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Abstract

Growth condition perturbation or gene function disruption are
commonly used strategies to study cellular systems. Although it is
widely appreciated that such experiments may involve indirect
effects, these frequently remain uncharacterized. Here, analysis of
functionally unrelated Saccharyomyces cerevisiae deletion strains
reveals a common gene expression signature. One property shared
by these strains is slower growth, with increased presence of the
signature in more slowly growing strains. The slow growth signa-
ture is highly similar to the environmental stress response (ESR),
an expression response common to diverse environmental pertur-
bations. Both environmental and genetic perturbations result in
growth rate changes. These are accompanied by a change in the
distribution of cells over different cell cycle phases. Rather than
representing a direct expression response in single cells, both the
slow growth signature and ESR mainly reflect a redistribution of
cells over different cell cycle phases, primarily characterized by an
increase in the G1 population. The findings have implications for
any study of perturbation that is accompanied by growth rate
changes. Strategies to counter these effects are presented and
discussed.
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Introduction

Perturbation is a universally applied approach to study the behavior

and molecular mechanisms underlying cellular systems (Ideker

et al, 2001). A perturbation can be environmental, for example a

change in growth condition or the addition of a response-inducing

compound. A perturbation can also be the targeted disruption of a

particular cellular component, for example by gene deletion or

through RNA-mediated knockdown. Combinations of these two

general types of perturbation are also frequently applied. The range

of possible readouts that can be monitored to study systems properties

is extremely large. Dependent on the system being studied and the

questions being asked, readouts can vary between a relatively

simple phenotype such as growth, to the expression levels of all

genes. Given the interconnected nature of cellular systems

(Bensimon et al, 2012; Walhout & Vidal, 2001), any systems read-

out is potentially determined by a combination of different types of

direct and indirect mechanisms. Examples include ascribing a role

as direct regulator to a particular transcription factor that is in fact

high up in a regulatory cascade of other transcription factors more

directly responsible for the readout (Spitz & Furlong, 2012). For

environmental perturbations, an altered nutrient environment may

have an indirect influence on a phenotype such as cell size due to a

more direct effect on doubling time for example (Zaman et al,

2008). There are therefore many different types of indirect effects.

Depending on the goals of a particular study, such effects need to be

taken into account, especially if the goal is to derive molecular

mechanisms.

Here, we further analyze a dataset describing changes in

genome-wide expression patterns for 1,484 Saccharyomyces cerevisiae

gene deletion strains (Kemmeren et al, 2014). We describe a gene

expression signature common to many of the strains, with subse-

quent analyses aimed at determining the cause of the common

expression signature. We show that the signature is similar to the

environmental stress response (ESR) gene expression signature,

previously described as a cellular response exhibited upon many

different environmental perturbations such as nutrient limitations

and different types of stress (Brauer et al, 2008; Gasch et al, 2000).

Further analyses show that both the ESR and the expression signa-

ture common to slow growing deletion strains result to a large extent

from shifts in the proportions of cells in different cell cycle phases.

The results have implications for any study applying environmental

or genetic perturbations that result in growth rate changes.

Results

A recurrent gene expression signature exhibited by slow growing
deletion mutants

We have previously carried out whole-genome mRNA expression

profiling of 1,484 S. cerevisiae single gene deletion strains grown
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under identical conditions (Kemmeren et al, 2014). Deletion strains

were selected based on a (putative) role as regulator of gene expres-

sion, also using characteristics such as nuclear location or the

capacity to modify other proteins. This results in coverage of diverse

categories such as gene-specific and global transcription factors,

RNA processing and export, ubiquitin-like modifications, protein

kinases/phosphatases, protein trafficking, cell cycle, meiosis, DNA

replication and repair. Of the 1,484 deletion strains, 700 exhibit an

expression profile that is robustly different from wild-type: more

than three transcripts with expression changed over 1.7-fold and

with P < 0.05 compared to the average of over 400 wild-type strains,

(Kemmeren et al, 2014). Analysis of the mutants with robustly

altered transcriptomes shows that alongside specific expression

changes, many strains display a shared expression signature

(Fig 1A). In order to study this recurrent signature, it was separated

from specific effects using principal component analysis (PCA,

Materials and Methods). Projection of the original gene expression

data (Fig 1A) onto the first principal component axis demonstrates

the recurrent nature of this signature (Fig 1B, Supplementary Data-

set S1). The first principal component is distinct from other compo-

nents as it accounts for 24% of the variation in the entire dataset

(Supplementary Fig S1) and is shared by 25% (r > 0.5) of the 700

robustly affected deletion mutants.

Genome-wide expression changes that are shared between two

or more mutants typically indicate similar function such as shared

protein complex or pathway membership (Benschop et al, 2010;

Hughes et al, 2000; Kemmeren et al, 2014; Lenstra et al, 2011;

Roberts et al, 2000). In contrast, this common signature is found as

part of the expression profile of many different mutants that also

belong to diverse functional groups (Fig 1C). What is shared by the

majority of these strains is a reduction in growth rate, with more

slowly growing strains exhibiting a stronger presence of the recur-

rent signature (Fig 1D, Supplementary Dataset S2). In other words,

the doubling time of the various deletion strains correlates with the

degree to which the recurrent signature is present. This finding

agrees with the previously reported observation that the number of

genes with changed expression scales with the degree of slower

growth (Brauer et al, 2008; Hughes et al, 2000; Keren et al, 2013;

Regenberg et al, 2006). It is also important to note that the appar-

ent poor correlation of some deletion mutants to the recurrent

signature (Fig 1D, off-diagonal points) is due to additional gene

expression changes specific to particular mutants (examples in

Supplementary Fig S2). While not identifying which aspect is

causative, the correlation between growth rate and the presence of

the recurrent signature indicates a link between growth rate in

deletion mutants and expression changes in those genes most

strongly affected.

The recurrent signature is not caused by medium depletion

All strains were grown for two cell doublings prior to harvesting

(Fig 2A, left). This is sufficient for recovery from overnight precul-

ture and also allows slow growing strains to achieve balanced,

exponential growth (Supplementary Fig S3). An initial concern

was that the environment of slower growing strains at the time of

harvest may have been different compared to wild-type because of

a longer time spent in culture. The medium of a slower growing

strain may have been more depleted of nutrients. Alternatively,

compounds may have been excreted into the medium for a longer

time by the slower growing strains. Such growth rate-dependent

changes to the media may account for the slow growth gene

expression changes, in particular because of the correlation

between the magnitude of the signature and the growth rate

reduction (Fig 1D). To investigate this possibility, we expression-

profiled wild-type strains grown for two cell doublings in media

pre-conditioned by culture of slow growing deletion strains

(Fig 2A). The expression profiles of the deletion strains are shown

in Fig 2B–E. Wild-type yeast grown in the pre-conditioned media

from the deletion strains do not display the gene expression

changes observed for the deletion strains grown previously in the

same medium (Fig 2F–I). Growth rate-dependent changes to the

media therefore do not account for the slow growth associated

signature.

The slow growth signature is pervasively present in genome-
wide expression studies

To better understand the nature of the slow growth associated gene

expression signature, we next systematically searched publicly

available yeast gene expression datasets for correlations with the

recurrent profile. The slow growth signature was highly correlated

with many previously published microarray datasets (Fig 3A).

Curiously, rather than being restricted to studies of deletion strains,

correlations were also found with studies of wild-type cells

cultured under different growth conditions. Several of the strongest

correlations are with wild-type cells grown under various conditions

(Causton et al, 2001; Gasch et al, 2000) (Fig 3A). In the Gasch

et al study, a large gene expression signature was described that

Figure 1. Recurrent signature in deletion strains associated with reduced growth rates.

A Heat map of mRNA expression changes in the 700 deletion mutants that display the most robust changes in gene expression [more than three transcripts changing
more than 1.7-fold and with P-value < 0.05 compared to the average of over 400 wild-types (Kemmeren et al, 2014)]. Both the transcripts and deletion strains have
been clustered (cosine correlation; average linkage).

B The recurrent signature of the dataset shown in (A), plotted as the projection of the first principal component and its presence in each deletion strain profile.
Transcripts and deletions strains are ordered as in (A).

C The occurrence of the recurrent signature according to functional category of the deleted gene in each strain. Shown in blue are the fractions when considering only
strains displaying a strong recurrent signature, here defined as deletion strains having a correlation greater than 0.5 with the signature. Only ‘protein trafficking’
(P = 4.5 × 10�3) and ‘cell cycle regulation’ (P = 0.018) are significantly (P < 0.05) overrepresented among strains with a strong recurrent signature (hypergeometric
test, Bonferroni-corrected).

D The similarities of deletion profiles to the recurrent signature, versus their growth rate plotted as log2 (doubling time in mutant/doubling time wild-type). The
similarity is expressed as the projection of a deletion profile onto the normalized recurrent profile (this is proportional to their covariance). The blue dots show the
deletion mutants further analyzed by flow cytometry in Fig 5.
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occurs under all conditions of stress tested: the environmental

stress response (ESR). Of all the stress conditions examined, heat

shock (15 min after shift from 29°C to 37°C (Gasch et al, 2000))

gave the highest correlation to the slow growth signature (Fig 3B,

r = 0.73). This correlation increases further upon repeating the

heat shock experiment with our own platform and genetic back-

ground (Fig 3C, r = 0.82). The ESR was not defined on heat shock

alone. Rather, the ESR is characterized by genes that change in

expression during many environmental perturbations including

addition of hydrogen peroxide, menadione, diamide, DTT, osmotic

shock and various nutrient limitations (Gasch et al, 2000). When

only considering those genes that define the ESR, the correlation

with the slow growth signature increases even further (Fig 3D,

r = 0.93). High correlations are also found under different condi-

tions analyzed with different technologies (Fig 3E and F). These

analyses show that the signature that is common to slower growing

deletion strains is highly related to the ESR signature shown by

wild-type cells subjected to many different types of growth condi-

tion perturbation.

The ESR signature can be explained by a cell cycle
population shift

To determine whether there is a mechanism common to the envi-

ronmental and genetic perturbations that result in a shared expres-

sion signature, wild-type response to environmental perturbation

was first studied in more detail. Many stressful conditions, including

heat shock, osmotic stress, and DNA damage, cause a transient G1

arrest (Bellı́ et al, 2001; Gerald et al, 2002; Johnston & Singer, 1980;

Rowley et al, 1993). Gene expression measurements typically

describe the average expression levels of genes in the population of

cells that make up the culture. In unsynchronized exponentially

growing batch cultures, this population is made up of cells rapidly

progressing through the cell cycle. The measured gene expression

level is therefore the average across the entire cell cycle. Cells

subjected to mild heat shock transiently arrest their progress

through the cell cycle at the START checkpoint, between early and

late G1 (Johnston & Singer, 1980; Rowley et al, 1993). A transient

G1 arrest due to heat shock would change the distribution of cells

over each of the cell cycle phases. To determine whether a shift in

the distribution of cells over different cell cycle phases can explain

the ESR, an in silico approach was taken. Cell cycle gene expression

time-course data from cells synchronized by elutriation (Spellman

et al, 1998) were summed using weights that represent the fraction

of cells in each respective cell cycle phase, yielding a virtual profile

that simulates a population of unsynchronized cells. The weights
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Figure 2. The slow growth associated signature is not caused by an
altered culture medium in slower growing strains.

A Overview of the experimental procedure to determine any influence of
the media.

B–I Scatter plot expression profiles of deletion strains versus wild-type (left
column) and those of wild-type strains (right column) grown in media in
which the corresponding deletion strain was first grown. The numbers on
the axis refer to the averaged log2 fluorescent dye intensities of the
microarray probes representing each gene (dots). The dashed line
indicates a 1.7-fold-change in mutant versus wild-type. Genes with
P < 0.05 and fold-change over 1.7 versus wild-type are colored blue.
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were determined by a single spline, controlled by four parameters

which were optimized for correlation to the (Gasch et al, 2000) heat

shock gene expression profile (15 min, 29 to 37°C). Strikingly, when

weighted in this manner, the cell cycle gene expression data closely

resemble the ESR (r = 0.88, Fig 4A).

To rule out overfitting, the same procedure was performed on

randomized ESR genes or on randomized cell cycle expression

data, both yielding no correlation upon optimization (average

r = 0.06 and 0.05 respectively, Materials and Methods). Further-

more, multiple cross-validations with half of the ESR genes used

for fitting the cell cycle data, and applying this fit to the remaining

ESR genes yields average correlations of 0.88 for the heat shock

(Materials and Methods). Cell cycle synchronization can be

achieved in a variety of ways. As discussed by Shedden and

Cooper (Shedden & Cooper, 2002), the elutriation dataset is the

least prone to stress and all methods suffer from quite rapid loss

of synchronization. When other cell cycle time series are used, the

results are nevertheless similar. For elutriation from Spellman et al

(1998), the correlation between heat shock and the cell cycle

based model (Fig 4A) is 0.88. For alpha factor arrest from Spell-

man et al (1998) and Granovskaia et al (2010), the correlation is

0.82 and 0.63 respectively. For cdc28-ts (temperature-sensitive

allele) from Spellman et al (1998) and Granovskaia et al (2010),

the correlation is 0.71 and 0.35 respectively. The ability to mimic

the ESR from cell cycle time-course data is a strong indication that

a large part of the ESR derives from a cell cycle population shift
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Figure 3. The slow growth associated signature is similar to the environmental stress response (ESR).

A Distribution of correlations with the recurrent signature for a compendium of expression profiles from literature (Backhus et al, 2001; Barbara et al, 2007; Bernstein
et al, 2000; Causton et al, 2001; Chu et al, 1998; Dasgupta et al, 2002, 2004; DeRisi et al, 1997; Epstein et al, 2001; Fazzio et al, 2001; Ferea et al, 1999; Galitski et al,
1999; Gasch et al, 2000; Hardwick et al, 1999; Holstege et al, 1998; Hu et al, 2007; Hughes et al, 2000; Jelinsky et al, 2000; Lee et al, 2000; Madhani et al, 1999;
Ostapenko & Solomon, 2003; Primig et al, 2000; Roberts et al, 2000; Roth et al, 1998; Spellman et al, 1998; Travers et al, 2000; Vary et al, 2003; Viladevall et al, 2004;
Young et al, 2003; Zhu et al, 2000). Indicated in blue are the correlations against the profiles described in Gasch et al (2000) and in green, those by Causton et al
(2001).

B–F Scatter plots comparing the slow growth signature to: (B) the (Gasch et al, 2000) heat shock expression profile at t = 15 min; (C) a heat shock expression profile at
t = 15 min performed with an identical strain background, growth medium, microarrays and other procedures as in Fig 1; (D) heat shock (from C) when
considering only ESR genes, that is, those defined previously to form the environmental stress response (Gasch et al, 2000); (E) the expression changes of ESR genes
36 min after osmotic shock as determined using Affymetrix short oligonucleotide arrays (Miller et al, 2011); and (F) expression changes of ESR genes after 100 mM
lithium addition as determined using RNA-seq (Van Dijk et al, 2011).
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Figure 4. Cell cycle population shift underlies the ESR.

A Scatter plot comparing the expression profile of t = 15 min heat shock (Gasch et al, 2000) with the spline-weighted mix of cell cycle phase signatures (Spellman et al,
1998). Absence of data points around 0 is due to use of ESR genes, which by definition are those with changes.

B Circular histogram of the cycle phase population distribution used in (A). The red line shows the START checkpoint. Names of cell cycle phases are shown on the dial.
C Snapshots of the simulated cell cycle phase population distribution upon heat shock.
D Time series of flow cytometry profiles after heat shock.
E Modeled (line) and observed (dots) fraction of 1N cells during heat shock.
F Heat map of mRNA expression changes during a heat shock time series including all transcripts changing more than 1.7-fold and with P < 0.05 in any single time

point compared to t = 0. Scale as in Fig 1.
G Modeled (line) and observed (dots) average magnitude of gene expression changes for genes with increased (purple) or decreased (blue) expression during

heat shock.
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rather than from a direct cellular transcriptional response to envi-

ronmental perturbation.

The cell cycle distribution derived from weighting of the cell

cycle gene expression data predicts that the ESR involves an

increase in the number of cells in early G1 and a decrease in the

number of cells in late G1 and S phase (Fig 4B). Importantly, this

fits with the transient arrest at START encountered upon mild heat

shock (Johnston & Singer, 1980; Rowley et al, 1993). To test this

further, a predictive model was created, whereby a transient arrest

of cell cycle progress was initiated at t = 0. This corresponds to the

heat shock induced cell cycle arrest at START (Rowley et al, 1993).

In the model, this results in accumulation of early G1 cells and

concomitant depletion of late G1 cells (Fig 4C and Supplementary

Movie S1). Because both early and late G1 cells have 1N DNA

content, the model predicts that the fraction of 1N cells will begin to

accumulate later during heat shock and not immediately (Fig 4E,

line). To test the model, flow cytometry analysis of a heat shock

time-course experiment was performed. The result agrees with

previous analyses (Johnston & Singer, 1980; Rowley et al, 1993)

and exhibits a 1N accumulation both qualitatively and quantita-

tively close to the values predicted by the model (Fig 4E, dots;

individual flow cytometry profiles, Fig 4D). In agreement with the

finding that the ESR can be modeled by weighting of cell cycle gene

expression data (Fig 4A), the cytometry analysis shows that a cell

cycle population shift indeed takes place, also in the form predicted.

As with the shift in cell cycle populations modeled and measured

during heat shock (Fig 4C–E), the ESR gene expression signature is

also transient (Gasch et al, 2000). As a further test of the idea that

the ESR signature is to a large extent caused by a shift in the distri-

bution of cells over different cell cycle phases, the population model

(Fig 4C) was used to predict the average magnitude of gene expres-

sion changes. This model simply assumes that the magnitude of all

gene expression changes is directly proportional to the change in

distribution of cells in each cell cycle phase as compared to the

unperturbed steady state distribution at t = 0. A transient arrest of

25 min was incorporated as this is the timeframe previously shown

to be required for maximal expression of chaperone proteins (Miller

et al, 1982), allowing adaptation to the higher temperature. Actual

gene expression changes were then monitored during the course of

a heat shock experiment (Fig 4F). Despite the simplicity of the

model, the predicted transient changes (Fig 4G, lines) globally fit

the average magnitude changes measured (Fig 4G, dots). The ability

to recreate the ESR in silico from cell cycle phase signatures of

unstressed cells (Fig 4A), the agreement between predicted and

observed cell cycle population shifts that actually occur (Fig 4C–E)

and the predicted and observed transient nature (Fig 4G) all support

the idea that the ESR signature to a large extent reflects a cell cycle

population shift.

A cell cycle population shift also underlies the recurrent slow
growth signature observed upon genetic perturbation

Growth rate change accompanies many environmental perturba-

tions (Bellı́ et al, 2001; Gerald et al, 2002; Johnston & Singer, 1980;

Rowley et al, 1993). Growth rate reduction also accompanies many

single gene deletions (Fig 1D, Supplementary Dataset S2). An

expression signature similar to the ESR has been observed in wild-

type continuous culture experiments forced to grow slowly (Brauer

et al, 2008; Regenberg et al, 2006). The recurrent slow growth

signature found in many deletion strains is also highly similar to the

ESR (Fig 3). We therefore reasoned that the similar signatures

observed in both cases could be the result of the same phenomenon:

a shift in the cell cycle distribution of the population. To test this

possibility, deletion strains covering a wide range of growth rates

(blue dots, Fig 1D) were analyzed by flow cytometry (Fig 5A and B).

The degree of presence of the slow growth expression signature is
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B Examples of flow cytometry profiles used in (A).
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clearly proportional to the degree of cell cycle population shift

observed for the individual strains (Fig 5A). As with the ESR signa-

ture, the common signature found in slower growing deletion

strains also therefore results to a large extent from a shift in the cell

cycle distribution.

Identifying primary effects of genetic and
environmental perturbation

For those perturbations that result in growth rate reduction, it is

likely that the reduction in growth rate will often be a more down-

stream consequence. In such cases, removal of the gene expression

signature associated with slower growth may help reveal the more

immediate and direct effects of either an environmental or genetic

perturbation. To test this, we transformed a previously published

gene expression dataset from cells grown under amino acid starva-

tion (Gasch et al, 2000), by factoring out the slow growth signature

(Materials and Methods). Transformation of the amino acid starva-

tion data in this way (Fig 6A) results in a more pronounced enrich-

ment for genes involved in amino acid biosynthesis compared to the

original data. The same approach was also applied to an environ-

mental perturbation response not included in the Gasch study:

growth in low phosphate (Fig 6B). Here, transformation of the data

enriches for finding direct targets of the low phosphate activated

transcription factor Pho4. Transformation of environmental pertur-

bation datasets in this way can therefore improve delineation of

direct responses.

The approach was also tested for genetic perturbation. For this,

we analyzed gene-specific transcription factor (GSTFs) deletion

profiles in the starting dataset (Fig 1) for which there was also

genome-wide binding data available (MacIsaac et al, 2006). Similar

to environmental perturbation, transformation of the GSTF deletion

data by removal of the slow growth associated signature improves

identification of direct target genes. This is evident from the

reduced false positive rate for finding GSTF binding in the pro-

moters of genes with changed expression upon GSTF deletion

(Fig 6C). Importantly, the improvement is greatest for the subset

of GSTF deletions that suffer most from slow growth and does not

interfere adversely for deletions that are less affected by slow

growth (Fig 6C and Supplementary Fig S4). Transformation of
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Figure 6. Transformation of expression data to identify more direct consequences of perturbation.

A Expression changes under amino acid starvation conditions (30 min, Gasch et al, 2000), before (left) and after (right) transformation (removal of the first principal
component). Transcripts of genes annotated with “cellular amino acid biosynthetic process” (GO:0008652) are in blue (P = 5.7 × 10�10 original, P = 2.9 × 10�24

transformed: using a hypergeometric test for enrichment among genes increasing more than 1.7-fold in expression with P < 0.05).
B Expression changes in wild-type strain at low (75 lM) versus standard (10 mM) phosphate conditions, before (left) and after (right) transformation. Targets of the low

phosphate transcription factor Pho4 (Ogawa et al, 2000) are in blue (P = 4.5 × 10�16 original, P = 2.3 × 10�24 transformed).
C False positive rate comparison before and after transformation of transcription factor binding site enrichment analyses for 100 gene-specific transcription factor

deletion strains. Strains are colored with respect to their log2 relative doubling time as shown by the scale.
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gene expression datasets can therefore improve delineation of

direct effects for both environmental as well as genetic perturba-

tions. The fact that transformation works for both types of

perturbations also supports the idea of a common underlying

secondary response and fits the proposal that cell cycle population

shifts should be taken into account in any study of perturbations

that result in growth rate changes.

Discussion

The finding of a slow growth associated expression signature in

deletion strains fits with previous reports linking global changes in

gene expression to changes in growth rates, in particular growth

rate changes caused by various nutrient limitations (Brauer et al,

2008; Keren et al, 2013; Regenberg et al, 2006). Here, we describe

an expression signature common to slow growing deletion strains.

As with wild-type strains growing more slowly due to particular

growth conditions, the signature common to slow growing deletion

strains is highly similar to the ESR, despite the deletion strains being

grown under optimal conditions. Besides a shared expression

response, the feature that is common to all these different perturba-

tions (genetic, nutrient and the various forms of stress) is growth

rate reduction. Many stressful conditions, including heat shock,

osmotic stress, and DNA damage, cause a transient G1 arrest (Bellı́

et al, 2001; Gerald et al, 2002; Johnston & Singer, 1980; Rowley

et al, 1993). Indeed, detailed examination of the expression data

used to originally define the ESR reveals a transient reduction in the

mRNA levels of the post START pre-S phase marker CLN2 in the

vast majority of the stress time courses studied (Supplementary Fig

S5). Disruption of cell cycle progression has previously been indi-

cated to cause many indirect gene expression changes (Lu et al,

2003). The latter study also indicated a link between cell cycle popu-

lation effects and gene expression, thereby providing the basis for

the ESR/cell cycle modeling approach taken here. The modeling and

flow cytometry analyses (Figs 4 and 5) show that perturbations

resulting in slow growth have an altered cell cycle population distri-

bution and that this explains a large part of the commonly found

expression response.

An alternative explanation is that all the different perturbations

result in stress of which the common expression signature (slow

growth/ESR) is part and that this causes the reduced growth rate.

This does not fit with the ability to model the ESR using cell cycle

phase signatures (Fig 4). Furthermore, the recent demonstration

that commitment to the mitotic cell cycle occurs before induction of

G1-S gene expression changes (Eser et al, 2011), also rules this

alternative out. Rather than constituting a genome-wide response in

single cells, the ESR and the deletion strain slow growth signature

are therefore mainly a manifestation of a response at the level of the

culture as a whole.

The correlations achieved by modeling a population shift are

high but not complete (Fig 4). This indicates that while the majority

of the ESR can be explained by the cell cycle population shift, there

is also an independent component. This likely corresponds to the

well-documented transcriptional response to general stress mediated

by transcription factors such as Msn2/4 (Morano et al, 2012). Direct

targets of Msn2 are indeed part of both the ESR (Gasch et al, 2000)

and the slow growth signature (Supplementary Table S1). The

presence of distinct contributions to the ESR has been suggested

before (López-Maury et al, 2008). Further work to completely

unravel the contributions of the distinct components will potentially

have to take into account the possibility of metabolic/redox cycles

also causing cyclic expression of general stress response target

genes (Chen et al, 2007; Tu et al, 2005). Despite these complicating

factors, the part of the ESR previously linked to growth (Brauer

et al, 2008; López-Maury et al, 2008) can now be attributed to the

cell cycle population shift.

A practical outcome of this study is that the extensive scope of

the genetic perturbation data provides a means to calculate a high

quality vector representation of the recurrent slow growth signature

(Supplementary Dataset S4). The vector can be used to determine

which transcripts are most strongly influenced by slow growth.

Gene ontology (GO) analysis of the signature (Supplementary Table

S1) shows enrichment for many of the same processes previously

described in detail for the ESR (Gasch et al, 2000). The enriched

categories include many metabolic processes intimately coupled to

cell cycle progression (Chen et al, 2007; Tu et al, 2005), in agree-

ment with a cell cycle population shift underlying a large part of

these signatures.

Subtraction of the slow growth vector from the gene expression

patterns of genetically or environmentally perturbed cells improves

identification of more direct responses to the perturbation (Fig 6).

The signature is present in datasets generated with diverse plat-

forms (Fig 3). Although transformation of data across different tech-

nology platforms is possible (Fig 6A), this likely works better within

a single platform (Irizarry et al, 2005). A transformed dataset for all

gene deletion expression profiles is made available (Supplementary

Dataset S5), as is a file combining the original and transformed data

including the P-values relating to the original measurements

(Supplementary Dataset S6). Weighting of the degree of data trans-

formation differs depending on the degree to which the slow growth

signature is present. This also fits with the observation that the

degree of reduced growth differs for each deletion strain and for

different environmental perturbations. In agreement with the idea

that the recurrent signature is a result of cell cycle population shifts,

it is interesting to note that the inverse signature is also present in a

subset of deletion strains (Fig 1B and D) and that these also show

the opposite cell cycle population shift (Fig 5A, msn2D and set4D).
The same holds for a subset of environmental perturbation data

(Fig 3A, negative correlations). One of these is a cold shock transfer

from an adverse 37°C to a more optimal growth temperature of 25°C

(Gasch et al, 2000). Cold shifted cells also show the opposite flow

cytometry profile shift (Supplementary Fig S6), all in line with the

explanation that the recurrent signature is a reflection of altered cell

cycle phase populations.

It is unlikely that all analyses will benefit from data transforma-

tion to remove the recurrent signature. The presence of slow

growth, a cell cycle population shift, and its associated signature

are phenotypes. Just like other phenotypes, for analyses of similar-

ity between different deletion strains, the presence of such charac-

teristics can help place mutants into similarly behaving groups.

Data transformation should therefore only be applied in studies

requiring identification of direct effects. Alternatively, other experi-

mental approaches such as rapid conditional inactivation of a gene

product may be applied (Haruki et al, 2008; Nishimura et al,

2009).
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Although the focus of this study has been on analyzing gene

expression patterns, it is important to emphasize that other pheno-

types may similarly be indirectly influenced by the associated shift

in cell cycle populations. The yeast gene deletion strains studied

here (Winzeler et al, 1999) are used in a wide variety of studies. As

with the expression pattern of the entire culture, any cellular charac-

teristic that differs dependent on the proportion of cells at specific

cell cycle stages will appear apparently changed in strains with a

growth rate difference. Independent of whether the readout is gene

expression or a different phenotype, it is obvious that all perturba-

tion-based studies that are accompanied by growth rate changes

should take cell cycle population shifts into account. It is likely that

this effect is also important for other organisms, as well as disease

states associated with changes in cellular growth.

Materials and Methods

DNA microarray expression data

Deletion strain DNA microarray data (Fig 1) are from Kemmeren

et al (2014), and these data are available in ArrayExpress (accession

numbers E-MTAB-1383, E-MTAB-1384), GEO (accession numbers

GSE42526, GSE42527) as well as in other formats described in the

original study. Deletion strain data were generated as four replicates:

two biological replicates harvested in early mid-log phase in

synthetic complete medium with 2% glucose and each profiled in

technical replicate. These were averaged and statistically compared

to the average of over 400 wild-type expression profiles generated

in parallel (Kemmeren et al, 2014). Expression data of strains grown

in deletion strain conditioned medium (Fig 2) have been deposited in

ArrayExpress (E-MTAB-2218) and GEO (GSE54539), as has the heat

shock profile (Fig 3, E-MTAB-2219, GSE54528), the heat shock time

course (Fig 4, E-MTAB-2219, GSE54528), the low phosphate

response (Fig 6, E-MTAB-2217, GSE54527), and the cold shock time

course (Supplementary Fig S6, E-MTAB-2219, GSE54528). Growth of

strains for the experiments specific to this study is described below.

For all microarray experiments, each measurement point is the aver-

age of two biological replicates, each profiled as a technical replicate

in dye-swap, yielding four replicates that were averaged and statisti-

cally analyzed by Limma (Smyth, 2005) versus either wild-type or

wild-type at t = 0. All procedures were identical and are described in

detail in Kemmeren et al (2014), with protocols submitted to Array-

Express. Calculations were made using the statistical language R

version 3.0.1 on a Linux machine running CentOS 5.5, with pack-

ages and scripts provided in the Supplementary R Packages. The

expression data (Miller et al, 2011) (Fig 3E) was obtained from

ArrayExpress (accession number E-MTAB-439) and normalized with

rma from the R package affy. For this data, expression changes are

the log2-ratios relative to the median of the four t = 0 wild-types.

RNAseq data

The Van Dijk et al (2011) data (Fig 3F) were obtained from

Sequence Read Archive (accession number SRP005955). Reads were

mapped with bowtie (Langmead et al, 2009) to the yeast genome

R64.1.1 with standard settings. Read counts per gene were calcu-

lated with featureCounts from the R package Rsubread (Liao et al,

2014). Normalization and log ratios were obtained using the R

package edgeR (Robinson et al, 2010).

Growth rates

The doubling times of the deletion strains were calculated from the

slope of the log2(OD600) by taking the linear part of the growth

curve just prior to harvest. For examples, see Supplementary Fig S3.

The doubling times from two biological replicate cultures were aver-

aged, and the ratio versus wild type (Supplementary Dataset S2)

determined from wild-type cultures grown in parallel to each batch

of mutants.

Principal Component Analysis (PCA)

The procedure separating the slow growth profile from specific

effects was performed with singular value decomposition (SVD) but

is more easily referred to using the terminology from the more

familiar PCA to which it is closely related. Given the full data matrix

M, consisting of the log2-ratios (relative to wild-type) of m tran-

scripts x n deletion strains we write:

M ¼ U � S� VT (SVD formulation)

or, alternatively:

M ¼ X � VT (PCA formulation)

with the columns of U the left-singular vectors, those of V the

right-singular vectors (or, in PCA terms, the principal component

axes or loadings), and S the diagonal matrix of singular values, X

the principal component scores, and × and T denoting matrix

multiplication and transposition, respectively. Columns of all

matrices are sorted by decreasing importance. If we rewrite, in the

SVD expression, the diagonal of matrix S as a simple vector s, it

is clear that SVD decomposes matrix M into a weighted sum of

simpler matrices (sometimes called its modes (Alter et al, 2000)),

as:

M ¼
Xn

k¼1

skUk � VT
k

with Uk and Vk the k-th column of matrices U and V and k ranging

over the number of deletion strains. Using (or conversely, discard-

ing) a subset of dimensions allows the separation of specific

features of the data. In the current study, the first mode (principal

component) is identified with cell cycle phase distribution effects

and is studied (Fig 1) by only using k = 1 or, conversely, discarded

(Fig 6) by setting s1 to zero. Using only k = 1, we obtain the first

mode, M(1) = s1�U1 × V1
T, also shown in Fig 1B. Since all M(1)

columns are collinear, each one of them could be called the slow

growth profile. For easier comparison with the actual data, we call

the one with the largest norm the slow growth signature (Supple-

mentary Dataset S4). The equivalent procedure in PCA terms is to

create matrix X(1) from the scores matrix X but setting all but the

first column to zero, and forming:

Mð1Þ ¼ Xð1Þ � VT
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Conversely, the transformed data M* is obtained by leaving out

the first mode, as:

M� ¼
Xn

k¼2

skUk � VT
k

or, equivalently but more simply:

M� ¼ M �Mð1Þ

The equivalent procedure in PCA terms is to create matrix X* from

matrix X by setting its first column to zero, and then forming

M* = X*×VT, or again using M* = M � M(1).

To remove the correlation with the slow growth signature from

other data, each of their expression profiles was transformed in

Gram-Schmidt fashion by subtracting from them their projection

onto the basis vector given by the normalized slow growth profile

(which is identical to the first left-singular vector U1). The original

(untransformed) data set, the slow growth profile, and the trans-

formed data set are provided in Supplementary Datasets S3, S4 and

S5, respectively. A single file combining the original and trans-

formed data sets and including the P-values from the original

measurements is also available: Supplementary Dataset S6. R scripts

are provided that determine and subtract the first principal compo-

nent from any data set (svd-transform.R), as well as transforming

any data using the slow growth profile determined in this study

(remove.signature.R). The similarity to the slow growth profile

(Fig 1D) was expressed as the inner product of the strain’s expres-

sion profile and the first left-singular vector U1. For centered data,

this is equivalent to using the covariance.

Culture of cells

For pre-conditioned media experiments, wild-type and deletion

strains were grown for two cell doublings in synthetic complete

(SC) media containing 2% glucose. Cells were then harvested by

centrifugation at 3,952 × g for 3 min. The supernatant was decanted

and filtered through a 0.2-lm filter. These pre-conditioned media

were then added to wild-type cells which were also allowed to grow

for two cells doublings before harvesting. For the low phosphate

experiment, cells were grown for two cell doublings in SC media

containing 2% glucose and 75 lM phosphate before harvesting. For

heat and cold shock experiments, wild-type cells were grown in SC

media containing 2% glucose at either 30°C or 37°C for two cell

doublings, harvested by centrifugation (3,952 × g for 3 min) and

then re-suspended in either 37°C or 30°C media respectively

depending on whether a heat or cold shock experiment was

performed. Cells were then harvested at the indicated time points by

centrifugation. In all cases, cells were harvested and RNA isolated

and processed for microarray profiling as described previously

(Kemmeren et al, 2014).

Flow cytometry analysis

Cells were grown for two cell doublings and then harvested by

centrifugation at the indicated time points. Cells were first fixed in

70% ethanol overnight at 4°C, then were washed twice in 1 ml flow

cytometry buffer (200 mM Tris, 20 mM EDTA), re-suspended in

100 ll ribonuclease A (1 mg/ml in flow cytometry buffer; Sigma),

and incubated for 2 h at 37°C in a shaking heating block at

800 rpm. Cells were washed in phosphate-buffered saline (PBS)

and stained in 100 ll propidium iodide (50 lg/ml in PBS;

Molecular Probes) for 1 hour at RT. Sample volume was increased

to 1 ml with PBS and sonicated for 10 sec at 25% amplitude

(Hielscher UP200S). DNA content was quantified by flow cytometry

(FACSCalibur) and analyzed using CellQuest 5.2.

Deconvolving the ESR using cell cycle phase-specific profiles

We consider the heat shock profile of an asynchronous population to

be the sum of ‘pure’ cell cycle phase-specific profiles, weighted by

their fraction in the population. To decompose the Gasch et al

(2000) heat shock profile into such a weighted sum of cell cycle

phase-specific profiles, we used the Spellman et al (1998) elutriation

data as the best approximation to such ‘pure’ cell cycle phase-

specific profiles (see also Discussion). The elutriation data comprise

14 time points from 0 till 390 min at 30-min intervals. The elutriation

profiles, the experimental heat shock profile as well as the virtual

heat shock profile are defined and expressed as M-values, that is, as

the log2 of expression changes, relative to t = 0. Missing data were

imputed with the R package pamr (Hastie et al, 2013) using default

settings. We attempted to find the weights such that the weighted

sum of the cell-cycle-specific time points yields a virtual expression

profile most closely resembling the heat shock profile of the 859 ESR

genes (Gasch et al, 2000). To preclude overfitting and to ensure

smooth behavior at neighboring time points, a single cubic spline

governing the weights was used for all 859 genes together. This

spline was constructed from four control points with x-values chosen

at 78, 156, 234, and 312 minutes. These four time points were not

measured in the elutriation experiment, but provide an unbiased

placement at fractions 0.2, 0.4, 0.6, and 0.8 of the duration of the

elutriation data cell cycle. The y-values of the four control points

were optimized such that the spline through them yields 14 weights

(i.e., population fractions, between 0 and 1 and summing to one)

that, when used in the weighted sum, give the maximal correlation

of the virtual profile with the heat shock profile. (The four y-values

themselves have little significance; e.g., unlike the weights they need

not be between zero and one). The deconvolution procedure was

written in R and uses its built-in spline generating function splinefun

and optimizer optim, both with default settings (Forsythe-Malcolm-

Moler and Nelder-Mead, respectively). The optimizer is run at least

ten times (with the four control points initialized randomly between

0 and 1), but more if the solutions failed to converge as judged by

the best three correlations having a coefficient of variation greater

than 0.01 or any of the three pairwise correlations of the top three

sets of weights being below 0.95.

To rule out overfitting, the deconvolution was also performed

with randomized ESR gene labels. The mean correlation of the heat

shock expression data with the fit obtained after 100 randomizations

of ESR gene labels was 0.06, maximum 0.13. Similarly, 100 random-

izations of the cell cycle expression data matrix (each time-point

column independently randomized) yield an average correlation of

0.05, maximum 0.12. The method was also cross-validated by using

half the genes as a training set to obtain the four control points of

the spline to weigh the time-course data. This was then applied to

the other genes (test set) to determine their correlation with the heat
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shock data. The mean correlation of 100 such random splits of the

859 ESR genes into training set, and test set was 0.88, that is, the

same as that of the full deconvolution. The procedure is fast (sec-

onds), general, and is made available as R package dccd in the

Supplementary R Packages.

Cell cycle simulation

We modeled the distribution of cells over the phases of the cell cycle

as a circular array of slots, each representing 1 minute along the cell

cycle and containing the relative number of cells at that point in the

cell cycle. The simulation proceeds in time steps of one minute, and

cells are transferred from one slot to the next. The distribution of

relative numbers of cells is initially uniform over the whole circular

array (representing an unsynchronized population) and remains so

if there is no G1 arrest due to heat shock. At t = 0, a heat shock is

applied which erects a barrier at the START checkpoint in G1,

between slots 14 and 15. Cells can only pass this barrier after having

recovered for 25 min. The result is that the slots beyond START

‘empty out’, whereas the slot in front of START ‘piles up’ the recov-

ering cells. For purposes of visualization, the one-minute slots were

averaged into coarse-grained slot of 7 min. The lengths of the cell

cycle phases, in minutes, were: G1: 21; S: 14; G2: 14; M: 21; M.G1:

7. Cells in slots 1 till 28 were deemed to have 1N DNA content, the

rest 2N. For modeling the global expression changes during heat

shock (Fig 4G), only fold-changes in cell numbers of greater than

1.7 were taken into account, analogous to the 1.7-fold-change

threshold applied to the expression data. All parameters used in the

simulation were chosen to mimic those observed experimentally,

but qualitatively, the results are not sensitive to their exact values.

The simulation procedure is available in the R package s3c2 in the

Supplementary R Packages.

Supplementary information for this article is available online:

http://msb.embopress.org
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