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ABSTRACT
The tumor microenvironment is now widely recognized for its role in 

tumor progression, treatment response, and clinical outcome. The intratumoral 
immunological landscape, in particular, has been shown to exert both pro-tumorigenic 
and anti-tumorigenic effects. Identifying immunologically active or silent tumors 
may be an important indication for administration of therapy, and detecting early 
infiltration patterns may uncover factors that contribute to early risk. Thus far, direct 
detailed studies of the cell composition of tumor infiltration have been limited; with 
some studies giving approximate quantifications using immunohistochemistry and 
other small studies obtaining detailed measurements by isolating cells from excised 
tumors and sorting them using flow cytometry. Herein we utilize a machine learning 
based approach to identify lymphocyte markers with which we can quantify the 
presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any 
gene expression data set and apply it to studies of breast tissue. By leveraging over 
2,100 samples from existing large scale studies, we are able to find an inherent cell 
heterogeneity in clinically characterized immune infiltrates, a strong link between 
estrogen receptor activity and infiltration in normal and tumor tissues, changes with 
genomic complexity, and identify characteristic differences in lymphocyte expression 
among molecular groupings. With our extendable methodology for capturing cell 
type specific signal we systematically studied immune infiltration in breast cancer, 
finding an inverse correlation between beneficial lymphocyte infiltration and estrogen 
receptor activity in normal breast tissue and reduced infiltration in estrogen receptor 
negative tumors with high genomic complexity.
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INTRODUCTION

Cancer cells develop in the extracellular matrix 
(ECM) surrounded by a variety of non-malignant cells, 
such as fibroblasts, vascular cells, leukocytes, and 
bioactive substances such as chemokines and cytokines. 
Together these cells and substances of the host form 
an environment conducive to carcinogenesis [1–3]. 
Leukocytes, once thought to be purely beneficial, are now 
recognized for their functions in tumor promotion as well 
as inhibition.  Many cells of the myeloid lineage contribute 
to tumor proliferation and cancer development across 
tumor types. More specifically, tumor associated M2 
macrophages, neutrophils, mast cells, immature myeloid 
cells, and monocytes have been widely shown to support 
cancer progression through the secretion of growth factors, 
cytokines, and proteases that promote remodeling of the 
ECM [4], genomic instability [5–6], angiogenesis [7–11], 
and suppression of beneficial immune responses [12]. 
Lymphocytes, while generally having a positive effect, 
exert pro-tumor or anti-tumor functions in a tissue and 
cancer specific manner [13]. This effect is largely due to 
their plasticity [14–15]. 

There is substantial variability in the number and 
types of infiltrating lymphocytes in breast tumors across 
individuals. Recent efforts to profile this landscape have 
found both of these properties to be indicative of outcome 
and response to chemotherapy [16–20].  Furthermore, 
there has been specific interest in finding the component of 
tumor infiltrating lymphocytes (TILs) that are specifically 
recruited in the attempt to control tumor growth. These 
will be of particular importance in the era of immune 
checkpoint inhibitors such as PD1.

Thus far the established critical factor of the 
lymphocyte anti-tumor response is the presence of CD8+ 
cytotoxic T-cells (CTL), which contribute directly to 
apoptosis through the secretion of cytotoxins. Numerous 
breast cancer studies have documented their association 
with good prognosis and long-term survival [12, 18, 21–23]. 
T-helper 1 (Th1) cells are also widely thought to contribute 
to tumor clearance, through the production of interferon 
gamma (IFNG) which helps curb proliferation, slow 
angiogenesis, enhance M1 macrophages’ tumoricidal ability, 
and aid in CTL efficacy through the expression of the major 
histocompatibility complex class I [12, 24]. The exact role 
of T-helper 2 (Th2) cells in breast cancer is less clear, but 
generally they are thought to be pro-tumorgenic. In mouse 
models, Th2 driven expression of IL13 and IL4 contribute to 
tumor progression and metastasis [12, 25–27]. Additionally, 
IL4 increases leukocyte recruitment and the promotion 
of epidermal growth factor by M2 macrophages [28]. 
However, IL13 has been shown to reduce breast cancer 
recurrence [25]. The function of B cell infiltration is poorly 
understood, with some studies highlighting the importance 
of B cells in good outcome [29–30], some in poor outcome 
[12], and others deeming B cell infiltration irrelevant [28]. 

Along with the recognition of the critical role played by the 
immune system in oncogenesis, tumor progression, and 
response to therapy, increasing attention has been drawn by 
the potential prognostic and predictive role of the immune 
infiltrate in this setting.

Traditional studies profile lymphocyte infiltration 
utilizing immunohistochemical staining or, less commonly, 
single cell isolation followed by flow cytometry to 
assess the composition and abundance of lymphocytes 
within a tumor sample. Staining based approaches are 
semi-quantitative at best, while flow based approaches 
are labor intensive and difficult to perform on a large 
scale. Additionally, both methods require access to and 
destruction of a portion of the tumor sample.  Herein we 
propose an alternative in silico approach to examine breast 
tumor infiltration by four major lymphocyte cell types: B 
cells, CTL, Th1, and Th2 cells. We make use of the fact 
that gene expression assays of tumor samples capture 
signal that is representative of tumor cells as well as their 
microenvironment. Our method is robust, correlates well 
with experimental measures of immune infiltration, and 
allows us to retroactively profile lymphocyte abundance 
in existing breast tumor expression data without a priori 
knowledge of sample composition. With this approach 
we show changes in infiltrate levels in estrogen receptor 
negative normal breast tissue, reproducible patterns of 
immune activity across molecular groupings, and examine 
the impact these levels have on patient survival and 
treatment response. Through this analysis we establish 
critical links between the molecular features of breast tissue 
and immune infiltration and demonstrate how our marker 
set approach can be effectively applied towards this end.

RESULTS

In silico immune profiling derived from a 
compendium of 2,171 human samples of cultured 
and primary human tissues and treatments

We used an in silico method to find genes that are 
preferentially expressed in four lymphocyte cell types: B 
cells, CD8+ T cells (CTL), CD4+ T helper 1 (Th1), and 
CD4+ T helper 2 (Th2) cells (Figure 1). For each cell 
type we expanded a set of literature mined marker genes 
into a robust set of cell type specific genes using a large 
compendium of human blood expression data and the 
nanodissection method (http://nano.princeton.edu) we 
developed previously for computationally predicting cell-
type specific genes [31]. Nanodissection uses an iterative 
machine learning framework with diverse expression 
data collections, to identify expression patterns specific 
to marker genes for a given cell type. We validated this 
approach previously in systematic computational and 
experimental evaluations [31]. When applied to the four 
lymphocyte cell types, (see Materials and Methods) the 
resulting set of markers enable us to robustly identify 
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immune specific signal (Supplementary Figure 2, 
Supplementary Figure 3).

The overall performance of nanodissection, for each 
lymphocyte cell type, was assessed based on classification 
performance and the relevance of the resulting marker 
sets. In five-fold cross validation we achieve AUCs 
above 0.7 for each nanodissection run: 0.8896, 0.822, 
0.732, and 0.722 for B cells, CTL, Th1, and Th2 cells 
respectively (Supplementary Figure 1). We confirmed 
the biological relevance of our resulting marker sets by 
analyzing the functional processes they participate in and 
the correspondence of our predictions with experimental 
measures of lymphocyte infiltration. To identify 
overrepresented pathways, we calculated statistical 
enrichment for each of the resulting marker gene sets. 
The top significantly enriched terms are predominantly 
immune related and are representative of the action of each 
lymphocyte subset (Figure 2A, Supplementary Table 3), 
with B cell activation enriched for the B cell marker, cell 
defense terms such as cytolysis for CTLs, and many T cell 
activation terms enriched for the T-helper cells.

Furthermore, we examined the relationship 
between the expression level of the immune markers and 
experimentally derived immune infiltration categories 
(absent, mild, moderate, severe) in the METABRIC breast 
cancer cohort [38]. We calculated a B cell, CTL, Th1, 
and Th2 infiltration score for each sample by averaging 
the expression of all genes in each marker. With these 
scores we observe that B cell (ANOVA, p = 3.7e−4), CTL 
(p < 2.2e−16), Th1 (p < 2.2e−16), and Th2 (p < 2.2e−16) 
expression changed significantly across the infiltration 
categorizations with increases in B cell, CTL, Th1, and Th2 

marker expression corresponding with increasing immune 
infiltration (Kendall’s Tau, 0.294, 0.290, 0.242, 0.155, 
Figure 2B). To measure the specificity of our signal we 
also looked at the enrichment of our marker genes across 
185 samples of cell type specific immune expression data, 
finding that our gene sets are enriched in the corresponding 
target and related cell types, improving on the specificity 
of using known standards and T cell surface markers alone 
(Figure 2C, Supplementary Figure 3).

We also examine the robustness of our signatures 
to expression data where a subset of our marker genes 
may not be measured due to platform differences or 
experimental errors. To test this we randomly removed 
subsets of genes from each of our markers and recalculated 
the relationship between the experimentally defined 
infiltration categories in METABRIC and our predicted B 
cell, CTL, Th1, and Th2 infiltration scores using Kendall’s 
correlation. With all our signatures we were again 
significantly able to preserve the infiltration trends up to 
50% “lost” genes. Robustness varies only slightly between 
the cell types, with only the Th2 signature affected with 
performance degradation around 45% of genes removed 
(Supplementary Figure 2).

Lymphocyte infiltration is strongly tied to 
estrogen receptor status 

At the most basic level breast tumors are divided 
based on their ability to respond to estrogen. Thus, we 
examined whether changes in estrogen receptor (ER) 
status have any effect on lymphocyte infiltration. In this 
analysis we used two datasets, MicMa (N = 108) [39] 

Figure 1: Method overview. This diagram shows the process of running our method on one cell type, B cells. First all input data, 
consisting of over 2,000 human blood microarray samples taken in different conditions and different degrees of resolution, and positive and 
negative training standards, are assembled. In this example, B cell genes from Gene2MeSH are used as a positive standard and all other 
lymphocyte cell types (CTL, Th1, Th2, monocytes) in Gene2MeSH are used as negatives. Using the input, nanodissection finds a path that 
separates the positive training class from the negative ones in the space of the compendium, iteratively improving classification by selecting 
the best set of standards. Using the classification boundary, all genes assayed are then ranked by their probability to be cell type specific, in 
this case B cell specific. We then use the top 100 most probable cell type specific genes to estimate lymphocyte infiltration levels in breast 
cancer datasets.
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and the METABRIC (N = 1417) cohort [38]. These 
cohorts together allow us to assess a reasonable number 
of ER- samples: N = 42 and N = 340 respectively. After 
partitioning the samples by ER status we observed 
a significant increase in the expression levels of all 
lymphocytes in ER- tumors relative to their ER+ 
counterparts in METABRIC (Wilcoxon rank sum test, 
Bcell, CTL, Th1: p < 1.00e−7 and Th2: p = 0.023), 
and B cell in the much smaller MicMa dataset (B cell: 
p = 0.02, CTL: p = 0.404, Th1: p = 0.833, Th2: 0.057, 
Figure 3A, 3B). To further characterize this relationship 
we devised an ER score using the ER marker genes 
of van’t Veer et al. [37] to capture the activity level of 
the estrogen receptor. For each cohort we observe a 
significant negative correlation between ER activity and 
the level of B cell (Pearson, R = −0.459, p < 2.2e−16; 
R = −0.406, p = 1.34e−5), CTL (R = −0.292, p < 2.2e−16; 
R = −0.343, p = 2.83e−4), and Th1 (R = −0.401, p < 2.2e−16; 

R = −0.247, p = 0.023) infiltration as well as the total 
level of all four lymphocytes (R = −0.406, p < 2.2e−16; 
R = −0.317, p = 5.87e−8, Figure 3A, 3B) further supporting 
our claim. We then extended this analysis to normal 
tissue, profiling another dataset containing reduction 
mammoplasties (N = 18), adjacent normal tissue from 
ER+ and ER- patients (N = 18), and prophylactic 
mastectomies (N = 6) [40], and found a gradient in the 
levels of immune infiltration, with a few samples marked 
by high lymphocyte infiltration. Interestingly, the level 
of infiltration in these samples can also be explained by 
estrogen receptor status, as opposed to the sample source. 
Again using an ER activity score as a proxy for ER status 
we observed a negative correlation between ER activity 
and total infiltration (Pearson, R = −0.541, p = 2.29e−4, 
Figure 3C), suggesting an early link between immune 
infiltration and ER status that is also preserved in benign 
samples (Supplementary Figure 4).

Figure 2: Expression of lymphocyte marker genes correspond with experimentally defined measures of immune 
infiltration. (A) GO Biological Process enrichment for each of the lymphocyte marker gene sets. Shown here are some of the relevant 
significant terms (a full list can be found in Supplementary Table 3). Each marker is significantly enriched for immune related terms that 
are representative of the role of their corresponding cell type. (B) Four categories of immune infiltration (absent, mild, moderate, severe) 
were defined by H&E staining for the METABRIC cohort [38]. The box plots show that B cell, CTL, Th1, and Th2 marker co-expression 
correspond with increasing levels of infiltration. All labels were significantly different between the infiltration categories calculated using 
ANOVA (***p < 1.0e−5) (C) Average enrichment of marker genes across purified immune cell types from Chtanova et al [34], GSE3982, 
and GSE1133.
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Lymphocyte infiltration is predictive of survival 
in ER- tumors

With our markers we can examine both a general and 
detailed picture of the effects of lymphocyte infiltration 
on survival. We grouped patients into low (bottom three 
quartiles) and high (upper quartile) infiltration classes for 
the overall lymphocyte expression score and separately 
for the each of the lymphocyte cell types. We then 
partitioned samples from the METABRIC cohort based 
on ER status and examined the effects of expression of 
our lymphocyte markers on patient survival times using 
univariate Kaplan Meier analysis [41]. Comparing the 
low and high classes, we see that the total expression of 
lymphocytes is an important prognostic factor only in ER- 
tumors (Figure 4). At higher resolution, we find that ER- 
samples with an improved outcome tend to have higher 
levels of lymphocyte infiltration, with the levels of CTL 
and Th1 infiltration playing a significant role (log rank, 
p = 0.067, p = 0.05, p = 0.032, p = 0.132). This result is 
consistent with several previous studies [18, 21, 23, 42] 
that have observed an improved treatment response and 
better prognosis in ER- tumors with increased levels of 
CTL infiltration.

Unique immune infiltration patterns across 
breast cancer subtypes

Different breast cancer subtypes are commonly 
referenced as disparate diseases. As such we expect 

them to have very different and reproducible patterns 
of lymphocyte expression. Examining our B cell, CTL, 
Th1, and Th2 scores across samples grouped by subtype 
we saw that very phenomenon in both tumor cohorts: 
METABRIC and MicMa (Figure 5). Overall lymphocyte 
infiltration showed the most pronounced difference 
between the luminal subtypes and the basal, HER2, and 
normal-like subtypes, recapitulating the patterns observed 
with ER status. Elevated infiltration in the predominantly 
ER- subtypes was significantly increased compared to the 
luminal subtypes for B cell, CTL, and Th1 in METABRIC 
(Wilcoxon rank sum test, B cell, CTL, and Th1: p < 2.2e−16, 
Th2: p = 0.067) and MicMa (B cell: p = 3.56e−6, CTL: 
p = 2.02e−4, Th1: p = 0.013, Th2: p = 0.635).

Genomic instability is associated with a 
reduction in beneficial immune responses

Previously, we have observed that basal-like tumors 
with wild type copies of TP53 have elevated levels of CTL 
expression compared to those with one or more mutations 
of TP53 [43]. Since TP53 is a guardian of genomic 
stability, we generalized this idea here, examining whether 
tumors with regions of severe local genomic instability 
have differing lymphocyte infiltration patterns, using the 
complex arm-wise aberration index (CAAI) devised by 
Russnes et al. [44]. CAAI positive samples have many 
local gains and losses on at least one chromosomal arm 
and an association with estrogen receptor negativity, poor 
prognosis, and high tumor grade [44]. We found, when 

Figure 3: Lymphocyte infiltration is dependent on the activity of the estrogen receptor. Box plots show the increased levels 
of B cell, CTL, Th1, and Th2 infiltration in ER- samples when they are partitioned by estrogen receptor status. The scatterplots show an 
inverse correlation between the activity of the estrogen receptor and the infiltration of all four lymphocyte subsets in breast tissue. This 
pattern is reproducible in two separate breast cancer cohorts: METABRIC (A) and MicMa (B), and is also apparent in a set of normal breast 
tissue samples taken from adjacent tumor tissue, preventative mastectomy patients, and breast reductions (C). P-values were calculated 
using the Wilcoxon rank sum test with *p < 0.05, **p < 0.01, ***p < 0.00001.
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examining the METABRIC cohort, that CAAI positive 
samples had diminished B cell (Wilcoxon rank sum test, 
p = 2.53e−5), CTL (p = 3.62e−10), Th1 (p = 0.01) and Th2 
(p = 2.50e−11) infiltration. This effect is markedly more 
pronounced in ER- tumors but still present in ER+ samples 
(B cell: p = 1.74e−6, CTL: p = 1.40e−5,Th1: p = 7.33e−5, 

Th2: p = 6.58e−4), and the predominantly ER- subtypes 
(Figure 6, Supplementary Figure 6), basal (p = 2.76e−5, 
p = 1.44e−4, p = 0.001, p = 0.004) and HER2 (p = 0.018, 
p = 0.004, p = 0.01, p = 0.014), and is not immediately 
evident when the experimentally defined METABRIC 
immune infiltration classes are used. 

Figure 4: Patients with ER- tumors and high levels of Th1 and CTL infiltration are more likely to have a positive 
outcome. For each lymphocyte marker, patients are partitioned into high and low levels using quartiles. Patients with lymphocyte scores in 
the upper quartile are marked as high (red) and the remaining quartiles are grouped together and labeled low (green). Increased lymphocyte 
infiltration is associated with better long term survival in ER- tumors (A), and has little effect in ER+ tumors (B). The most extreme 
difference is seen in patients with high Th1 and CTL infiltration vs. low. Reported p-values were calculated using the log rank test.

Figure 5: Unique lymphocyte infiltration patterns are seen for each breast cancer subtype. Box plots show the distribution 
of lymphocyte infiltration scores for each subtype. We see a significant reduction in the average level of lymphocyte infiltration in the 
luminal subtypes (***p < 1.0e−5), with the highest level of infiltration in basal and normal-like subtypes. This pattern is likely reflective of 
the strong link between infiltration and ER negativity and is reproducible across two cohorts METABRIC (A) and MicMa (B).



Oncotarget57127www.impactjournals.com/oncotarget

Aromatase inhibition and increased infiltration

As a preliminary investigation into the relationship 
between common therapies and lymphocyte infiltration, 
we examined infiltration levels pre and 90 days into 
treatment with an aromatase inhibitor. Aromatase 
inhibitors are a viable treatment option for women with 
ER+ breast cancer, and we postulated that inducing a more 
negative ER phenotype would be marked by an increase 
in lymphocyte infiltration. We tested our hypothesis on 
a set of previously published data [45] containing gene 
expression for 58 breast biopsies taken at two time points, 
pre-treatment and 90 days into treatment with Letrozole. 
We found that the mean levels of B cell and the T helper 
subsets increase throughout treatment (Figure 7; Wilcoxon 
rank signed test, B cell: p=0.001, CTL: p = 0.086, 
Th1: p = 0.011, Th2: p = 1.05e−4). This initial insight 

further establishes the link between estrogen as a main 
determinant of lymphocyte infiltration.

DISCUSSION

Immune infiltration is now widely recognized 
as an important component in the development and 
proliferation of cancer. Experimental methods quantifying 
the composition and abundance of lymphocyte infiltration 
within the tumor bed are typically time consuming, costly, 
and are not easy to perform at a large scale. Additionally, 
no existing method allows for retroactive absolute 
profiling while preserving the tumor sample. Given the 
plethora of existing breast cancer gene expression data, 
we devised a method that addresses these challenges, 
without prior knowledge about sample composition, which 
can be easily used to predict the immune landscape of a 

Figure 6: Genomic instability is associated with a reduction in infiltration. Higher levels of infiltration are seen in samples with 
less genomic instability as measured by CAAI status, with a markedly stronger effect in ER- tumors. Asterisks denote Wilcoxon rank sum 
test p-values *p < 0.05, **p < 0.01, ***p < 0.00001.

Figure 7: Lymphocyte infiltration increases over the course of Letrozole treatment. This box plot shows the increase in 
lymphocyte infiltration over the course of Letrozole treatment. A Wilcoxon signed rank test was used to assess the significance of these 
changes between patients at pretreatment and 90 day time points. P-values are denoted by asterisks, *p < 0.05, **p < 0.01, ***p < 0.00001.



Oncotarget57128www.impactjournals.com/oncotarget

sample. We then applied this methodology to improve our 
understanding of lymphocyte infiltration in breast tissue.

Several other studies [16, 17, 29, 46–48] have 
also assessed lymphocyte infiltration by profiling gene 
expression microarrays. The majority of these methods 
estimate immune infiltration using unsupervised clustering 
and differential expression analysis of breast cancer 
cohorts. The remainder perform larger scale meta-analyses 
expanding immune marker genes using correlation across 
breast cancer samples. Unlike studies where clustering 
reveals enriched immune activity, our method does 
not first require the selection of differential expression 
patterns in a cohort. Additionally, unlike the correlation 
based approaches focused on specific studies, we use a 
very large compendium consisting of multiple human 
blood samples that are not limited to the breast or cancer, 
enabling us to robustly identify immune cell markers. 
This makes our methodology more generalizable to other 
disease datasets and biological questions, and prioritizes 
the signal driven by infiltrating lymphocytes, lending more 
confidence to our results. 

Recent deconvolution based approaches [49, 50], 
such as CIBERSORT [51] have been used with some 
success profiling the levels of many types of immune cells. 
However, such approaches require knowledge of all cell 
types present in a mixture and output relative proportions. 
Furthermore, CIBERSORT requires purified immune 
cell expression data to construct their underlying LM22 
reference matrix. To assess whether we can achieve similar 
performance without this potential data limitation we ran 
CIBERSORT on a small dataset of purified immune cell 
populations [52] that was not used in the construction 
of their immune reference matrix. We compared the 
identification of all overlapping immune cell types profiled 
in this dataset using our method with CIBERSORT’s B 
cell (memory and naïve B cell) and CD4 (CD4 naïve, CD4 
resting memory, and CD4 activated memory T cells) cell 
types. We found that, both our method and CIBERSORT 
could correctly label 2/2 of the Bcell samples and 4/4 of 
the CD4 samples with ours further correctly separating 
CD4 into the Th1 (2/2) and Th2 (2/2) subsets, making our 
proposed pipeline the only viable method when purified 
cell type data are not available. 

Any computational method that makes a claim 
about the mixtures of cells in a sample, whether a 
differential expression, meta-analysis, or a deconvolution 
based approach, will suffer decreased performance 
when the cell types to distinguish are very similar. The 
lymphocytes we profiled here share many of the same 
surface markers, which can potentially degrade the 
quality of computationally derived markers. Additionally, 
using a large set of the resulting genes for our markers 
can potentially introduce some weaker markers into 
the analysis. This, however, is remedied as the large set 
of genes can robustly capture infiltration signal when 
one or more genes are missing from the sample profile 

(Supplementary Figure 2). Taken together, these in silico 
methods should be seen as exploratory lymphocyte assays 
that can be readily applied to existing and yet to come 
gene expression data and not a conclusive replacement for 
experimental approaches.

One of the most striking findings in our work is how 
drastically lymphocyte infiltration patterns vary depending 
on the status of the estrogen receptor. We observed this 
effect in both tumor and normal tissue, with ER- samples 
having, on average, higher levels of B cells, CTL, Th1, 
and Th2 infiltration than ER+ samples. Previous studies 
have also found strong immune signals in ER- breast 
tissue [16, 46, 53] that were weak or absent in ER+ 
tissue, and furthermore observed high CTL infiltration 
as a positive prognostic factor only in ER- samples 
[18, 21–23]. Interestingly, no other study has examined 
this link between ER activity in normal breast tissue. The 
correlation that we found between ER- and increased 
infiltration suggests that ER+ breast tissue might be more 
susceptible to tumor formation, and may be one reason 
that increased exposure to estrogen increases a woman’s 
overall risk of breast cancer. Several studies [53–55] have 
linked estrogen to the proliferation of T regulatory (Treg) 
cells, which suppress B and T lymphocytes. Another recent 
study by Generali et al. [55] showed a reduction in Treg 
cells following treatment with the aromatase inhibitor, 
Letrozole. The inhibition of Treg cells may explain why 
we observed an increase in lymphocyte expression levels 
90 days into treatment with Letrozole, and we hypothesize 
that Tregs contribute to the decreased infiltration we see in 
ER+ relative to ER- tumors.

It is still unclear what underlying mechanisms 
determine the extent of immune infiltration in ER- tumors. 
Previously, we uncovered one potential component 
when we observed that mutations in TP53 in ER- tumors 
are associated with a decrease in the level of CTL 
infiltration [43]. Here we more generally detect a similar 
phenomenon with CAAI status in ER- samples, those with 
low complex genomic instability have higher levels of B 
cell, CTL, Th1, and Th2 infiltration relative to samples 
with high instability (Figure 6, Supplementary Figure 6). 
This echoes the relationship Vollan et al. [56] has shown 
between high CAAI and poorer survival. A rapidly mutating 
tumor has the potential to adapt and evade the protective 
mechanisms of the immune system, yet also increase the 
distress signal and promote immune recruitment to the 
tumor site. This balance between potentially increasing and 
actively decreasing immune infiltration might be further 
influenced by the specific genomic rearrangement pattern 
the tumor exhibits [57]. CAAI measures a specific type 
of instability, namely “firestorms” where regions in close 
proximity are amplified on the same arm. Here we found 
that a reduction in beneficial immune recruitment occurs 
particularly with such complex mutations.

Overall, we found that CTL and Th1 infiltration are 
the main contributors to good outcome, and that the levels 
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of these lymphocytes tend to increase together along with 
B cells and to a lesser extent with Th2 cells (Figure 2B, 
Figure 4). Through univariate survival analysis we 
observed that lymphocyte infiltration is prognostic only 
in ER- tumors, with Th1 and CTL infiltration having the 
most effect. Interestingly, conflicting observations on B 
cell infiltration and outcome exist, with some suggesting 
that B cell infiltration is either not functionally significant 
[14], promotes metastasis [13], and others finding B 
cells to be an important factor contributing to prolonged 
survival and long term remission [30, 47–48]. Here we 
found that elevated levels of B are weakly associated with 
good outcome in ER- partitions (Figure 4). However, 
since B cell infiltration correlates strongly with that of 
the other lymphocytes, including CTL cells, this finding 
could be confounded with a CTL, or a general infiltration 
response driven effect. Regardless, increased infiltration 
of the four lymphocytes we profiled here seem to have 
positive effects that are not entirely captured when using 
looking at all lymphocytes in aggregate (Supplementary 
Figure 5). Reducing immune checkpoints, particularly 
blocking the mediatory functions of other lymphocytes 
such as T-regulatory cells, may thus be a fruitful avenue 
for treatment of breast tumors regardless of estrogen 
receptor status. 

With our methodology for capturing cell type 
specific signal we were able to leverage existing studies 
to systematically study immune infiltration without 
needing physical access to or knowledge of the potential 
cell composition of the samples. This enabled us to 
comprehensively examine immune infiltration patterns 
mentioned in previous studies, reconcile conflicting reports 
regarding association of B cell infiltration and outcome, 
and uncover novel biology such as the correlation between 
CTL and estrogen receptor negativity in normal breast 
tissue and the decrease in B cell, CTL, Th1, and Th2 
infiltration with complex genomic instability.  Our method 
is easily extendable and provides an accessible way to 
profile the immune landscape in future studies and can be 
extended to other cancer types.

MATERIALS AND METHODS

Generation of cell specific markers

Nanodissection (described formally in [31]) was 
applied on a large human blood compendium consisting 
of 2,171 publicly available samples (Supplementary 
Table 1). Standards of positive and negative example 
genes (of various “confidence” tiers) were constructed 
from significant Gene2MeSH (http://gene2mesh.ncibi.
org) annotations for the four lymphocyte cell types and 
monocyte. For a given cell type, the corresponding 
Gene2MeSH genes were divided into unique genes and 
those that overlapped with other cell type gene sets. 
Unique genes corresponding to the cell type of interest 

were used as high-tiered positives, and those that were 
relevant but overlapping were used as low-tiered positives. 
All unique genes from the remaining three lymphocyte 
cell types and monocytes were used as negatives. Samples 
in the compendium were downloaded from GEO and 
processed from the raw CEL files, using RMA in “affy” 
R package [32] with default parameters [33]. The ranked 
output of each nanodissection run was reduced into a 
set of high quality marker genes based on the potential 
markers’ co-expression. To reduce the ranked list into 
the final signatures we took the top 100 predicted marker 
genes for each category (Supplementary Table 2). Our 
findings throughout remain robust to the specific cutoffs 
used to build these gene sets.

Clinical data acquisition

Normalized gene expression microarrays for the 
METABRIC discovery (N = 803) and validation (N = 614) 
cohorts were obtained from the European Genome-
phenome Archive (accession: EGAS00000000083). 
Herein we combined both of these partitions and treated 
them as one cohort. TP53 sequencing and categorization 
of lymphocyte infiltration by H&E staining is described 
in Silwal-Pandit et al. [35]. The gene expression data 
and corresponding annotations for the MicMa (N = 108), 
the set of reduction mammoplasty and prophylactic 
mastectomies (N = 24), and the Letrozole data (N = 58), 
were obtained from Gene Expression Omnibus (GEO) 
(accessions: GSE3985, GSE20437, GSE20181). The 
MicMa dataset was used directly and GSE20437 and 
GSE20181 were processed according to the Affy pipeline 
described in the above section. After processing all 
datasets were further z-score transformed across genes 
using the following formula:

 
 gs g

gs
g

x
z

m

s

−
=

where zgs is the z-score for sample s, gene g, xgs is 
the normalized intensity for g in s and µg and σg are the 
mean and standard deviation of g across all samples in 
the cohort.

Statistical analysis

A nonparametric Wilcoxon rank sum test, Wilcoxon 
signed rank test, or two-way ANOVA was used to derive 
p-values comparing lymphocyte scores as appropriate. To 
assess the relationship between the experimentally defined 
infiltration categories and the lymphocyte infiltration 
scores, we calculated correlation using Kendall’s rank 
correlation between the infiltration classes (ranked 
according to their severity) and the infiltration scores per 
sample. When assessing robustness, 50 random genes were 
sampled without replacement 50 times. Gene Ontology 
enrichment was calculated using PANTHER [58] on a 
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2017 version of the GO tree. Reported p-values have been 
corrected for multiple hypothesis testing using Bonferroni. 
Univariate Kaplan-Meier estimates and accompanying 
log rank tests were calculated using the “survival” R 
package [36]. Correlations herein were calculated using 
the Pearson correlation coefficient. All p-values less than 
0.05 were considered significant.

Infiltration and ER activity scores

Clinical estimates of ER activity were taken from the 
publically deposited data. For the MicMa cohort ER activity 
was determined using monoclonal antibodies against ER, 
the details of which can be found in [39]. ER classification 
for METABRIC was calculated computationally using a 
Gaussian mixture model [38].

Scores measuring both immune infiltration and 
ER activity were calculated in the same way for a given 
sample, s, by averaging the z-score transformed expression 
of all n genes in the marker. 

1 

1  
n

s is
i

d z
n =

= ∑
Genes in the marker sets not assayed in a given 

dataset were excluded from averaging. To calculate total 
lymphocyte infiltration we combined the genes in all four 
signatures into one before averaging.

Marker genes that capture ER activity were obtained 
from van’t Veer et al. [37]. Increased activity of the estrogen 
receptor corresponds with higher ER activity scores. As a 
rule of thumb, ER activity scores less than zero correspond 
to ER- samples and scores greater than zero, ER+.

Comparison with CIBERSORT

GSE3982, obtained and processed as described 
above without z-score normalization, was uploaded 
to the CIBSERSORT web interface and run with 100 
permutations and quantile normalization disabled. 
Infiltration scores for the nanodissection markers were 
calculated as described in the previous sections. GSE3982 
contained two samples for three cell types, B cell, Th1, Th2. 
Samples were assigned labels by taking the name of the 
highest scoring cell type for that sample. CIBERSORT’s 
multiple B cell types (memory and naïve) were combined 
into one B cell label, as were the CD4 T cell types (CD4 
naïve, CD4 memory resting, CD4 memory activated) for 
classification of the Th1 and Th2 samples. 

Abbreviations

ECM, extracellular matrix; CTL, CD8+ cytotoxic -T 
lymphocytes; Th1, CD4+ T helper 1 cells; Th2, CD4+ T 
helper 2 cells; TIL, tumor infiltrating lymphocytes; ER, 
estrogen receptor; CAAI, complex arm-wise aberration 
index.
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