are target genes. The

links with orange color are from the TSGs or OCGs to their

modulating TFs. The arrow lines with green color are from the

TFs to their target genes. The TFs added by the first neighbors of

the target genes involved in the two biological processes are

marked with orange circles in (A) and (B).

(TIF)

Figure S5 Overlap of the genes involved in the hierar-
chical regulatory subnetworks. Overlap of all the involved

tumor suppressor genes (A), oncogenes (B) and transcription factor

genes (C) to regulate apoptosis and cell cycle, response to hormone

stimulation, and reproduction sub-networks. The AP on each

panel represents the gene contents involved in apoptosis; the CC

on each panel refers to the gene content involved in the cell cycle;

the HA on each panel is the gene content in response to hormone

stimulus; and the RP on each panel represents the gene content

involved in reproduction.

(TIF)

Figure S6 The P-value distribution of functional terms
from DAVID for the 112 genes in the ovarian cancer-
specific regulatory network and ten gene lists randomly
selected from 1257 OVC genes with same number of
genes. The empirical cumulative distribution functions (ECDFs)

for P-values of different gene datasets. The ECDF curves (black)

represent the P-value of the 112 genes in the ovarian cancer-

specific regulatory network. The other ten curves represent the P-

value of the112 genes randomly selected from 1257 ovarian cancer

(OVC)-related genes. For comparison P-values less than 0.05, only

the proportions of the P-values less than or equal to 0.05 were

plotted.

(TIF)

Table S1 List of the 1257 ovarian cancer (OVC)
candidate genes collected in this study.

(XLSX)

Table S2 The comparison of network topological char-
acteristics in human protein-protein interaction (PPI)
among different gene datasets. The results of Kolmogorov-

Smirnov test on degree, betweenness centrality and closeness

centrality among different gene datasets are included.

(DOC)

Table S3 List of the 112 genes in the ovarian cancer-
specific hierarchical regulatory network.

(XLSX)

Table S4 Functional annotations of the 112 genes in the
ovarian cancer-specific regulatory network. The function-
al annotation and statistical enrichment results are obtained from

the DAVID functional classification tool.

(XLSX)

Table S5 List of regulatory loops in the ovarian cancer-
specific regulatory network. The file contains all the TFs and
their modulators that may regulate each other in a feedback loop

style.

(XLSX)

Table S6 Empirical P-values of network topological
characteristics in human protein-protein interaction
(PPI) among different gene datasets. The results of

randomization on degree, betweenness centrality and closeness

centrality among different OVC TSGs, OCGs, and TFs are

included.

(DOC)

Text S1 This file includes details of data sources and
methods that were used for ovarian cancer (OVC)
candidate gene collection and curation.

(DOC)

Figure 4. Interplay of tumor suppressor genes (TSGs) and oncogenes (OCGs) to regulate apoptosis and response to hormone
stimulation. (A) Apoptosis. (B) Response to hormone stimulation. The red circular nodes are OVC-related TSGs. The yellow triangle shaped nodes are
OVC-related OCGs. The green octagonal nodes are OVC-related transcription factors (TFs). The blue vee nodes represent targeted OVC genes. The
orange links are from the TSGs or OCGs to their modulating TFs. The green arrow lines are from the TFs to their regulating target genes. The TFs
added by the first neighbors of the target genes involved in the two biological processes are marked with orange circles in (A) and (B).
doi:10.1371/journal.pone.0044175.g004
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