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Quantitative phase imaging (QPI†) has emerged as one of the powerful imaging tools for the study of live 
cells in a non-invasive manner. In particular, multimodal approaches combining QPI and fluorescence 
microscopic techniques have been recently developed for superior spatiotemporal resolution as well as 
high molecular specificity. In this review, we briefly summarize recent advances in three-dimensional QPI 
combined with fluorescence techniques for the correlative study of cell pathophysiology. Through this 
review, biologists and clinicians can be provided with insights on this rapidly growing field of research 
and may find broader applications to investigate unrevealed nature in cell physiology and related diseases.
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INTRODUCTION

Optical imaging of biological cells and tissues has 
been utilized as an indispensable technique providing in-
valuable information on the pathophysiology of diseases. 
Since the observation of cork cells using a microscope 
by Robert Hooke in the 17th century, various microscopic 

techniques have been developed to achieve better imag-
ing capabilities. In particular, fluorescence microscopy is 
one of the important advances that opened a new era in 
molecular biology and molecular diagnosis. Via specific 
labeling of target molecules with fluorescence probes, un-
precedented molecular specificity and imaging contrast 
could be achieved. However, the signals from fluores-
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cence probes are qualitative due to varying permeability 
of fluorescence dyes. Also, repeated measurements are 
limited due to photobleaching and phototoxicity. More 
importantly, they require the use of exogenous labeling 
agents which may prevent from live cell imaging of intact 
cells, and labeled cells are very limited to in vivo appli-
cations.

Quantitative phase imaging (QPI) is an interferomet-
ric microscopy technique, which measures the optical 
phase delay induced by refractive index (RI) difference 
between a sample and medium [1,2]. Because RI is an 
intrinsic optical property of a material, no exogenous la-
beling agent is required to generate an imaging contrast 
in QPI. Furthermore, from the measured phase delay, the 
morphological and chemical properties of a sample can 
be quantitatively retrieved. These advantages make QPI 
increasingly attractive in studying various biological sam-
ples, including blood cells [3-5], bacteria [6-9], neurons 
[10,11], parasites [12,13], plant cells [14,15], cancer cells 
[16-19], inflamed tissues [20], and tissue slices [21,22].

Optical diffraction tomography (ODT), one of the 
three-dimensional (3D) QPI methods, reconstructs the 
3D RI distribution of a sample from the measurements 
of multiple two-dimensional (2D) holograms via inverse 
scattering principle [23]. Multiple 2D holograms of a 
sample can be obtained by utilizing illumination angle 
scanning [24-28] or sample rotation [29-32]. RI distribu-
tion of a sample serves as an intrinsic optical imaging 
contrast, which provides physical and chemical infor-
mation including protein concentration and cellular dry 
mass in a quantitative manner [33,34]. In particular, the 
applicability of ODT to various research area also have 
been demonstrated, such as the physiology of various bi-
ological samples including blood cells [35-37], immune 
cells [30,38], embryos [39], bacteria, and various eukary-
otic cells [40-42].

QPI approaches have provided a new methodology 
for investigating the pathophysiology of live cells and 
tissues via label-free and quantitative imaging. Although 
label-free and high-speed 3D imaging capability of QPI 
provides the advantage for live cell imaging, the limited 
molecular specificity strongly restricts broader applica-
tions in cell biology and biochemistry.

To overcome the limited molecular specificity in QPI 
while maintaining the advantages of the method, several 
multimodal approaches have been recently demonstrated. 
For example, ODT integrated with multi-spectral light 
sources [43], Raman spectroscopy [44], and structured 
illumination microscopy [45,46] have demonstrated the 
potential for combining molecular specific information 
and morphological information. In particular, correlative 
imaging approaches combining fluorescence microscopy 
and QPI take the advantages of quantitative imaging, su-
perior spatiotemporal resolution, and molecular specific-

ity. Although the exogenous labeling agents are required, 
synergetic advantages between QPI and fluorescence 
microscopy suggested new applications.

Here, we review the recent advances in the correla-
tive imaging techniques combining 3D QPI with various 
fluorescence microscopic techniques. First, we introduce 
the principle of QPI and ODT. Then, we summarize 
important demonstrations of the correlative imaging for 
various biological and medical studies. Prospective ap-
plications and futures of the correlative imaging will also 
be discussed.

PRINCIPLE OF QUANTITATIVE PHASE 
IMAGING

By exploiting the interference nature of light, QPI 
techniques enable us to retrieve not only the amplitude 
but also the phase information of scattered light from 
a sample. Interference between the scattered light and 
well-defined reference light produces an interference 
pattern, called a hologram or an interferogram [47,48] 
(Figure 1A). Several field retrieval algorithms [49,50], 
utilizing temporally or spatially modulated reference 
light, have been developed to extract the optical field 
information, i.e., both the amplitude and phase, from a 
measured hologram.

In an aspect of imaging, the phase information of 
the light scattered by an object is the optical phase delay 
map, which is related to the light refraction. Although 
most biological cells and tissues are transparent under 
optical wavelengths, light passing through these biolog-
ical samples exhibits optical phase delays depending on 
the morphology and distribution of RI values of each 
sample. In principle, the optical phase delay is calcu-
lated as the integration of RI values along the trajectory 
of light passing through a sample subtracted inside the 
integration of those passing through surrounding media. 
Even microscopic cells usually produce significant op-
tical phase delays, which can be precisely measured by 
QPI techniques without using an exogenous agent. On 
the contrary, these biological cells are mostly transparent 
in visible light ranges and thus do not produce enough 
imaging contrast to be imaged in bright-field microscopy. 
This aspect makes QPI an especially useful imaging tool 
for observing live cell morphology and dynamics without 
disturbing its physiological condition.

In 2D QPI, the measured optical phase delay is sim-
ply a coupled value between the thickness of a sample 
and the mean RI value of the sample. To retrieve one val-
ue, the other value should be known. Although 2D QPI 
can be effectively applied to several applications such as 
imaging red blood cells (RBCs) or bacteria, the detailed 
3D morphology of eukaryotic cells or their internal struc-
tures cannot be directly investigated. 3D QPI enables the 
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reconstruction of 3D RI distributions [23,51,52] (Figure 
1B).

The principle of ODT is the inverse solving of wave 
equation (Helmholtz equation for monochromatic wave); 
from the multiply scattered waves obtained with various 
illumination angles, scattering potentials or 3D RI tomo-
gram of a sample can be reconstructed. With two pre-as-
sumptions of slightly varying permittivity in a wavelength 
scale and a weakly scattering condition of a sample, ODT 
maps the measured 2D optical field onto a 3D scattering 
potential of the object; a 3D Fourier transformed pair of 
the object RI tomogram multiplied by a numerical fac-
tor. Then, to precisely infer the 3D shape of the object 
from limited information, the remaining portion of the 
scattering potential, inaccessible by experiments mainly 
due to finite aperture sizes of an imaging system, is often 
supplemented with various image regularization methods 
[53]. Finally, inverse 3D Fourier transform of the mapped 
scattering potential gives a 3D complex RI tomogram of 
a sample.

In ODT imaging systems, the successive measure-
ments of 2D optical fields, necessary for obtaining a 
tomogram, are usually accomplished either by varying 
illumination beam angles impinging onto a fixed sample 
[25,27,54], rotating the sample under a fixed beam illumi-
nation [29,55], or varying illumination beam wavelengths 
[56,57]. Further, the suppression of coherent noises 
in reconstructed 3D RI tomograms can be achieved in 
partially coherent [58,59] or incoherent [60] ODT at the 
expense of an additional sample scanning process in an 
axial direction. The details on the principle of ODT can 
be found elsewhere [12,52,61].

ODT can be understood as an optical analogous 
to X-ray computerized tomography (CT). Whereas 2D 
X-ray only provides the integrated projection images 
(Figure 1C), X-ray CT reconstructs 3D X-ray absorptiv-
ity tomograms of a human body (Figure 1D). Similarity, 
2D QPI provides the projection images of cells, 3D QPI 
reconstructs 3D optical RI tomograms of a live cell.

Despite the advantages of QPI for observing bio-
logical cells, its limited molecular specificity restricts to 
distinguish different intracellular organelle and protein 
compositions except for a few cases. In order to over-
come this limitation, QPI approaches utilizing hyperspec-
tral wavelengths to address distinctive dispersion spectra 
of target molecules [43,62,63] have been investigated 
[43,62,63], discerning cell nuclei using the ultraviolet 
wavelength [64], and selectively attaching the nanopar-
ticles with high RI values to the target proteins in cells 
[41,65]. Furthermore, the correlative imaging tools com-
bining QPI with other imaging modalities such as Raman 
[44], confocal microscopy [66], and structured illumina-
tion microscopy [46,67] have also arisen recently, as we 
will mainly discuss the details in the following sections.

CORRELATIVE IMAGING TECHNIQUES IN 
QPI

Two-dimensional QPI with Correlative Imaging 
Techniques

As an emerging imaging technique, QPI has shown 
potential in various fields of study, with its unique ad-
vantages of label-free and quantitative imaging capabil-

Figure 1. Overview of 2D and 3D imaging. The schematic of (A) 2D quantitative phase imaging, (B) 3D quantitative 
phase imaging, (C) 2D X-ray imaging, and (D) 3D X-ray computerized tomography.
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simultaneously used to characterize skin fibroblasts that 
were exposed to ultraviolet radiation [70]. Under ultra-vi-
olet radiation, QPI can be used to retrieve the dry mass 
and density of skin fibroblasts, while RS detected the 
changes in biochemical composition, mainly proteins and 
lipids. Thus, this multimodal optical technique allowed 
label-free profiling of changes in skin fibroblast due to 
time-bound ultra-violet radiation. Also, correlative imag-
ing using 2D QPI and 2D fluorescence microscopy was 
used to monitor the injection of the intracellular injection 
of glycerol [71], to study nucleus components [72], and to 
investigate the response of cells to optical tweezers [73].

Three-dimensional QPI with Correlative Imaging 
Techniques

Due to the rapidly emerging demands for more 
detailed morphological imaging of biological samples, 
ODT or 3D QPI techniques have become more promi-
nently used in biological studies [74].

The combination of ODT and other microscopic 

ity. However, limited molecular specificity of QPI has 
prevented from being adopted in many applications of 
bioimaging. This drawback of QPI can be overcome with 
the aid of other optical modalities.

Many other optical techniques can be readily com-
bined with QPI, complementing each other to make an 
effective method that can address various unanswered 
problems in biology and medicine (Figure 2). A combi-
nation of 2D QPI and 2D fluorescent imaging through 
diffraction phase and fluorescence microscopy showed 
quantitative and molecular imaging of living cells (Fig-
ure 2A) [68]. Also, the combination of QPI and confocal 
reflectance microscopy generates 2D quantitative phase 
images and 3D confocal reflectance images, which de-
termine the optical and physical thicknesses of live cells 
(Figure 2B) [69]. In addition, correlative imaging through 
confocal Raman and QPI proved to be useful in obtaining 
the morphology and chemical compositions of label-free 
samples by utilizing its high spatial resolution (Figure 2C) 
[44]. Moreover, QPI and Raman Spectroscopy (RS) were 

Figure 2. 2D QPI with other correlative imaging techniques. (A) Through this imaging technique, the mitosis of a 
kidney cell was accurately visualized both through quantitative phase image, fluorescence image, and their overlaid 
image. (B) Through this technique, axially averaged refractive index of cells was determined. This was used for the 
calculation of protein concentrations. (C) Through this multimodal imaging system, normal and P. falciparum-infected 
red blood cells (RBCs) were analyzed to have different morphology and hemoglobin distribution of the RBCs, which 
were determined by QPM and confocal Raman microscopy, respectively. (A-C) are modified from refs. [68,69], and [44], 
respectively, with permissions.
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Also, correlative imaging of 3D phase imaging and 3D 
super-resolution optical fluctuation imaging ensures 
high-speed dynamic 4D images with high molecular 
specificity (Figure 3D) [80]. Multimodal imaging through 
ODT and 3D structured illumination microscopy makes 
quantitative and sub-diffraction imaging possible due to 
the high spatiotemporal resolution of the system, which 
increases molecular specificity that allows analysis of 
biochemistry and biophysics of living cells with minimal 
perturbation [67].

BIOLOGICAL APPLICATIONS OF 
CORRELATIVE QPI TECHNIQUES

Infectious Disease
Electron microscopy (EM), scanning electron mi-

croscope and transmission electron microscope, has been 
extensively used to visualize and investigate the mecha-
nism of infectious diseases [81,82]. Due to its high spatial 
resolution, pathogens and host cells can be visualized 
using EM. However, EM can only measure a still shot 
image of a dead cell due to the destructive nature of the 
imaging process, which requires the measurements met-
al-coated samples in vacuum condition. Since EM does 
not allow live-cell imaging, investigating the mechanism 
of infections is significantly limited. An alternate method 
is imaging the labeled host and pathogens to visualize and 
characterize the infectious disease, using fluorescence 
proteins or dyes. However, labeling is a cumbersome pro-
cess, exogenous labels may alter the mechanisms of the 

techniques opens possibilities for superior spatiotemporal 
resolution, quantitative imaging, and high molecular-spe-
cific analysis of live cells (Figure 3). This opens grounds 
for new findings in cell biology, cellular pathophysiolo-
gy, and novel diagnosis and treatment of diseases. ODT 
can be used to visualize the morphology and to quantify 
subcellular contents of living cells, which can be simulta-
neously verified by 2D fluorescence imaging (Figure 3A) 
[75,76]. Jung et al. imaged and quantified lipid contents 
in label-free microalgal cells through 3D RI tomography, 
which was validated through 2D fluorescence imaging of 
Nile red dye. ODT combined with 3D fluorescence imag-
es is correlatively used to image live cells for quantitative 
and precise spatial molecular specificity [77] (Figure 3B). 
Simultaneous 3D QPI and 3D fluorescence imaging are 
optimal for cellular dynamics imaging, especially target-
ing the organelles, as phototoxicity and photobleaching 
can be minimized through QPI. Recently, ODT and 3D 
fluorescence correlative imaging have been used in RI 
and fluorescence tomography with optofluidic rotation 
(RAFTOR), which analyzed suspended cell quantitative-
ly with molecular specificity [78]. Also, 3D QPI and 3D 
confocal fluorescence imaging was used together for the 
study of yeast cells [79].

Furthermore, ODT combined with super-resolu-
tion fluorescent microscopic techniques has also been 
presented (Figure 3C and 3D). By employing 3D struc-
tured illumination microscopy, correlative ODT and 3D 
sub-diffraction fluorescence imaging, which enhanced 
the visualization of subcellular dynamics due to the 
sub-diffraction resolution of images (Figure 3C) [45,46]. 

Figure 3. 3D QPI with other correlative imaging techniques. (A) ODT visualizes and quantifies lipids in algae, which 
are validated through 2D FL Nile red dye imaging. (B) Through this multimodal optical system, volume of nucleus and 
cytoplasm of HeLa and NIH-3T3 cells were determined by quantitative analysis. (C) Due to improvements in lateral 
resolution and depth localization, ODT and 3D SIM visualize clearer sub-diffraction structures of A549 cell, outlined in 
yellow box, compared to the conventional widefield (WF) imaging system. (D) Through multi-plane phase and SOFI 
imaging, clear subcellular structures of HeLa cell were imaged, making this system an accurate 4D imaging modality. 
(A-D) are modified from refs. [76,77,45], and [80], respectively, with permissions.
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erythrocytes was studied using ODT [84]. To accurately 
characterize and understand the mechanism of parasitic 
egress, it is important to study the dynamics of the para-
site infecting the host without any perturbation. 3D RI to-
mograms showed that parasitophorous vacuole plays an 
important role in RBCs’ morphology and the egress of the 
parasite from infected RBCs. This study provided new 
insight into the biochemical and biophysical principles 
that govern the exit of parasites from infected RBCs. This 
was done with the structural and mechanistic interpreta-
tion of the changes in parasitophorous vacuole. Kim et al. 
demonstrated high-resolution 3D optical RI tomograms 
of Pf infected RBCs using ODT [12]. Hemozoin inside 
Pf-RBC, the crystalline forms of hemoglobin metabo-
lized by Pf, was imaged and analyzed. QPI can be used 
for not only malaria pathophysiology, but also with other 
infectious diseases, such as Babesiosis caused by Babesia 
microti (Bm) [35]. The morphological, biochemical, and 
biomechanical changes in Bm-RBCs are characterized by 
optical micro-tomographic technique, as they are import-
ant in understanding the pathophysiology of Babesiosis. 
A combined ODT and 3D fluorescence imaging tech-
nique was used to investigate the biophysical properties 
of live erythrocytes from Pelophylax nigromaculatus. 
Cell membranes were studied from the measured 3D RI 

states of host cells and pathogens, and some parasites are 
difficult to be labeled with existing methods. Also, this 
labeling method is only qualitative, having limitations 
quantifying the biophysical and biochemical properties 
of the infectious diseases.

On the other hand, QPI allows a unique approach 
for quantitative imaging of infectious diseases. QPI can 
visualize the morphology and dynamics of living cells as 
well as parasites, enabling a quantitative characterization 
of infectious diseases. RBCs infected by malaria-induc-
ing Plasmodium falciparum (Pf) were characterized by 
QPI [83]. By measuring RI and membrane fluctuation 
of parasitized human RBCs using QPI, morphological, 
biochemical, and biophysical changes were studied. The 
infected RBCs were identified by using fluorescence 
signals coming from the nucleus of parasites, and then 
the infected RBCs were measured using QPI. By mea-
suring 3D RI maps of the infected cells, different stages 
of Pf infected RBCs were visualized and systematically 
investigated. The decrease in the volume of cytosol and 
the concentration of hemoglobin from healthy to different 
stages of infected RBCs was quantified through RI. Also, 
a decrease in membrane fluctuation of infected RBCs in-
dicated the loss in cell deformability of parasitized RBCs.

Also, the biophysics of Pf egressing from infected 

Figure 4. Demonstration of applicability of ODT and multimodal approach combining ODT and 3D fluorescence. 
(A) Study of Toxoplasma gondii infecting ARPE-19 through timelapse QPI. (B) NIH-3T3 cell research through ODT and 
3D FL (GFP-Mito and mCherry-Golgi). Both images are obtained by commercialized ODT setup (HT-2H, Tomocube, 
Inc., South Korea).
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clinical pathology. Kim et al. studied the cellular dynam-
ics of lipid droplets in human hepatocyte [43]. Previous 
studies on lipid droplets through fluorescence micros-
copy made lipid droplets visible with high molecular 
specificity; however, the cell dynamics of lipid droplets 
cannot be accurately determined due to phototoxicity and 
photobleaching, which causes cellular perturbation and 
loss of fluorescence signal of lipid droplets, respectively. 
Using ODT, Kim et al. were able to reconstruct 3D RI 
distribution of lipid droplets in hepatocytes. Lipid drop-
lets were quantified and tracked in 4D. This application 
has potential in discovering new biochemical metabolism 
and storage of lipids.

QPI can also be useful in studying gold nanoparticle 
particles (GNPs) applications. GNPs are widely used in 
the biological and medical field for imaging, diagnos-
tic, and therapeutic purposes. The dynamics of gold 
nanoparticles in cells were studied through ODT [76]. 
Fluorescence is the conventional imaging technique to 
study the dynamics of GNPs in cells. However, due to 
phototoxicity and photobleaching, long-term dynamic 
analysis of GNPs in cells were not possible. Kim et al. 
used ODT to visualize and analyze the dynamics of GNPs 
in HeLa cells and murine breast cancer cells (4T1 cells). 
Through this QPI technique, quantitative analysis of the 
spatial distribution of aggregate GNPs and time-depen-
dent localization of GNPs were measured. This paper 
proposes that ODT with GNPs can be used widely in the 
biomedical field for cancer and tissue imaging. Both lipid 
droplet and gold nanoparticles research using ODT were 
validated through correlative spatial comparison of flu-
orescence images of lipid droplets stained with Nile red 
dye and Alexa Fluor 555 dyes, respectively to the 3D RI 
distributions.

Many cell biology studies have been done through 
NIH-3T3, originating from mouse embryonic fibroblast 
cells, which can be easily transfected. To accurately view 
and characterize the effects of transfection in NIH-3T3, 
ODT and 3D FL are used (Figure 4B). Subcellular struc-
tures, mitochondria and Golgi-apparatus are visualized 
through FL imaging of GFP and mCherry, respectively.

CONCLUSIONS AND OUTLOOK

Here, we reviewed recent progress in the correlative 
approaches in 3D QPI. The research work highlighted in 
this review shows that the multimodal approaches com-
bining QPI and fluorescence microscopy have provided 
valuable information about various quantitative imaging 
parameters, and also implies that these correlative ap-
proaches may play an important role in enhancing our 
understanding of the physiology and pathology of cells 
and tissues. This may make a critical impact on the diag-
nosis and treatment of various diseases as the combina-

tomograms and the locations and shapes of the nuclei 
were confirmed using DAPI [85].

Recently, infections of macrophages were researched 
by QPI [86,87]. Ekpenyong et al. investigated primary 
murine bone marrow-derived macrophages (BMDM) 
infected with Salmonella enterica serovar Typhimurium. 
They reported that there is a decrease in RI of Salmonel-
la-infected BMDM compared to that of normal BMDM. 
Mendoza-Rodriguez et al. characterized differences in 
morphology and integral 3D RI of macrophages infected 
by Leishmania at different stages of infection. The size 
of macrophage and RI increased due to phagocytosis. 
Also, viral infections with H3N2 influenza virus on A549 
human cells were investigated by correlative imaging 
with fluorescence confocal and tomographic diffractive 
microscopy [88]. Molecular specificity of the virus was 
observed through the confocal, and morphology of A549 
cells was visualized through quantitative phase images. 
Spherical particles were visualized only on the mem-
branes of infected cells, which were postulated to be 
budding of viral particles.

One of the challenges to applying QPI techniques 
was the complicated optical system. To obtain QPI im-
ages, the samples were usually sent to a physics or engi-
neering laboratory where a QPI instrument was available. 
Recently, QPI instruments are commercially available. 
Among them, Tomocube Inc. (Republic of Korea) and 
Nanolive Ltd. (Switzerland) commercialized ODT tech-
niques. They also provide instruments for correlative 
QPI; Tomocube’s HT-2 can measure 3D RI tomograms 
and 3D fluorescence images and Nanolive’s 3D Cell 
Explorer-fluo provide 3D RI tomograms and 2D fluores-
cence images.

Figure 4A shows the applications of a commercial 
QPI technique for the study of infectious diseases. The 
time-lapse 3D images of Toxoplasma gondii infecting 
ARPE-19 were measured using a commercial ODT sys-
tem (HT-1H, Tomocube Inc., Republic of Korea). As T. 
gondii penetrate the ARPE-19, the cell undergoes death. 
This high-resolution time-lapse 3D images can provide 
important insights on the mechanism of infection.

Cell Biology
Studying the structure and understanding related 

functions in the cells are crucial for the study of biology 
and various diseases. QPI is a powerful imaging tech-
nique for cell biology research as it enables quantification 
of biophysical and biochemical properties of label-free 
living cells. Other existing imaging techniques that need 
labeling through chemicals are not optimal for cell biolo-
gy research as the labeling might change the metabolism 
of cells.

One important cell biology is lipid droplets dynam-
ics in cells, as lipid droplets are gaining importance in 
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tion of PET and CT opened new opportunities in medical 
diagnosis.

However, the uses of the correlative QPI approaches 
have not yet been fully explored. There exist several is-
sues to be solved so that the QPI techniques developed in 
optics laboratories are extensively utilized in biological 
laboratories and clinical environments. Unlike other ex-
isting optical microscopy techniques, QPI methods have 
relatively complex instrumentation and also requires pre-
cise alignments and adjustments because QPI techniques 
are based on laser interferometry. Recently, various QPI 
techniques have been commercialized, which will enable 
wide utilization of QPI techniques by biologists and cli-
nicians.

Furthermore, this emerging field of research can 
also be effectively assisted by the artificial intelligence 
(AI) approaches. The multimodal approaches combining 
QPI and fluorescence microscopy have unique advantag-
es in AI-assisted research and diagnosis because these 
multimodal approaches provide both the morphological 
and molecular specific information and the RI can pro-
vide highly reproducing and quantitative information 
about cells and tissues. Recently, various research work 
presented the combination of QPI and AI, including the 
classification of individual red blood cells [89], bacterial 
genus [90], bacterial species [91], lymphocytes [9], mac-
rophage [92], the analysis of unlabelled sperm cells [93], 
and cancer cells [94]. When the multimodal approaches 
combining QPI and fluorescence microscopy were pow-
ered by AI, it potentially enables diagnosis of various 
diseases based on both the morphological and molecular 
information at the individual cell levels and open a new 
avenue for medical study and diagnosis.

Lastly, to address important biological and medical 
problems with new approaches in imaging technology, 
it is crucial to develop interdisciplinary collaborations 
among optical physicists, engineers, biologists, and 
clinicians. Considering unique advantages that these 
multimodal approaches combining QPI and fluorescence 
image methods provide, we believe that this merging 
approaches will enhance the research and diagnosis of 
various diseases.
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