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*e assistive, adaptive, and rehabilitative applications of EEG-based robot control and navigation are undergoing a major
transformation in dimension as well as scope. Under the background of artificial intelligence, medical and nonmedical robots have
rapidly developed and have gradually been applied to enhance the quality of people’s lives. We focus on connecting the brain with
a mobile home robot by translating brain signals to computer commands to build a brain-computer interface that may offer the
promise of greatly enhancing the quality of life of disabled and able-bodied people by considerably improving their autonomy,
mobility, and abilities. Several types of robots have been controlled using BCI systems to complete real-time simple and/or
complicated tasks with high performances. In this paper, a new EEG-based intelligent teleoperation system was designed for a
mobile wall-crawling cleaning robot. *is robot uses crawler type instead of the traditional wheel type to be used for window or
floor cleaning. For EEG-based system controlling the robot position to climb the wall and complete the tasks of cleaning, we
extracted steady state visually evoked potential (SSVEP) from the collected electroencephalography (EEG) signal. *e visual
stimulation interface in the proposed SSVEP-based BCI was composed of four flicker pieces with different frequencies (e.g., 6 Hz,
7.5Hz, 8.57Hz, and 10Hz). Seven subjects were able to smoothly control the movement directions of the cleaning robot by
looking at the corresponding flicker using their brain activity. To solve the multiclass problem, thereby achieving the purpose of
cleaning the wall within a short period, the canonical correlation analysis (CCA) classification algorithm had been used. Offline
and online experiments were held to analyze/classify EEG signals and use them as real-time commands.*e proposed system was
efficient in the classification and control phases with an obtained accuracy of 89.92% and had an efficient response speed and
timing with a bit rate of 22.23 bits/min. *ese results suggested that the proposed EEG-based clean robot system is promising for
smart home control in terms of completing the tasks of cleaning the walls with efficiency, safety, and robustness.

1. Introduction

*e idea of interfacing brains with machines/robots has long
captured the human imagination. Brain-computer interface
(BCI) technology intend to build an interface between the
brain and any electrical/electronic device (e.g., a wheelchair,
smart home appliances, and robotic devices) using elec-
troencephalogram (EEG) which is a noninvasive technique
for measuring electrical potentials from electrodes placed on
the scalp produced by brain activity. Nowadays, the EEG

technique has been used to establish portable synchronous
and asynchronous controls for BCI applications. Nonin-
vasive EEG-based BCIs are the most promising interface for
space of applications for people with severe motor dis-
abilities because of their noninvasiveness, low cost, practi-
cality, portability, and being easy to use. For some disabled
patients with physical disability or paralysis while the brain
function is still normal, although they have a normal large
brain consciousness and thought, they cannot communicate
with the external environment through the severely
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damaged muscle and nervous system and complete the daily
work independently. *is has caused serious physical and
mental trauma, and their lives are very painful, which will
affect their recovery process to some extent. How to restore
or enhance their control and communication capabilities to
the outside world has been the goal that has been pursued for
many years in the field of medical rehabilitation. *erefore,
BCIs can be used for helping patients with severe brain
disorders or muscle damages to regain their ability to
communicate directly with the outside environment
through the brain electrophysiology response [1–3]. BCI can
also be beneficial for the elderly as advanced assistive and
rehabilitative technologies and useful for young able-bodied
for controlling video games for entertainment [4, 5] or
controlling a robotic arm for several purposes [6–9].
However, most of the traditional brain-computer interface
equipment is expensive, bulky, and tedious, which makes it
difficult to popularize and apply brain-computer interface
technology in real life. *e portable brain-computer inter-
face has become one of the hotspots in the field of the brain-
computer interface because of its advantages of easy to carry,
easy to use, safe, and reliable.

BCI technology is mainly divided into two types of
brain activity measurement, invasive BCI, and noninvasive
BCI, depending on the way of putting the electrodes to
record the electrical brain activity [10–14]. Among them,
the invasive BCI might lead to an immune reaction, which
causes serious harm to the user, and it is hardly accepted by
disabled people because of the invasiveness of the tech-
nique which requires a dedicated surgery, and its cost with
equipment is very expensive and not covered by many
governments yet. Although the noninvasive brain-com-
puter interface is less accurate than the invasive BCI, it is
still relatively cheaper compared with all other techniques
and everyone can easily accept it. *ere are several para-
digms to control machine or computer using our brain
signal characteristics and the most popular ones are motor
imagery [15, 16], P300 wave [17, 18], steady state visual
evoked potentials (SSVEP) [19–21] for building practical
brain-computer interface systems. So far, the SSVEP
method was applied widely because of the high signal-to-
noise ratio and robustness [22]. SSVEP induction means
that when the human brain receives the stimulation of a
fixed frequency scintillation block, an uninterrupted re-
sponse related to the stimulation frequency will be gen-
erated in the visual cortex of the human brain. *is SSVEP
brain response is a very useful natural involuntary phe-
nomenon which has been tested by researchers many times.
*e earliest SSVEP-BCI system, designed by Regan , in
1979, allowed subjects to select a flashing button on the
computer screen by simply looking at the computer screen
[23], basically achieving the desired design goals. *en,
Mullerputz and Guneysu and Akin applied the SSVEP-BCI
system to the physical control of neural limb and humanoid
robot, respectively, and achieved good control results [24].
In this paper, we chose SSVEP because it does not need any
training phase for subjects and has very high accuracy
compared with P300 or motor imagery using single trial
electroencephalography (EEG) signal. *e commonly used

signal processing and classification methods of SSVEP
include fast Fourier transform (FFT), wavelet transform,
canonical correlation analysis (CCA), linear discriminant
analysis (LDA), and support vector machine (SVM). In this
paper, CCA was used for developing our signal processing
algorithm. Compared with other SSVEP signal classifica-
tion algorithms [10–14, 25], CCA classification algorithm is
fast, efficient, simple, and easy to use.

In some previous researches, the SSVEP paradigm was
successfully used in writing tasks [26]. In the paper [27], we
can see that the authors proposed a hybrid brain-computer
interface system that combines P300 and SSVEP modalities.
*is combined system has improved the accuracy of EEG-
based wheelchair control. In addition, SSVEP has been also
used in the mental spelling system [28, 29]. In the paper [30],
the authors used three flash speeds to control the small robot
car. Lee et al. only use OZ as the reference electrode to collect
and process EEG signals. In the paper [31], Lu and Bi have
proposed a longitudinal control system for brain-controlled
vehicles based on EEG signals. However, it is still unknown
whether it can be used in the industry.

In this paper, a new type of intelligent crawler robot is
designed for cleaning the walls, which is considered as one of
the smart home appliances. Compared with the wheeled
robot [32], the crawler robot has the advantages of long life
and high carrying capacity.*e intelligent crawling robot for
the walls used in this experiment adds an adsorption device
using negative vacuum pressure, which effectively solves the
problem of sliding of the cleaning robot on a wall with a
certain inclination angle. *e BCI based on SSVEP can
usually provide a high information transmission rate, the
verification process of the system is relatively simple, and
no training of the subjects is required. However, because
the SSVEP of some subjects is very weak and vulnerable to
the interference of other noise signals, how to accurately
identify SSVEP from a short time window is still a chal-
lenging problem in BCI research based on SSVEP. *is is
also the subject that we will continue to study in the future.
In this study, the SSVEP paradigm was designed to control
the crawler robot for cleaning the dust on the walls. We
used the high accuracy SSVEP paradigm to cooperate with
our cleaning robot to complete the designed experiment.
To our best knowledge, this is the first report, which used
brain machine interface for crawling cleaning robot control
to help persons with disabilities to improve their quality of
life.

*is paper is arranged as follows: in the Materials and
Methods section, the experimental paradigm and analysis
method of brain signal and the motion model of the in-
telligent crawling robot were introduced. At the same time,
the offline experiment and online experiment are completed,
and the data analysis is carried out. In the Results section, the
offline and online experiments were summarized and dis-
cussed separately, and the accuracy and ITR of the exper-
iment were obtained. Our experiments validate our views
and achieve the desired results. In the Discussion part, we
mainly talk about the limitations of the system and put
forward the future changes. Finally, conclusion and pros-
pects of future work are given in Section 5.
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2. Materials and Methods

2.1. Participants and Experimental Paradigm. Seven healthy
volunteers (4 males and 3 females, 23–27 years of age) were
invited to join the experiment for performing some robot
control tasks using their brain activity. None of the subjects
have prior experience on brain-computer interfaces. Clear
written informed consent was obtained from all the par-
ticipants, who were informed in detail about the purpose and
possible consequences of the experiment. *e experimental
protocol was carried out in accordance with the latest
version of the Declaration of Helsinki.

*e experiments were carried out in a quiet and com-
fortable environment to reduce the noise effect on our EEG
recording. Subjects sat on a chair which is 60 cm away from
the screen which contains the stimulation interface. In order
to ensure the accuracy of the experiment, participants were
required to avoid gnashing during the experiment. Because
the SSVEP paradigm was easy to cause fatigue, the subjects
can take a rest after one session.*e flow of the experiment is
shown in Figure 1. *e experimental process is mainly di-
vided into three parts. Firstly, the EEG acquisition device
should be worn correctly for the subject and the subject’s
position should be adjusted. Secondly, the collected data are
processed and classified by a signal processing computer.
Finally, the processed instructions are sent to the lower
computer, that is, the intelligent crawling robot.

2.2. Experimental Materials. As shown in Figure 1, the
hardware system in this experiment mainly includes five
parts: EEG signal acquisition system (Brain Products,
Germany), computer for displaying visual stimulation in-
terface, computer for signal processing, Bluetooth module
for transmitting signals wirelessly, and intelligent crawling
robot for cleaning dust on the walls.

We have avoided in this study to use EMOTIVE EPOC
equipment which is relatively cheap consumer-grade EEG
signal acquisition device because its measurement signal
quality is not good enough for getting high classification
accuracy using SSVEP modality. On the contrary, Brain
Products can effectively collect the EEG signals induced by
SSVEP, record real-time characteristic signals, and have
good effects. EEG equipment (Brain Products) has the ad-
vantages of lightweight, flexible usage, and excellent and
stable signals. *erefore, this EEG equipment was used to
collect brain signals in our experiment. *e EEG signal
acquisition device used in our experiment is shown in
Figure 2.

*e EEG signal acquisition device selected in the ex-
periment consists of 64 electrodes. 32 black circles represent
effective electrodes and white circles are invalid electrodes.
All 32 channel electrodes which include 30 EEG signals
acquisition channels, 1 reference channel, and 1 ground
channel were used to record brain signal. *e position of
each channel was shown by black circles. *e sampling rate
was 500Hz. During the experiment, the impedance of each
channel was always below 10 k ohms to ensure the quality of
EEG signals. Because the SSVEP signal is generated by the

visual cortex of the brain, the EEG signals of O1, O2, P7, and
P8 channels near the visual cortex are collected in the ex-
periment, which will not affect the acquisition of SSVEP
signal, but also greatly reduce the amount of data processed
by EEG.

*e stimulation interface of the experimental paradigm
was designed by using MATLAB psychology toolbox. *is
interface contains four blocks which flash at frequencies
6Hz, 7.5Hz, 8.57Hz, and 10Hz, respectively, four blocks
were shown in the top, bottom, left, and right part of the
screen, and the refresh rate of the screen was set in 60Hz.
*e driving chip of the intelligent component used in the
experiment is the L298P double H-bridge DC motor driving
chip, which integrates most of the functions, making the
chip more suitable for robot development. We designed a
new crawler robot and also upgraded the adsorption ca-
pabilities of this robot. *e traditional suction cup has a
small adsorption capacity and is unstable, so the adsorption
device we use uses a vacuum pump to generate a negative
pressure to avoid the disadvantages of the conventional
suction cup. Most of the photovoltaic robots on the market
are roller brushes. *e roller brushes are not only easy to
absorb dust, but also occupy a relatively large area of the
robot. *erefore, the crawling cleaning robot we use uses a
three-legged brush head. After a series of experiments, the
most suitable for the cleaning of the walls is to use a motor
with a speed of 200 rpm to control our three-legged brush
head. *e robot relies on the suction cup to be adsorbed on
the walls, and the walls can be stably and selectively cleaned,
thereby reducing the trouble of cleaning the entire walls.

2.2.1. Offline Experiment. *e whole experiment was di-
vided into offline and online subexperiments. Offline ex-
periment was held to confirm the experiment set up and
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Figure 1: Experimental flowchart for our proposed SSVEP EEG-
based BCI for robot control system.
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adjust the parameter for each subject.*e offline experiment
steps are as follows: start our stimulation interface, which
starts with an exclamation mark to remind the subjects to
start the experiment. After that the four different frequency
blocks on the top, bottom, left, and right of the screen start to
flicker. During the offline experiment, the subjects listened
to the arrangement to look at each of the four different
frequencies blocks. *e subjects were assigned to look at
each of the four scintillation blocks for five times, and the
duration of each time was between 20 and 25 seconds.
Twenty datasets were collected for each subject.

2.2.2. Online Experiment. *e experimental process of the
subjects is shown in Figure 3. First, start our cleaning robot
and turn on the cleaning device. Before the online experi-
ment, we must ensure that the subject is in a comfortable
position and that the EEG signal collection cap is correctly
worn. Secondly, ensure that the cleaning robot is connected
to our upper computer normally. In addition, the speed of
the cleaning robot is set. After that, we started our online
experiment. In the online experiment, the subjects confirm
the position of the cleaning robot and the dirty place on the
wall. *en, the subjects make the decision, which directs the
clean robot to move and look at the responding flash block
on the screen. At the same time, the EEG data were recorded
from the participants; then it was analyzed at the host
computer. *e algorithm could recognize which block the
subject looked at and transform the control command of the
clean robot. *en, the command, which was recognized, was
sent to the clean robot by the Bluetooth module. According
to the command, the clean robot will move and make the
walls cleaner.

To evaluate the experiment performance more easily, we
set up several groups of online experiments. First, the clean
robot was put on the wall, and the dirty place was not so far
away from the original place of the clean robot. *erefore,

the subjects can control the clean robot to reach the dirty
place within 30 steps with optimized route, as shown in
Figure 4.

*is figure shows the path of a subject during an online
experiment. For each session, the subject was limited to
perform 30 steps. If the subject cannot control the clean
robot to reach the destination, this experiment will finish
and the task and system performance will be evaluated.

2.3. Signal Acquisition and Processing. *e flowchart of
signal acquisition and processing is shown in Figure 5.
During our experiment, we used BrainVision Recorder
software to record the EEG signals of the subjects. When
using BrainVision Recorder software, we ensure that the
impedance of the subjects’ electrodes is below 10 k ohms. P7,
P8, O1, and O2 channels, which cover the vision areas of the
brain, were mainly analyzed.

Wavelet transform was employed as band-pass filter,
removing DC Component of Signal. For SSVEP paradigm,
canonical correlation analysis is a multivariate statistical
analysis method that reflects the overall correlation between
two groups of indicators by using the correlation between
pairs of comprehensive variables; it has a good recognition
effect in multichannel EEG signals. Compared with other
SSVEP signal classification algorithms, CCA classification
algorithm is fast, efficient, simple, and easy to use. In the
paper [33], the CCA classification algorithm is compared
with the power spectral density analysis (PSDA). *e test
results show that the classification accuracy of CCA clas-
sification algorithm is higher than that of PSDA. In the paper
[34], the CCA classification algorithm is compared with the
minimum energy combination (MEC), and the anti-inter-
ference ability of the CCA classification algorithm is found
to be stronger. *ese results fully demonstrate the reliability
of the CCA classification algorithm. *erefore, CCA is
applied to the brain-computer interface system based on
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Figure 2: EEG electrodes placement used in our experiment using Brain Products equipment.
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Figure 4: *e online experimental paradigm with respect to the path of a representative subject.
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SSVEP. After preprocessing, CCA was used to analyze the
brain signal.

One set of EEG signals is denoted as x(t), and the
second set of signals y(t) is composed of signals with the
same number of stimulation frequencies. We decompose
a series of periodic signals into a series of Fourier
functions. For a specific frequency f, there is the following
equation

Y(f) �

sin 2 πfn

cos 2 πfn

sin 4 πfn

cos 4 πfn

· · ·

sin 2Nhπfn

cos 2Nhπfn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

n �
1
fs

,
2
fs

, . . . ,
N

fs
,

(1)

where N is the number of sampling points. fs is the sampling
frequency, and Nh is the number of harmonics.

*e feature extraction method of CCA is shown in
Figure 6. Suppose that there are two groups of sample signals
X � (x1, . . . , xn), Y � (y1, . . . , ym), and the linear combi-
nation of x � XTWx, y � YTWy. Canonical correlation
analysis method calculated the correlation ρ(x, y) between x
and y under the condition that the coefficientsWx andWy is
maximum. *e equation was shown as follows:

max
Wx,Wy

ρ(x, y) �
E xTy􏼂 􏼃

�������
E xTx􏼂 􏼃

􏽱
E yTy􏼂 􏼃

�
E WT

xXYTWy􏽨 􏽩
��������������������������
E WT

xXXTWx􏼂 􏼃E WT
yYYTWy􏽨 􏽩

􏽱 .

(2)

*e correlation coefficient between the brain signal and
four classes was computed. *erefore, the control command
was set as the class with the maximum correlation
coefficient.

In this study, information transmission rate (ITR) was
calculated to evaluate the transmission performance of brain
machine system. ITR (bit/min) can be calculated by the
following formula:

ITR �
60
t

log2N + Acc log2 Acc +(1 − Acc)log2 Acc
1 − Acc
N − 1

􏼢 􏼣,

(3)

where t represents the sampling time, Acc represents the
correct rate, and N represents the number of classifications.

2.4. Motion Model Analysis of Intelligent Crawling Robot.
*e intelligent crawling robot we use communicates with the
upper computer through the Bluetoothmodule.*e speed of
the cleaning robot can be set according to needs using
Bluetooth serial port assistant. Among them, the running
speed of the cleaning robot affects its turning angle. *e
turning motion model is as follows:

(i) We set a time parameter t; when t� 0, the robot is in
the original position, assuming that the position of
the cleaning robot coincides with the coordinate
system X, O, Y{ }, and the coordinates of the robot
are XR0, OR0, YR0􏼈 􏼉, as shown in the blue position in
Figure 7.

(ii) After that, the robot performs a turning action.
Where the time is t, the robot reaches a new position
with coordinates of XRt, ORt, YRt􏼈 􏼉, as shown in the
red position in Figure 7.

*e whole turning process of the robot takes the origin as
the center. For the turning motion of the robot, for any time
t, we have the following:

x(t) �
1
2

􏽚
t

0
vL(t) + vR(t)􏼂 􏼃cos[θ(t)]dt � 0,

y(t) �
1
2

􏽚
t

0
vL(t) + vR(t)􏼂 􏼃sin[θ(t)]dt � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where ]L is the speed of the left wheel of the crawling robot,
]R is the speed of the right wheel of the crawling robot, and θ
represents the rotation angle of the crawling robot. We
assume that ]L � − ]R; at this time, the crawling robot makes
a rotation movement with the origin as the center, and the
rotation angle is as follows:

θ(t) �
1
D

􏽚
t

0
vR(t) − vL(t)􏼂 􏼃dt �

2vR

D
t, (5)

where D is the distance between the two crawler wheels of
the crawling robot.

3. Results

3.1. Offline Experiment and Result Analysis. For offline use,
experiment data was saved in header file “.vhdr,” and
EEGLAB toolbox was used to process the data. In order to
achieve a good effect in our online experiment, we need
to process the offline experiment data of different sub-
jects and adjust the parameters. *e CCA threshold
divides the state of subjects into idle state and task state.
By comparing the CCA correlation coefficient of the
subject in the idle state with the CCA correlation coef-
ficient in the task state, we can determine the threshold of
each subject. We adjusted the subject threshold based on
the analysis of the subjects’ offline data, which were
shown in Table 1.

3.2.OnlineExperiment andResultAnalysis. In order to make
our experimental data more accurate, when the subject
completes the cleaning task within 30 steps, the time is
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stopped when the task is completed, but the subject
continues to perform the task until the end of the 30 steps.
When the subject does not complete the task within 30
steps, the time is counted based on the time when 30 steps
are completed. Each subject has to perform six sets of
tasks.

After the experiment, we performed some statistical
analysis methods to evaluate the subjects’ completion of the
tasks. Four people were able to complete all the tasks with
high accuracy and precision. *e statistic results are shown
in Table 1. *e experimental data showed that the average
accuracy of the subjects was 89.92 (with standard deviation
of ±3.81%), and the ITR reached 22.23± 1.19 bits/min. *e
experimental situation of the subjects is shown in Table 2. In
order to further verify the reliability of our experimental
results and make the data statistically significant, we per-
formed the variance calculation, and the variance calculation

results are shown in Table 3. Accuracy in Table 3 is the
average of the ratio of the total number of correct commands
to the total number of commands in six experiments per
person.

We noticed that our online experiments seem to have
good output results compared to the existing BCIs in terms
of task, accuracy, and ITR. We have listed the graphs for
intuitive statistics and comparisons, as shown in Figure 8.
*ese results show that our experiments validate our views
and achieve the desired results.

4. Discussion

In this paper, EEG-controlled wall-crawling cleaning robot
using SSVEP brain-computer interface is proposed, and the
CCA algorithm is used for signal analysis. In this engi-
neering study, the experiment results showed that our
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Figure 6: Feature extraction phase of CCA.
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proposed brain-computer interface system is very promising
and could control the proposed designed intelligent clean
robot successfully to complete the cleaning tasks of a wall.
*e offline experiment provided the threshold for the next
experiments. In addition, the test range of different exper-
imenters can be determined by the same offline experiment.
*e online experiment was used to adjust the threshold to
improve the classification accuracy of the experiment. After
analyzing and calculating the data, we got the following
results: the average accuracy of online experiment was
89.92%, and the ITR reached 22.23 bits/min. *is shows that
our experiments validate our research hypothesis and
achieve the desired target. However, there are still some
issues and limitations in the proposed BCI system.

*emain innovation of this paper is to design a new type
of cleaning robot that can enhance the abilities of the elderly
users and help handicapped patients to control home ap-
pliances that might be available in their usual environment
to increase their personal autonomy to be able to perform
daily activities. Practicing EEG-based control in daily life
might be a good option for enhancing brain abilities too.
However, eye movements are also another option instead of
using brain activity.

Electrooculography (EOG) is a technique for measur-
ing the corneo-retinal standing potential that exists be-
tween the front and the back of the human eye. *is
technique has been widely used in developing human
machine interfaces and it can be easily combined with brain
activity. However, the signal of eye movements/blinking is
relatively not weak. *erefore, it is difficult to remove this
electrical interference due to the synchronization with EEG
signal. If we use the eye movements directly to control the
cleaning robot, we need to add eye gaze/tracking equip-
ment, which needs to be well calibrated. In the process of
eye movements’ acquisition, the structure of the human eye
leads to fatigue. In addition, the users are unable to look at
the same target point for a long time. *is long gaze
concentration leads to the eye movements, the false eye
jump, and the unconsciousness blinking [35]. *ese er-
roneous and unconscious EEG signals will bring difficulties
to feature extraction and classification, resulting in a low
recognition rate [36, 37].

In this paper, SSVEP is mainly used to overcome the
shortcomings of using only eye movement instrument.
Moreover, the combination of EEG and EOG (eye move-
ment) as an innovative research for building hybrid BCIs is
the direction of our future consideration.

After Hotelling put forward the typical classical algo-
rithm in 1936, it has received great attention in various
research fields. Some Japanese researchers adopted the
canonical correlation analysis (CCA)method to extract two
layers of reference signals from the actual SSVEP signal
training concentration. Combining the obtained reference
signals with CCA, an effective spatial filter for frequency
recognition is derived, which greatly improves the recog-
nition accuracy and information transmission rate of
SSVEP [34]. Twelve categories of SSVEP signals were
generated by modulating waveforms and were analyzed by
CCA algorithm with an average accuracy of 92.31% [38].
Obviously, the application of CCA in EEG signal pro-
cessing has been quite common, especially the frequency
recognition of SSVEP signal which has high accuracy. In
this paper, the traditional classical analysis algorithm is
used. CCA algorithm is used to analyze SSVEP, the cor-
relation coefficients between brain signal and four kinds of
brain signal are extracted and calculated, and the trans-
mission rate and the accuracy of online experiment are
calculated. Although the CCA algorithm used in this paper
has great advantages in SSVEP, compared with SVM
method [25], it still needs to be improved. Because the
human brain has complex neural mechanisms, it may not
be a simple linear transformation in the transmission of
electrical signals in the brain. In addition to the time and
frequency characteristics that we usually consider, EEG
also contains other important data characteristics, such as
the variability between experiments and the specificity
between subjects [12, 39]. *erefore, improving feature
extraction and classification algorithm will be the focus of
our future research to improve the robustness and accuracy
of the system and reduce errors.

Table 1: Coefficients for different SSVEP states.

SSVEP state Mean± SD
6Hz 0.40± 0.12
7.5Hz 0.44± 0.09
8.57Hz 0.50± 0.10
10Hz 0.51± 0.05
Idle 0.16± 0.04

Table 2: Experimental statistics.

Subject Number of completed tasks *e average time
S1 6 6′25″
S2 6 6′56″
S3 6 6′17″
S4 6 5′59″
S5 4 6′00″
S6 5 6′56″
S7 4 7′00″

Table 3: Data statistics of subjects.

Subject Accuracy (%) ITR (bits/min) Variance
S1 91.11 22.52 9.88
S2 89.45 22.26 12.65
S3 91.11 22.52 6.16
S4 91.11 22.52 9.88
S5 91.67 22.61 13.89
S6 88.89 22.17 13.57
S7 86.11 21.04 5.25
Average 89.92± 3.81 22.23± 1.19 10.18± 4.93
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5. Conclusion

In this paper, we proposed a new experimental paradigm
for EEG-based clean robot control, which extended the
usage of brain-computer interface. Compared with other
paradigms like motor imager and P300, SSVEP is better
for real-time application because SSVEP-based paradigm
is not a subject-specific BCI, which requires individual
data calibration regularly and system training, and it has
achieved higher accuracy across subjects. For different
subjects, the corresponding conditions are also different.
During the experiment, we have selected the appropriate
EEG acquisition cap according to different subjects. In
addition, the fatigue issue was clearly observed in some
subjects. *erefore, we eliminated the inaccurate exper-
imental data caused. Although the conditions of different
subjects are different, we also verified our system through
our experiments.

Noninvasive brain-computer interface technology has
built a bridge between human brain and smart robots, which
has important research significance. In the near future, daily
life BCI applications will be involved in fields that are more
new. With the development of science and technology,
brain-computer interface technology will not only bring
hope to people with disabilities, but will also be more in-
tegrated into the life of ordinary people, bringing more
convenience and use to our life.*rough this experiment, we
hope that in the future, we can recruit more subjects to verify
the proposed system and make complex system in different

conditions such as controlling a swarm of cleaning robots by
one operator brain only.
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