
Computational and Structural Biotechnology Journal 23 (2024) 2109–2115

Available online 17 May 2024
2001-0370/© 2024 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Mini-review 

Computational modeling for deciphering tissue microenvironment 
heterogeneity from spatially resolved transcriptomics 

Chuanchao Zhang a,*, Lequn Wang d,e, Qianqian Shi b,c,** 

a Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of 
Chinese Academy of Sciences, China 
b Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China 
c Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, Hubei, China 
d State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 
Shanghai 200031, China 
e University of Chinese Academy of Sciences, Beijing 100049, China   

A R T I C L E  I N F O   

Keywords: 
Spatial transcriptome 
Spatial domain detection 
Spatial deconvolution 

A B S T R A C T   

Spatial transcriptomics techniques, while measuring gene expression, retain spatial location information, aiding 
in situ studies of organismal tissue architecture and the progression of pathological processes. These techniques 
generate vast amounts of omics data, necessitating the development of computational methods to reveal the 
underlying tissue microenvironment heterogeneity. The main directions in spatial transcriptomics data analysis 
are spatial domain detection and spatial deconvolution, which can identify spatial functional regions and parse 
the distribution of cell types in spatial transcriptomics data by integrating single-cell transcriptomics data. In 
these two research directions, many computational methods have been successively proposed. This article will 
categorize them into three types: machine learning-based methods, probabilistic models-based methods, and 
deep learning-based methods. It will list and discuss the representative algorithms of each type along with their 
advantages and disadvantages and describe the datasets and evaluation metrics used to assess these computa-
tional methods, facilitating researchers in selecting suitable computational methods according to their research 
needs. Finally, combining the latest technological developments and the advantages and disadvantages of current 
algorithms, this article will look forward to the future directions of computational method development.   

1. Introduction 

Studying the functionality of organismal tissue structures and the 
progression of pathological processes often requires analyzing gene 
expression within spatial context [1–3]. Recently developed spatial 
transcriptomics technologies, capable of capturing gene expression 
profiles while preserving their spatial location information, are facili-
tating advancements in research on tissue structure [4] and pathological 
development [5]. Spatial transcriptomics techniques are mainly cate-
gorized into two types based on their sequencing approach: 
sequencing-based spatial transcriptomics and imaging-based spatial 
transcriptomics. Sequencing-based spatial transcriptomics employ 
high-throughput sequencing to capture gene expression profiles at 
various spatial locations. These techniques are characterized by their 
ability to capture genome-wide expression profiles but lack single-cell 

resolution, with each spatial unit region containing multiple cells. 
Representative sequencing technologies include Spatial Transcriptomics 
(ST) [6], 10x Visium, and high-resolution technologies like Slide-seq 
[7], Slide-seqV2 [8], Stereo-seq [9], Seq-Scope [10], which can ach-
ieve near single-cell resolution. Imaging-based spatial transcriptomics 
technologies capture the expression profiles of targeted genes in each 
cell through fluorescent imaging. These techniques are characterized by 
their single-cell resolution but are unable to capture genome-wide 
expression profiles, focusing instead on specific target genes. Repre-
sentative technologies in this category include SeqFISH [11], SeqFISH+

[12], MERFISH [13], STARmap [14], and others. These spatial tran-
scriptomics technologies generate a vast amount of data, necessitating 
the development of computational methods to analyze these data and 
reveal the underlying biological significance [15]. 

Spatial transcriptomics typically measures gene expression and 
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spatial coordinates for each spatial unit region (spot), and some methods 
also provide H&E stained images, such as 10x Visium. Based on the 
obtained data, spatial transcriptomics data analysis primarily focuses on 
two directions: spatial domain identification, which divides slices into 
different functional areas based on the expression differences and spatial 
locations of spots, and spatial deconvolution, which uses annotated 
single-cell transcriptomics datasets as references to infer the distribution 
of cell types in each spot. Computational methods for spatial domain 
identification can be broadly categorized into three types based on their 
model: machine learning methods, such as Seurat [16], SCANPY [17] 
and NSF [18]; probabilistic model-based methods, such as Hidden 
Markov Random Field (HMRF) [19], BayesSpace [20], SpatialPCA [21]; 
and deep learning methods, such as SpaGCN [22], STAGATE [23], 
GraphST [24] (Fig. 1). Computational methods for spatial deconvolution 
can also be divided into three categories: machine learning methods, 
such as SPOTlight [25], SpatialDWLS [26] and SpiceMix [27]; proba-
bilistic model-based methods, such as RCTD [28], Stereoscope [29], 
Cell2location [30]; and deep learning methods, such as Tangram [31] 
(Fig. 3). These computational methods, from different perspectives, 
parse spatial transcriptomics data, providing information support for 
downstream analysis. 

This article will review the existing computational methods for 
spatial domain identification and spatial deconvolution, analyzing the 
characteristics of each method, and the corresponding downstream an-
alyses, to facilitate researchers in selecting appropriate methods based 
on the characteristics and needs of their data. 

2. Spatial domain detection methods 

A classical problem in the analysis of spatial transcriptomics data is 
the identification of spatial domains, which involves dividing spatial 
transcriptomic slices into distinct regions based on the expression 

differences and spatial locations of each spot. Typically, each spatial 
domain exhibits a unique pattern of gene expression and a certain de-
gree of spatial continuity, fulfilling different biological functions. 
Therefore, segmenting spatial transcriptomic slices into spatial domains 
facilitates the study of differences between regions and their biological 
significance. 

Early methods for spatial domain identification, such as Seurat [16] 
and SCANPY [17], did not leverage spatial information and clustered 
spots based solely on differences in gene expression to identify spatial 
domains. The input data for these methods were limited to gene 
expression count matrices. The conventional processing workflow in-
cludes: 1) selecting 2000 highly variable genes, i.e., genes with signifi-
cant expression differences across spots, as these genes typically contain 
more information useful for dividing spatial domains; 2) normalizing, 
usually by log-transforming the count matrix; 3) using Principal 
Component Analysis (PCA) for dimensionality reduction, selecting 
principal components with significant variance to reduce noise impact 
on subsequent analyses; 4) constructing a neighborhood network, typi-
cally using the k-nearest neighbors algorithm to build a network of 
spots; 5) clustering spots on the neighborhood network using methods 
such as Leiden [32] or Louvain [33], with the resulting clusters repre-
senting identified spatial domains (Fig. 1b). These methods apply single 
cell data clustering computational approaches directly to spatial tran-
scriptomics, failing to utilize the unique spatial information of spatial 
transcriptomics. The identified spatial domains are usually more 
discrete and exhibit poorer spatial continuity. 

Another category of spatial domain identification methods is based 
on probabilistic approaches. These methods model gene expression and 
spatial coordinates through probabilistic models to infer the spatial 
domains. This category includes methods like Hidden Markov Random 
Field (HMRF) [19], BayesSpace [20], and SpatialPCA [21]. The HMRF 
method models both gene expression and spatial neighbors, initially 

Fig. 1. A summary of spatial domain identification methods. Published tools for spatial domain identification can be divided into three categories according to their 
main strategy: machine learning-based, probabilistic model-based, and deep learning model-based. 
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applied for spatial domain identification in low-resolution fluorescent 
imaging spatial transcriptomics data, and later adapted for 
high-throughput spatial transcriptomics after selecting spatially variable 
genes (SVG). BayesSpace uses a Bayesian framework to model gene 
expression and spatial neighbors, modeling the expression matrix with a 
low-dimensional representation and using spatial priors to encourage 
spots with spatial neighbors to belong to the same spatial domain, thus 
achieving spatial domain identification (Fig. 1c). Additionally, Bayes-
Space implements high resolution spatial transcriptomics data, inferring 
sub-spot level gene expression through Bayesian statistics. SpatialPCA 
infers a low-dimensional representation of spatial transcriptomics 
expression data through probabilistic principal component analysis, 
while modeling the spatial correlations between spots with a kernel 
matrix, ensuring the inferred low-dimensional representation includes 
spatial information. SpatialPCA can also reconstruct high-resolution 
spatial transcriptomics maps and adjust the resolution as needed. 
These probabilistic models generally identify spatial domains with 
higher accuracy and better spatial continuity, though they tend to 
require longer computation times due to the complexity of probabilistic 
modeling. 

Another approach to spatial domain identification involves deep 
learning models, which often use neural networks of various architec-
tures to model spatial transcriptomics data. By designing various loss 
functions to train the neural network, these methods learn representa-
tions of spatial transcriptomics data and integrate various clustering 
methods to identify spatial domains (Fig. 1d). Examples of such methods 
include SpaGCN [22], STAGATE [23], and GraphST [24]. SpaGCN 
performs PCA dimensionality reduction on the gene expression matrix in 
spatial transcriptomics data, then combines spatial coordinates for 
graph convolution to learn a low-dimensional representation of the data, 
identifying spatial domains through an unsupervised deep iterative 
clustering method. STAGATE uses autoencoders to model gene expres-
sion data in spatial transcriptomics, feeding the learned latent space 
combined with spatial information into a self-attention mecha-
nism-based graph convolutional neural network to learn a 
low-dimensional representation. This representation is then used to 

construct a neighborhood network, with spatial domains identified 
using clustering methods such as Leiden or Louvain. GraphST models 
spatial transcriptomics data using a self-supervised contrastive learning 
framework, constructing a spatial neighbor graph with spatial infor-
mation, and using a graph convolutional network as an encoder to 
iteratively learn low-dimensional representations of gene expression 
and spatial neighbors, achieving spatial domain identification through 
enhanced contrastive learning. Additionally, GraphST can be applied to 
other spatial transcriptomics data analysis applications, including 
spatial deconvolution, and removing batch effects across multiple slices. 
These methods utilize deep learning technology to build neural network 
structures based on the characteristics of spatial transcriptomics data, 
integrating spatial information with graph convolution modules. Deep 
learning models can fit more complex data structures, learn data rep-
resentations more accurately, and incorporate spatial information, 
resulting in high accuracy and good spatial continuity in identified 
spatial domains. Benefiting from optimizations in deep learning frame-
works for GPU computation, these models also compute quickly. 

The performance of spatial domain identification algorithms is pri-
marily evaluated from two aspects: the effectiveness of clustering and 
spatial continuity. The effectiveness of clustering can be assessed with 
appropriate metrics depending on the application scenario. When gold 
standard annotations are available, quantitative metrics can be used to 
evaluate the clustering effectiveness of spatial domains. When the 
number of spatial domains matches the number of gold standard 
annotation categories, the Adjusted Rand Index (ARI) is commonly used 
to assess clustering effectiveness [34], such as in many algorithmic ar-
ticles evaluating spatial domains with the dorsolateral prefrontal cortex 
(DLPFC) dataset [35] (Fig. 2). When gold standard annotations are 
coarse, meaning the number of spatial domains exceeds the number of 
annotation categories, clustering purity is often used to assess clustering 
effectiveness, as in the BayesSpace article evaluating spatial domains 
with the invasive ductal carcinoma (IDC) dataset [20]. In the absence of 
gold standard annotations, when there are roughly corresponding 
anatomical annotations, the match between identified spatial domains 
and anatomical annotations can be observed, combined with marker 

Fig. 2. Comparative performance of different representative methods on spatial domain identification. The manual annotation of 10x Visium DLPFC slice 151507, 
151510, 151674 and 151675 on the spatial coordinates. Annotations include L1-L6 (Layer 1-Layer 6) and WM (white matter). Each method’s spatial domain is color- 
coded for clarity, with the ARI value shown above. 
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genes for each category, to evaluate the spatial domains identified by 
various methods, such as the mouse brain coronal and sagittal sections 
in the Allen Brain Atlas. Spatial continuity is primarily quantified from 
two aspects: spatial autocorrelation, measured by calculating Moran’s I 
[36–38] and Geary’s C statistics—the higher these statistics, the better 
the spatial autocorrelation of the spatial domains—and the consistency 
of spatial domains within local areas, measured by calculating the Local 
Inverse Simpson Index (LISI) [39]. A lower LISI indicates that the spots 
in a local area belong to a consistent spatial domain, while a higher LISI 
suggests that the spots in a local area belong to multiple different spatial 
domains. 

Note that, spatial domains should not be excessively smoothed; 
instead, they must effectively balance spatial coherence and expression 
variability within neighborhoods. Overuse of spatial constraints can 
overwhelm expression differences, resulting in overly smoothed spatial 
domains and the loss of relevant biological significance. Conversely, 
insufficient spatial constraints can lead to poor identification of spatial 
domains due to high dropout rates in SRT data. This not only results in 
inaccurate identification but also causes excessive dispersion of spatial 
domains, which compromises biological interpretability. Therefore, the 
key to identifying spatial domains lies in the flexible and efficient use of 
spatial information. The assessment of spatial smoothness should only 
be considered one aspect of evaluating spatial domain performance, 
primarily applicable to SRT data with well-defined spatial continuity, 
such as brain structures. 

3. Spatial deconvolution methods 

For a more precise study of the biological functions of tissue slice, it’s 
essential to understand the spatial distribution of cell types within each 
spot, given that spots measured by sequencing-based spatial 

transcriptomics techniques often contain multiple cells. This necessity 
has led to the development of spatial deconvolution methods [27], 
which involve mapping annotated single-cell transcriptomics data onto 
spatial transcriptomics to solve for the distribution of cell types within 
each spot. 

The initial spatial deconvolution methods were typically based on 
machine learning models such as matrix decomposition and regression 
analysis (Fig. 3b). These methods, which include SPOTlight [25] and 
SpatialDWLS [26], did not utilize spatial information and solved for the 
cell type distribution within each spot using inputs like the spatial 
transcriptomics gene expression matrix, single-cell transcriptomics gene 
expression matrix, and annotations of cell types from single-cell tran-
scriptomics. SPOTlight uses non-negative matrix factorization and 
non-negative least squares regression, starting with factor matrix 
initialization using marker genes for each cell type, followed by 
non-negative matrix factorization of the single-cell gene expression 
matrix, and finally applying non-negative least squares regression to 
determine the cell type distribution within each spot. SpatialDWLS uses 
the damped weighted least squares method, starting with cell type 
enrichment within each spot using Parametric Analysis of Gene set 
Enrichment (PAGE), followed by solving for the cell type distribution 
using marker genes for each cell type. These methods adapt machine 
learning models for spatial deconvolution data characteristics but are 
linear methods that provide limited fitting to complex gene expression 
data and do not utilize spatial information, resulting in more discrete 
cell type distributions with poorer spatial continuity. 

Another category of spatial deconvolution methods is based on 
probabilistic models (Fig. 3c). These methods, including RCTD [28], 
Stereoscope [29], and Cell2location [30], use probabilistic models to 
model spatial transcriptomics and single-cell gene expression data, 
solving for the cell type distribution within each spot through 

Fig. 3. A summary of spatial deconvolution methods. Published tools for spatial deconvolution can be divided into three categories according to their main strategy: 
machine learning-based, probabilistic model-based, and deep learning model-based. 
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probabilistic inference. RCTD models expression data using the Poisson 
distribution, assuming each spot’s gene expression as a linear sum of 
gene expressions from various cell types, with an error term to fit plat-
form effects. Stereoscope assumes gene expression data from spatial and 
single-cell transcriptomics follow a negative binomial distribution, using 
maximum a posteriori estimation (MAP) for solving. Cell2location im-
plements spatial deconvolution within a Bayesian framework, esti-
mating characteristic expression profiles for each reference cell type 
from single-cell data using negative binomial regression, then decon-
volving each spot in spatial transcriptomics according to these profiles. 
Integrated with the scvi-tools [40] framework, Cell2location uses vari-
ational inference and GPU acceleration, ensuring high computational 
efficiency. These methods offer robust performance due to their prob-
abilistic approach and ability to model complex expression data patterns 
effectively. 

A further class of spatial deconvolution methods relies on deep 
learning models, designed around the characteristics of spatial decon-
volution data (Fig. 3d). These models, such as Tangram [31], incorpo-
rate cell type distributions as parameters, designing various loss 
functions and employing gradient descent for solving the cell type dis-
tribution within each spot. Tangram optimally places cells from 
single-cell data into spatial transcriptomics spots, starting with random 
cell placement, maximizing a target function based on spatial correla-
tion across genes between single-cell and spatial transcriptomics data 
until convergence. Tangram extends the application of spatial decon-
volution in several ways, including expanding target gene-based spatial 
transcriptomics to whole-genome scope, correcting low-quality spatial 
expression profiles, mapping various cell types measured by single-cell 
sequencing to space, deconvolving low-resolution spatial tran-
scriptomics to single-cell resolution, and resolving spatial chromatin 
accessibility patterns at single-cell resolution through multi-omics data. 

Benefiting from the versatility of deep learning model frameworks, these 
algorithms offer strong scalability and the ability to extend into 
numerous applications. Deep learning models provide better fitting for 
complex gene expression patterns, with high computational efficiency 
thanks to GPU acceleration. 

The performance of spatial deconvolution algorithms has been 
independently evaluated [41,42], establishing a mature evaluation 
system (Fig. 4). Performance is mainly assessed using simulated data, 
either by partitioning single-cell resolution spatial transcriptomics (e.g., 
SeqFISH+ [12], STARmap [14]) into grids to create pseudo-spots or by 
randomly mixing cells from single-cell data without considering spatial 
coordinates to simulate spots. Performance metrics include Pearson 
Correlation Coefficient (PCC), Structural Similarity Index (SSIM), Root 
Mean Square Error (RMSE), and Jensen–Shannon Divergence (JSD), 
measuring similarity and differences between predictions and gold 
standards. Higher similarity metric values indicate better performance, 
while lower difference metric values suggest improved algorithm per-
formance. An Accuracy Score (AS) can be derived from these four 
metrics to provide a comprehensive performance evaluation of spatial 
deconvolution algorithms. 

4. Advanced analysis of spatial transcriptomics data 

4.1. Spatially variable genes identification 

Genes exhibit spatial expression patterns that reflect intrinsic cell 
type-specific programs and extrinsic effects stemming from cell-cell 
communication or the tissue microenvironment. The identification of 
spatially variable genes and spatial functional regions/cell types from 
spatially resolved transcriptomics (SRT) data can provide detailed in-
sights into gene-phenotype associations within tissues. For detecting 

Fig. 4. Comparative performance of different representative deconvolution methods on simulated datasets and 10x Visium mouse cortex. (a-c) We grided a MERFISH 
mouse visual cortex dataset including 1549 cells of 15 cell types to generate 189 synthetic spots with each containing 1–18 cells [57], and utilize a scRNA-seq dataset 
profiled by Smart-seq [58] with corresponding cell types as reference for deconvolution. Pearson correlation coefficient (PCC) is systematically used to evaluate the 
performance of different representative deconvolution methods. (d-f) We focused on a layer-structured cortex region profiled from 10x Visium mouse brain sagittal 
anterior slice and used a well annotated SMART-Seq2 datasets of 9 cell types as reference for resolving the cell type distribution [58]. 
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genes that demonstrate spatial trends in their expression, SPARK [43] 
identifies expression trends by applying generalized spatial linear 
models using various Gaussian and periodic kernel functions. Building 
upon a robust covariance test framework, SPARK-X [44] facilitates rapid 
and effective detection of spatially expressed genes in large spatial 
transcriptomic studies. This approach offers precise type I error control 
and high power while achieving substantial computational efficiency. 
SpatialDE [45] employs Gaussian process regression to identify those 
with spatial patterns. C-SIDE [46] employs a parametric model with 
predefined covariates, such as spatial location or the cellular microen-
vironment, to identify cell type-specific differentially expressed genes in 
spatial transcriptomics. Besides detecting genes with spatially distinct 
expression patterns, a primary objective of SRT data analysis is to 
identify spatial domains or cell types characterized by consistent gene 
expression. Belayer [47] models the expression of each gene as a 
piecewise linear function of spatial location, accurately identifying tis-
sue layers and biologically significant spatially varying genes. SpaGCN 
[22] integrates RGB pixel data from tissue images with spatial co-
ordinates to calibrate spatial expression graph weights, employing graph 
convolution and iterative clustering to identify spatial domains and 
spatially differentially expressed genes or metagenes. 

4.2. Multi-slices spatial transcriptomics integration 

Most complex biological regulatory activities occur in three di-
mensions (3D). Thus, to gain deeper insights into biological processes, it 
is essential to extend beyond individual two-dimensional (2D) slices. In 
recent years, several methodologies have been developed to integrate 
multi-slice spatially resolved transcriptomics (SRT) data, enhancing the 
effectiveness of downstream analyses [48]. For instance, PASTE com-
putes pairwise alignments of slices using fused Gromov-Wasserstein 
optimal transport, while also generating a gene expression matrix for 
a central slice to represent the integrated data from multiple slices. 
PASTE2 [49] extends this approach by utilizing partial fused 
Gromov-Wasserstein optimal transport to align partially overlapping 
SRT slices. GPSA [50] employs a deep Gaussian process to reconstruct 
the tissue’s 3D structure, offering valuable insights into the interplay 
between gene expression and spatial organization. STAligner [51] in-
tegrates a graph attention autoencoder with mutual nearest neighbors 
(MNN) to mitigate batch effects in the latent space and improve the 
integration process, enabling the reconstruction of 3D tissue structures. 
STitch3D [52], a recently developed data integration method, simulta-
neously tackles spatial domain identification and cell-type deconvolu-
tion tasks. 

5. Discussions 

Spatial transcriptomics sequencing technologies, which measure 
gene expression while preserving spatial information, are instrumental 
in studying tissue structure functionality and the progression of pa-
thologies. Spatial transcriptomics data possess unique characteristics; 
for example, sequencing-based spatial transcriptomics reveal that each 

spot contains multiple cells, while imaging-based techniques may only 
detect target genes. Given these characteristics, developing computa-
tional methods to parse the biological significance embedded in spatial 
transcriptomics data is essential. The current main directions in spatial 
transcriptomics data analysis are spatial domain identification, spatial 
deconvolution, identifying spatially variable genes and integrating 
different spatial transcriptomics slices. Numerous algorithms have been 
developed in these directions, classified according to their mathematical 
models into machine learning, probabilistic models, and deep learning, 
with representative methods described for each category (Table 1). This 
classification helps elucidate how to evaluate algorithm performance, 
including datasets and evaluation metrics, assisting researchers in 
selecting suitable algorithms for their studies. 

Spatial sequencing technology has expanded from spatial tran-
scriptomics to spatial multi-omics, such as spatial-CITE-seq [53], which 
measures both the transcriptome and proteome in space, and 
spatial-ATAC-RNA-seq [54], which simultaneously measures the tran-
scriptome and chromatin accessibility in space. Spatial domain identi-
fication methods can extend to multimodal applications, integrating 
spatial multi-omics data to delineate spatial domains with unique 
multi-omics patterns. Spatial multi-omics data can also be combined 
with single-cell multi-omics data for spatial deconvolution, integrating 
information from multiple omics to resolve the cell type distribution 
more precisely in each spot. Recently published spatial deconvolution 
works, like SONAR [55] and CARD [56], model spatial information, 
whereas most spatial deconvolution studies have not utilized spatial 
information. As spatial information is a critical component of spatial 
transcriptomics, incorporating it cleverly into models remains a crucial 
avenue for algorithmic improvement. 
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Table 1 
Comparing the capabilities of different representative methods.   

STAGATE GraphST Cell2location RCTD SPARK SpatialDE PASTE STAligner 

Platforms Python Python Python R R Python Python Python 
Spatial representations √ √ √ x x x x √ 
Dimensionality reduction √ √ √ x x x x x 
Images processing x √ x x x x x √ 
Spatial domains √ √ x x x x x √ 
Cell type Deconvolution x √ √ √ x x x x 
Batch effect removal x x x x x x x √ 
3D alignment x x x x x x √ √ 
Data integration x √ x x x x √ √ 
Identifying SVG x x x x √ √ x x  
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