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Multimode entanglement in reconfigurable graph
states using optical frequency combs
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Multimode entanglement is an essential resource for quantum information processing

and quantum metrology. However, multimode entangled states are generally constructed

by targeting a specific graph configuration. This yields to a fixed experimental setup

that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical

on-demand, reconfigurable multimode entangled state, using an intrinsically multimode

quantum resource and a homodyne detection apparatus. Without altering either the initial

squeezing source or experimental architecture, we realize the construction of thirteen cluster

states of various sizes and connectivities as well as the implementation of a secret sharing

protocol. In particular, this system enables the interrogation of quantum correlations and

fluctuations for any multimode Gaussian state. This initiates an avenue for implementing

on-demand quantum information processing by only adapting the measurement process and

not the experimental layout.
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I
nseparability, that is, the impossibility of treating as separable
entities physical systems that have been generated in an
entangled, non-factorable quantum state, even though the

systems are no longer coupled to each other by a physical
interaction, is one of the most puzzling properties of the quantum
world1,2. The consequences of this quantum property have been
harnessed in a range of applications, including quantum
teleportation3,4 and quantum computation5,6. To compete with
classical computers, quantum computers need to employ a large
number of quantum systems that are created in appropriately
designed entangled states, on which quantum processing
operations can be performed before the quantum state is
subject to decoherence. This multipartite quantum system
is often termed a ‘quantum network’, and the individual
quantum-correlated systems comprise the network ‘nodes’. The
generation and use of large quantum networks raise numerous
experimental and theoretical issues that are the subject of intense
research. For instance, significant effort has recently been directed
towards defining specialized metrics that assess the presence of
multipartite entanglement7–10 as well as characterize the ‘quality’
of such a quantum resource in view of quantum computing
applications. This issue is still the subject of debate throughout
the community.

The majority of hitherto studied systems have employed qubits
(that is, material-based two-level systems, such as ions or
quantum dots) as the nodes of a quantum network. In this case,
the parties comprising the multipartite quantum network are
well-defined physical objects, and multipartite entanglement
amongst nodes appears as a many-body property where each
party is physically separated from the others and can be measured
independently11. Furthermore, while a multitude of experiments
have demonstrated the construction of multimode entanglement,
the experimental architecture typically realizes one specific
structure and is not reconfigurable12–14. Hence, a general study
on the diversity of networks that are attainable from a single fixed
resource has not been performed.

For that purpose multimode optical sources are ideal
candidates. Indeed, multimode entanglement properties are
governed by the initial quantum state and by the measurement
process. More specifically, multipartite entanglement is not
anymore merely an intrinsic property of the source, but also
the result of a complex interplay amongst the source, act of
measurement, and possibly post-processing that acts on the
measurement results15–17. One should stress that this setting is
not fully equivalent to a quantum network, as in its general
acception this concept requires distant physical nodes on which
quantum information is processed. However, within the
measurement based framework, quantum information can still
be processed with purely optical systems, and thus the difference
in application between these two different types of network
becomes tiny. To avoid confusion, we decided to name these
systems all-optical quantum graph.

In the present work, we tailor the measurement bases of a
multimode optical quantum source by shaping the local oscillator
of the homodyne measurement. This enables accessing a
multiplicity of quantum correlations structures without any
modification of the experimental arrangement. As a result, a
direct study is accomplished of the scalability and versatility of
graph connectivities that may be forged from a single resource.
This new avenue paves the way for configurable, adaptive, and
scalable quantum information processing whose possibilities are
still largely unexplored, both theoretically and experimentally.

After explaining how measurement-based all-optical quantum
graphs can be implemented, we introduce the experimental
platform, which is based on parametrically generated ultrafast
frequency combs whose temporal/spectral structure is exploited

to carry multimode quantum information18. The use of ultrafast
pulse shaping combined with homodyne-based projective
measurements allows the on-demand construction of various
multimode quantum correlation structures. As a practical
illustration, we focus in particular on the generation of cluster
states that are fabricated from the same light resource.
Subsequently, a multipartite quantum secret sharing proposal is
implemented by making use of one of the generated cluster states.

Results
Preliminary considerations. We consider the electric field
quantum operator Êðþ Þðr; tÞ (a scalar field is assumed for sim-
plicity), which is written in a general form as:

Êðþ Þðr; tÞ¼
X

i

âi fiðr; tÞ; ð1Þ

where fi(r,t) constitute a basis of optical modes (that is,
orthonormal solutions of Maxwell’s equations with specific
boundary conditions), âi are photon annihilation operators in
the mode of spatio-temporal shape fi(r,t), and an overall
multiplicative factor has been ignored for simplicity. This set of
modes can be placed in a multimode entangled state, whose
correlations structure can be described as a graph state19.

Compared to ‘material-based quantum networks’, photonic
networks exhibit unique properties that include a relative
insensitivity to decoherence but also an ability to arbitrarily
change the mode basis. Towards this end, the field Êðþ Þ may be
rewritten as:

Êðþ Þðr; tÞ¼
X

j

b̂j gjðr; tÞ; ð2Þ

in which {gj(r, t)} represents another mode basis while b̂j are the
associated photon annihilation operators in the mode gj.
A transformation from the original modal basis and annihilation
operators to another is accomplished by means of a unitary
transformation:

g¼Uy f ; b¼U a; ð3Þ

where U is a unitary transformation acting on the vector space of
modes, and the vectors g, f, b, a have respective components fi, gj,
b̂j, âi. The potential for examining a given quantum state in an
arbitrary modal basis is one of the most important features of
multimode quantum optics, whose equivalent has not been
demonstrated for material qubits so far. Importantly, it is possible
to experimentally access the properties of a given mode
(for example, fi) using balanced homodyne detection in which a
local oscillator is temporally and spatially sculpted in the same
mode20. Such a measurement also has the potential to arbitrarily
reconfigure the projection operator that acts on the multimode
optical state of interest15,21,22 in a spirit closely related to
measurement based quantum computing6,23,24.

Measurement based all-optical quantum-graphs. The Bloch
Messiah decomposition25 states that any pure multimode
Gaussian quantum state of light can be reduced to a set of
uncorrelated squeezed vacuum states in an appropriately chosen
mode basis of annihilation operators apsqz (the array of modes are
conventionally taken to all be squeezed in the p-quadrature of the
field). This implies that the modes of any Gaussian all-optical
quantum graph may be constructed from a set of squeezed
modes by implementing a proper change of mode basis.
In practice, a graph of interest may be fashioned by applying
a unitary transformation Unet to a set of independently
squeezed modes24, which allows for the annihilation operators
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bnet of the graph to be described as

bnet¼Unet apsqz: ð4Þ
The unitary transformation Unet is conventionally implemented
by means of a suitable arrangement of linear optical elements,
including beamsplitters and phase shifters, and several pioneering
experiments have demonstrated this approach14,26,27. As Unet

mathematically corresponds to a general basis rotation, an
alternative, but equivalent, manner in which to reveal the
optical graph is to measure the multimode beam in the
appropriate basis. Such a basis change can be implemented
with a mode-selective detection system, which is the novel
approach that is considered in this work.

Considering that any basis change is at hand, the realization of
an arbitrary Gaussian all-optical quantum graph may start from
any highly multimode non-classical state. In the present situation,
the parametric down conversion of an optical frequency comb
generates full multimode entanglement in the frequency basis28.
The spectral domain in which the downconversion occurs is
described with a set of ‘frequency-pixel modes’ hpix (in practice,
they do not correspond to single frequency components but
instead to a given frequency band matching the spectral
resolution of the detection system) with corresponding
annihilation operators apix. These optical modes constitute an
approximate basis on which the squeezed modes fpsqz can be
decomposed. The set of annihilation operators corresponding to
the squeezed modes may then be written as apsqz¼Usqzapix,
where Usqz is the corresponding unitary transformation whose
phase degrees of freedom are chosen such that apsqz are squeezed
along the p quadrature. After applying the unitary transformation
Unet corresponding to the graph of interest, the transformation
becomes

bnet¼Unet Usqz apix¼ULOapix: ð5Þ
Consequently, every all-optical quantum graph possesses a
unitary matrix ULO that allows it to be related to the
frequency-pixel mode basis. As seen in Fig. 1, this
transformation can be implemented by a series of homodyne
measurements with the Local Oscillator (LO) in the appropriate
spectral shape.

The quantum resource. The multimode quantum resource is
formed from the parametric downconversion of an ultrafast pulse
train. A 76 MHz pulse train delivering B120 fs pulses centered
at 795 nm is frequency doubled, which serves to pump a w2

non-linear crystal in a low finesse cavity. This pump source is
composed of about B105 single frequencies, each of which can be
the potential source of B105 different pairs of down-converted
photons29. The resultant downconverted source can be
characterized by either directly assessing its entangled character
in the frequency domain or by extracting the eigenmodes of the
downconversion process18,28,30. Given the highly multimode
character of the downconverted comb, the limits of the quantum
resource are determined by the quality of the detection process31.

Detection is performed with pulse shaped homodyne detection
(Fig. 1). To reach a highly multimode regime, a high resolution
pulse shaper is used along with high quantum efficiency detectors
(see Methods). The resolution of the pulse shaper is B0.06 nm
per pixel in a 30 nm band centered at 795 nm. The LO field,
which originates from the same source laser, undergoes both
amplitude and phase spectral shaping with this device, and the
resulting shape defines the detection mode of the homodyne
setup32,33.

To characterize the initial quantum resource, the LO spectrum
is first divided into 16 frequency bands of equal bandwidth
(B0.8 nm). These bands correspond to the pixel modes of
equation (5). With the same general strategy as the one presented
in ref. 18 except for a direct computer acquisition of the noise
data (see Methods section), the accurate measurement of large
covariance matrices is accomplished in a short time period
(around 1 s). The resultant amplitude and phase covariance
matrices are shown in Fig. 2a,b. It is important to stress that, as
was demonstrated in previous publications18, our system does not
exhibit any measurable amplitude-phase correlation, as expected
from parametric down conversion from a constant phase pump
pulse. By applying a Bloch-Messiah decomposition to these
matrices25, 16 eigenvectors and eigenvalues are extracted, which
correspond to the orthogonal squeezed spectral modes and their
respective squeezing values (Fig. 2c). These modes comprise the
input basis of our all-optical quantum graph, which consists of 12
significantly squeezed modes with squeezing values ranging from

Quantum
frequency comb

Local oscillator

Prism Prism

Mirror

SLM

Projective
measurements, e.g. 
homodyne detection

Unitary transforms
by computer, 

Multimode squeezing, i.e.
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} On-demand quantum
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Figure 1 | Experimental setup for the all-optical quantum graph. The system is based on a quantum frequency comb30 and homodyne detection with a

customized local oscillator. The quantum frequency comb is a multimode squeezed state, in which each squeezed mode possesses a specific spectral

structure. Consequently, quantum correlations exist in the frequency-band basis18. On-demand all-optical quantum-graph correlations within the frequency

comb are revealed via projective measurements, which consists of homodyne detection in a suitable basis. The local oscillator (LO) is sculpted into the

appropriate pulse shape by a computer-programmed spatial light modulator (SLM). The subsequent measurement of the quantum state with this shaped

LO realizes the desired graph unitary transformation ULO. The top inset represents the spectral eigenmodes with corresponding squeezing ellipse in

phase-space representation. The grid graph in the right suggests that via measurement one can access on-demand multimode entanglement with specific

connectivities.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15645 ARTICLE

NATURE COMMUNICATIONS | 8:15645 | DOI: 10.1038/ncomms15645 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


� 0.3 to � 6.6 dB. To better assess the properties and quality of
our system, the squeezing values presented in Fig. 2b are
corrected for the homodyne detection visibility and detection
losses (15% in total, including the visibility). They correspond to
the available ressource independent from the measurement
system. Henceforth, only the dark noise contribution to the
data (very low in our case, from � 10 to � 15 dB depending on
the actual power impinging the detectors) is removed for the
graphs presented in the remainder of this work, and no correction
is applied for detection losses.

To summarize, the process of parametric downconversion
provides the link between the 16-mode operators in the
measurement basis apix¼ âpix

1 ; :::; âpix
16

� �
; and those in the

squeezed basis apsqz¼ âsqz
1 ; :::; âsqz

16

� �
. This link is the experimen-

tally measured unitary transformation Usqz, which acts as
apsqz¼Usqz apix. To reveal any all-optical quantum graph, the
local oscillator is shaped according to equation (5). The high
resolution of the pulse shaper allows for a fine reconstruction of
the graph, at the expense of detecting only one mode at a time. It
allows for accessing any of the modes or witness inequalities (see
next section) that characterize a given quantum graph, but with
the restriction that they cannot be revealed simultaneously.

Continuous variable cluster states. With an eye towards appli-
cations in measurement based quantum computing6,23,24, we first
reveal a series of different continuous variable (CV) cluster states.
CV Cluster states are multimode Gaussian states for which
specific quadrature combinations, called nullifiers, are defined by

d¼pC �V � xC; ð6Þ
and should satisfy the relation D2d-0 in the limit that input
squeezing tend to infinity23,24. In this formulation, xC and pC are,
respectively, the amplitude and phase quadratures of the cluster
nodes aC¼ xCþ i pC, and V is the adjacency matrix of the graph
and defines the connectivity of the cluster state. In this work we
exclusively consider weight þ 1 cluster states.

A unitary transformation UC may be used to represent each
cluster node as a complex superposition of the uncorrelated
squeezed states embedded within the comb output. The
individual nullifier relations as defined by equation (6) also
correspond to specific superpositions of the squeezers. Conse-
quently, a particular spectral mode may be associated with each of
these nullifiers. As an example, the pulse shapes that characterize
each node of a diagonal-square four-node cluster state are shown
in Fig. 3a. The optical mode corresponding to the third nullifier
d3 is constructed by shaping the LO into a form that corresponds

to the summation of the amplitude quadrature of cluster node
three with the phase quadratures of cluster nodes one and four
(as specified by equation (6)), that is, ânull

3 ¼âC
3 þ i âC

1 þ i âC
4 . This

shaped LO pulse form is projected onto the multimode entangled
state by homodyne detection, which allows for measuring the
nullifier variance of the associated cluster node. The nullifier
variances for the other modes are obtained in a similar fashion.
As seen in Fig. 3c, all of the nullifiers variances possess squeezing
values between � 2 and � 4 dB, which indicates the presence of
quantum correlations with CV cluster state structure.

Note that when a cluster state is generated by means of a linear
optics transformation Uc, if the input squeezing is finite then the
generated cluster departs from the target one. In particular, its
weights may become complex valued19. Yet, if the squeezing level
is high enough, the variances of the nullifier corresponding to the
target adjacency matrix V may still be below the shot noise for the
linear-optics generated cluster27. This is indeed what we assess
with our method. We test nullifiers corresponding to the real-
weighted adjacency matrix V and find that their variances lie
below the shot noise, despite having employed the linear-optics
construction method.

This scheme was also exploited to fabricate additional cluster
states with nodes that range in number from 4–12. In Fig. 3d, the
nullifiers corresponding to a number of 4- and 6-node cluster
graphs are represented along with the corresponding connectivity
structure. These variances are once again measured by a suitable
programming of the pulse shaper as prescribed by equation (6), in
which the adjacency matrix V for each cluster is given by the
geometrical figure above the corresponding nullifier. Additionally,
the scalability with respect to cluster dimensionality is analysed in
Fig. 2b (b), where linear and diagonally-connected square clusters
are constructed from a number of nodes that ranges from 4–12.
Both of these structures possess a set of nullifiers that lie below
the shot noise limit for all considered dimensionalities, which is a
signature of the presence of these various graph states.

Importantly, the unitary transformation UC leading to a given
cluster state is not unique. For the situation in which each of the
input squeezers possesses the same degree of squeezing, a basis
rotation on these modes before the UC transformation would not
change the obtained graph connectivity. However, in the case of
disparate input squeezing levels, the measured nullifier variances
depend on the specific choice of the unitarity transformation. The
present work optimizes the choice of the matrix UC among all of
the possible basis rotations that yield a given cluster state with a
specific graph structure34. This is accomplished with an offline
optimization that minimizes the mean of the cluster nullifier
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Figure 2 | Multimode quantum resource. (a,b) 16-partite covariance matrix in the frequency-pixel basis in phase and amplitude quadrature, rexpectively.

This correlation matrix is obtained with balanced homodyne detection where the spectrum of the local oscillator is divided into 16 frequency bands of

equivalent width. The shot noise contribution has been subtracted from the diagonal for increased visibility, and axis values are normalized to vacuum

noise. (c) Inferred squeezing of the eigenmodes (corrected/not corrected from measurement losses). The ellipses (blue) represent the squeezing of the

twelve leading modes. The circles (red) represent vacuum fluctuations for comparison. Twelve of the sixteen modes are squeezed. The measurement

results in panels a–c have been corrected for electrical dark noise and a 15% optical loss in the measurement processes.
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variances for a specific structure given the experimental input
squeezers of Fig. 2. As a result, the mean of the nullifier variances
is approximately equal across the examined cluster series as seen
in Fig. 3d,e, which indicates that the finite resources available
have been optimally allocated (see also the Method section).
Together with inseparability criteria assessed below, the nullifiers
values are a witness for successful cluster generation. Among the
variations that persist following optimization, it is observed that
cluster states with a higher connectivity exhibit a lower mean
nullifier variance for a fixed number of modes35.

For genuine demonstration of cluster states, it is usually
understood that beyond the nullifiers, one has to assess the
inseparability of the multimode state. Generally speaking, our
state has been proven to be fully entangled in ref. 36. However, it
is interesting to assess inseparability for the actual nodes of a
given cluster. To do so, because in our system it is possible to
obtain the full covariance matrix, we have been using the PPT
(positive partial transpose) criteria37. For any partition of any of
the clusters demonstrated in this article, we find inseparability.
More specifically, as an example we focus here on the six mode
graph with the structure shown in Fig. 4 as it will be
the one relevant for secret sharing. We find that for any
bipartition, the smallest eigenvalue of the partially transpose
matrix is comprised between � 0.20 and � 0.5 (in shot noise
units), with a mean of about � 0.40. The most inseparable
partition being the one between nodes {1, 2, 3, 4} and nodes {5, 6},

while the least entangled is the partition between modes {1, 4, 5}
and modes {2, 3, 6}.

Quantum secret sharing simulations. Quantum secret sharing
consists of sharing information (either quantum or classical)
between several players through the use of entangled quantum
states. The information is first transferred to a multipartite
entangled state. Each player is then given a piece of the total
entangled state, and the original information can only be
retrieved through a collaboration of subsets of the players. The
quantum correlations increase both the protocol security as well
as its retrieval fidelity as compared to what is attainable with only
classical resources38–40.

Here we demonstrate a five-partite secret sharing protocol,
which uses a six mode all-optical quantum graph with the
structure shown in Fig. 4. This choice of cluster was proposed in
ref. 41. Nodes on the edge of the pentagon (labelled 1–5)
represent the players, and the central node (6) encodes the secret
before its coupling to the conglomerate state. Hence, this central
information carrying node is termed the dealer.

In the present case, the nodes corresponding to the players and
the dealer are associated with the annihilation operators ânet

i ,
which, in turn, are constructed as a combination of the leading six
squeezed eigenmodes of the comb. This transformation is
obtained with the same matrix Use that is employed to build
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corresponding to the optical nodes indicated in the corner of each image, and the final spectrogram represents the nullifier d3 for node 3 as defined by

equation (6), which is formed as the spectral superposition ânull
3 ¼â3þ i â1þ i â4. (c): To measure the nullifier variances associated with the correspondingly

generated cluster state, the pulse shaper sculpts the LO in the spectral form associated with each of the four nullifiers, and the resulting four variance

curves as a function of the global LO phase are shown. Each of the four nullifiers exhibits noise statistics below the shot noise limit (black lines).

(d,e) Versatility and scalability. Nullifier squeezing values of various cluster states possessing between 4 and 12 nodes are presented as box plots. The

black points are the individual nullifier variances, the pink rectangles depict the first and third quartiles of the data, the black line contained in the rectangle

is the nullifier mean, and the black whiskers indicate the upper and lower extrema of the nullifier collection. The red dashed lines in (d,e) represent the shot

noise limit. All of the nullifier variances are below the shot noise limit, which is a signature of the presence of the targeted cluster states. In (e), the

variances of the n-mode linear (left, blue) and diagonal square (right, pink) cluster states are compared. The noise variances in (d,e) are only corrected for

electrical dark noise.
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the rightmost cluster state in Fig. 3d. The total transformation is
written as:

anet¼

ânet
1

ânet
2

ânet
3

ânet
4

ânet
5

ânet
6; dealer

0
BBBBBB@

1
CCCCCCA
¼Use �

âsqz
1

âsqz
2

âsqz
3

âsqz
4

âsqz
5

âsqz
s

0
BBBBBB@

1
CCCCCCA
; ð7Þ

where the operators asqz
i are the annihilation operators for the

leading five squeezed eigenmodes of the quantum resource, as
defined in previous sections. The sixth squeezed mode comprises
the secret state, that is, âs¼asqz

6 .
Given this configuration, at least three players must collaborate

to reconstruct the secret (see Methods section for details). Any set
of three players constitutes what is termed an access party. As an
example, we consider the access party of players one, two and
three. To access and therefore reconstruct the x̂s or p̂s field
quadrature of the secret state, the three players within this access
party must each measure a specific quadrature of their local fields
ânet

i , and combine their independently obtained results with the
dealer’s p quadrature measurement in the following access party
operators:

x̂123¼
X3

i¼1

mix̂
net
i þ

X3

j¼1

nip̂
net
i þCp̂dealer

p̂123¼
X3

i¼1

pix̂
net
i þ

X3

j¼1

qip̂
net
i þDp̂dealer;

ð8Þ

where the coefficients mi, ni, pi, qi, C and D are real. The value of
these coefficients, and thus the specific linear combination
between the measurements, is dictated by the condition that the
final result must contain only field quadratures of the secret as
well as squeezed quadratures of the input resource. Importantly,
any linear combination that results in the measurement of an
anti-squeezed quadrature of the input resource must be avoided.
These conditions ensure that in the limit of infinite squeezing, the
statistics of the measurement precisely reflect those of the secret
state. After rewriting the access party quadrature measurements
under these conditions, one finds the following form for the
access party operators:

x̂123¼ x̂sþ
X5

i¼1

asqz
i p̂sqz

i

p̂123¼ p̂sþ
X5

i¼1

bsqz
i p̂sqz

i :

ð9Þ

Thus, the combined measurements of the access party and the
dealer yield an estimation of the secret, whose retrieval fidelity
directly depends on the degree of input squeezing and the choice
of the Use matrix. More precisely, if the unitary Use is completely
general (i.e., not associated with the pentagonal cluster examined
in the present case), it is not guaranteed that the access party
quadrature combinations can be written in a form consisting of
only squeezing quadratures of the resource state as in
equation (9). For the situation in which such a form is indeed
possible, the corresponding graph may be utilized for secret
sharing as in the present case. It also then becomes possible to
demonstrate that no solution exists for groups of only two
players, which implies that two players alone can not recover
the secret by virtue of the fact that the contribution of the
anti-squeezing quadratures can not be fully removed, which
corrupts their individual measurements even in the limit of
infinite squeezing (see Methods for details).

In a genuine secret sharing scenario, p̂dealer is measured first,
and the result is broadcast to the players via a classical channel,
thus implementing the encoding of the secret state onto the
players graph. In our case, the quadratures of the secret are
reconstructed by shaping the LO to coincide with the linear
combination of resource modes described in equation (8). To
assess the quality of the secret sharing simulation, we measured
the residual noise associated with x̂123 and p̂123 (see Methods for
details). These noise variances are measured for two different
multimode squeezing resources. For the first case, the quantum
source is operated in a configuration that contains � 6.6 dB
(corrected for losses) of squeezing in the leading mode (this
corresponds to the squeezers seen in Fig. 2b). In the second case,
the overall squeezing is decreased by appropriately adjusting the
pump power driving the parametric process, such that the leading
squeezer exhibits a noise reduction of � 4.5 dB (corrected for
losses) relative to the vacuum level. The distribution of noise
variances for the squeezers is the same in both situations and
follows the trend observed in Fig. 2b. The retrieval fidelities for all
10 possible access party combinations are determined by
measuring the noise variances prescribed by equation (8) and
are displayed in Fig. 4. For purposes of comparison, the same
access party noise variances are also measured in the absence of
squeezing (that is, the resource state is a vacuum state), which are
also shown in Fig. 4. As expected, the mean value for these
retrieval fidelities is B0.60, which corresponds to the classical
limit42,43 (more details in the Methods section). With quantum
resources, however, we observe fidelities higher than the classical
limit, which increase with better squeezing.

The accuracy with which the pulse shaper sculpts the field
combinations dictated by equation (8) is also assessed by directly
calculating the expected fidelities based on the known input
squeezing levels with the help of equation (9). These calculated
fidelities are displayed as the black curves in Fig. 4 for each of the
two utilized multimode resources. The agreement between these
calculated fidelities and the experimentally-measured ones is
generally good. The origin of deviations between the two curves
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Figure 4 | Experimental fidelities for the simulation of quantum secret

sharing. The graph state that is used in the secret sharing protocol is shown

as an inset in the upper right portion of the figure. Nodes 1–5 constitute the

players and node 6 is the dealer. The horizontal axis of the plot shows all 10

of the possible combinations for a three member access party. The red and

blue dashed lines are the measured fidelities of the reconstructed secret

given a �6.6 and �4.5 dB squeezing resource, respectively. The black

dashed-point curves are inferred from the individual squeezing of the

eigenmodes through the use of equation (9). The green dashed curve

corresponds to the fidelity with ordinary vacuum replacing the squeezed

resource. All of these fidelities are directly measured and only contain a

correction for the electrical dark noise. The error bar in the all curves

represents uncertainty in fidelity reconstruction, calculated with the same

methodology as cluster nullifiers uncertainty.
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arises from the fact that spectrally dependent losses encountered
in the production and detection of the multimode state do not
allow the amplitude and phase quadratures of the covariance
matrix to be simultaneously diagonalized18. As a result, the
spectral form of the eigenmodes for the two quadratures is
slightly different, and this corrupts the perfect cancellation of the
anti-squeezing contribution in equation (4). This effect is more
present with a higher level of squeezing, as the influence of losses
becomes more significant. In principle, these deviations may be
reduced by minimizing spectrally dependent losses in the
generation and detection of the quantum source. Nonetheless,
the general agreement between the experimentally measured and
calculated variances confirms the utility of the apparatus at
simulating arbitrary mode constructions. Despite the fact that the
input secret can not be varied, as is usual in demonstrations of
quantum secret sharing, this study allows for implementing secret
sharing protocols consisting of a large number of modes while
also exploring the influence of parameters such as loss and
squeezing values.

Discussion
In summary, we have experimentally implemented a versatile and
scalable detection scheme that allows for on-demand simulation
of realisation of all-optical quantum graphs. This approach
permits a direct interrogation of all of the relevant information
that characterizes a multimode Gaussian state in a user-defined
basis. Examples of such a synthesis include cluster state
generation as well as a multipartite quantum secret sharing
protocol that is built on a six-node cluster graph.

Importantly, the creation of these cluster graph states with
our system does not necessitate any change in the optical
architecture. Rather, the connectivity of the structure is varied by
simply modifying the basis in which the state is detected. Given
that an arbitrary, multimode Gaussian transformation of a set
of squeezers can be achieved with a unitary matrix, a set
of identifiable pulse shapes may be associated with the
transformation output. In this manner, it is possible to directly
probe any Gaussian entanglement criteria. The fact that each of
these structures is revealed by only adjusting the measurement
basis indicates that these graphs are all implicitly embedded
within the multimode entangled resource. Furthermore, this
approach allows for the implementation of any quadratic
hamiltonian, modulo the available ressources which are the
squeezing eigenvalues. In that sense, our system consists in a first
step towards a quantum simulator as it allows for probing any
multimode system with quadratic evolution.

On the other hand, the current implementation is not yet
compatible with measurement based quantum computing, as only
one mode can be measured at a time. However, multimode
homodyne detection can be directly implemented, transferring
what has been achieved in the spatial domain15 to the frequency
domain. In conjunction with post processing this has been
demonstrated to be a versatile universal Gaussian MBQC
system16,34. Finally, any quantum computing application
demonstrating quantum supremacy requires going beyond the
gaussian statistics, which can be efficiently simulated with a
classical computer. In our system, non-gaussian operation can be
readily implemented using the so called Quantum Pulse Gate44

which allows for mode-dependent photon subtraction45. This
would turn our system into a unique highly versatile multimode
non-gaussian source compatible with MBQC applications.

Methods
Quadrature operator definition. The amplitude and phase quadrature operators

are defined, respectively, by X̂¼âþ âw; P̂¼iðâw � âÞ. Thus, the variances of the

amplitude and phase quadrature operators for a vacuum state are equal to one in
our work.

Detection and data acquisition. Light detection is achieved with balanced
homodyne detection, which is performed with selected silicon photodiodes
that exhibit B99% quantum efficiency and a bandwidth of B100 MHz. The
homodyne fringe visibility is B93–95%, and the total loss for the detection of
squeezing is B15%. The photocurrent difference is amplified with a commercial
amplifier (model Mini-Circuits ZFL-500LN) and then demodulated at 1 MHz.
Each squeezing curve is measured following B1 s of data acquisition. Hence, an
n-dimensional covariance matrix is fully measured in n � (nþ 1)/2 s or B2 min for
the 16-dimensional matrix shown in the present work.

Optimization of unitary cluster matrix. For cluster states, one can demonstrate
that if Unet in equation (4) is a unitary matrix that leads to a cluster defined by
its adjacency matrix13, then the application of an arbitrary orthogonal matrix O to
the unitary matrix (that is, UnetO) also leads to the same graph cluster state34.
Due to the non-uniform squeezing distribution of our multimode quantum
resource (as seen in Fig. 2), the measured nullifier variances are dependent on the
specific choice of the unitary transformation. To equally distribute the finite
squeezing resources amongst the targeted cluster, an evolutionary algorithm is
utilized to search for the matrix O that minimizes the mean nullifier variance based
on the measured covariance matrix.

Quantum secret sharing protocol. For the secret sharing protocol presented in
Fig. 4, the corresponding six-node cluster matrix Use used in equation (7) has real
part Xse

0:6234 0:0078 � 0:1375 � 0:1375 0:0078 � 0:0591
0:0078 :6234 0:0078 � 0:1375 � 0:1375 � 0:0591
� 0:1375 :0078 0:6234 0:0078 � 0:1375 � 0:0591
� 0:1375 � :1375 0:0078 0:6233 0:0078 � 0:0591
0:0078 � :1375 � 0:1375 0:0078 0:6234 � 0:0591
� 0:0591 � :0591 � 0:0591 � 0:0591 � 0:0591 0:4822

0
BBBBBBBB@

1
CCCCCCCCA
;

and the corresponding imaginary part, Yse, is

� 0:0434 0:4268 � 0:1887 � 0:1887 0:4268 0:3641
0:4268 � 0:0434 0:4268 � 0:1887 � 0:1887 0:3641
� 0:1887 0:4268 � 0:04342 0:4268 � 0:1887 0:3641
� 0:1887 � 0:1887 0:4268 � 0:0434 0:4268 0:3641
0:4268 � 0:1887 � 0:1887 0:4268 � 0:04342 0:3641
0:3641 0:3641 0:3641 0:3641 0:3641 � 0:2954

0
BBBBBBBB@

1
CCCCCCCCA
:

Its action on the quadrature operator is represented by the symplectic matrix

Sse¼
Xse �Yse

Yse Xse

� �
: ð10Þ

The graph quadrature operators are then obtained as

x̂net
i ¼

X6

j¼1

Xse;ij x̂
sqz
j �Yse;ijp̂

sqz
j

� �
ð11Þ

p̂net
i ¼

X6

j¼1

Yse;ij x̂
sqz
j þXse;ij p̂

sqz
j

� �
; ð12Þ

which are actually a set of twelve equations expressing the local quadratures given
to the players (i¼ 1, ..., 5) and the dealer (i¼ 6). The secret is encoded in the sixth
squeezed mode. To explain how the secret quadratures are measured by an access
party, let us concentrate on a specific one, namely the one composed by players
one, two and three as in the main text. Players are allowed to measure either the
local position or momentum quadrature, or a rotated version of the two. They may
then collaborate, linearly combining their outcomes. Moreover, the dealer measures
p̂dealer and broadcasts the result to all the players. In practice, our experiment
measured the local quadratures of each access party and the dealer’s momentum
quadrature at the same time by a suitable shaping of the local oscillator;
nonetheless, we will detail the procedure to retrieve the secret quadrature in the
scenario outlined above. Importantly, the result does not change.

Let us consider the access party of players one, two and three. Assume that the
dealer measures p̂dealer ¼ p̂net

6 getting the result m. As a consequence, the last terms
of equations (11) and (12) dictate a relation between the initially squeezed
quadratures and the secret quadratures. We can use this new relation to rewrite
one of the anti-squeezed quadratures, say x̂sqz

1 in terms of m, the five remaining
anti-squeezed quadratures x̂sqz

i , and all six of the squeezed quadratures p̂sqz
i . The

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15645 ARTICLE

NATURE COMMUNICATIONS | 8:15645 | DOI: 10.1038/ncomms15645 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


first three components of both equations (11) and (12) are rewrritten as (i¼ 1, 2, 3)

x̂net
i ¼

X6

j¼2

X0se;ij x̂
sqz
j �

X6

j¼1

Y 0se;ij p̂
sqz
j þAm ð13Þ

p̂net
i ¼

X6

j¼2

Y 00se;ij x̂
sqz
j E

X6

j¼1

X00se;ij p̂
sqz
j þBm; ð14Þ

where A and B are real numbers. To reconstruct one of the secret quadratures, say
x̂s¼x̂sqz

6 , the players need to consider linear combinations of the local operators x̂net
i

and p̂net
i of the form

x̂123¼
X3

i¼1

mix̂
net
i þ

X3

i¼1

nip̂
net
i

¼
X6

j¼2

X3

i¼1

miX
0
se;ij þ niY

00
se;ij

� �
x̂sqz

j

þ
X6

j¼1

X3

i¼1

niX
00
se;ij �miY

0
se;ij

� �
p̂sqz

j þCm:

ð15Þ

C is a real number which depends on the coefficients mi and ni. The goal of the
players is to find coefficients mi and ni such that

P3
i¼1

miX0se;ij þ niY 00se;ij

� �
¼0 for j¼2; 3; 4; 5

P3
i¼1

miX0se;ij þ niY 00se;ij

� �
¼1 for j¼6

P3
i¼1

niX00se;ij �miY 0se;ij

� �
¼0 for j¼6:

8>>>>>>><
>>>>>>>:

ð16Þ

As such, x̂123 will not contain the anti-squeezed quadratures, and the coefficient of
the secret momentum quadrature x̂s is one. If a solution of the linear system (16)
exists, the access party has access to the measurement of

x̂123¼x̂sþ
X5

i¼1

aip̂
sqz
i þCm ð17Þ

where the ai’s are fixed by the solution of (16). The real number Cm is known since
m is broadcasted by the dealer. Thus, with classical post-processing, the access party
can measure

x̂123¼x̂s þ
X5

i¼1

aip̂
sqz
i : ð18Þ

A similar reasoning allows the access party to measure p̂123 as in the main text. We
checked numerically that a solution exists for both x̂ijk and p̂ijk for every possible
access party. Also, we verified that no solution exists when any pair of players is
considered. Consequently, no less than three players can avoid the anti-squeezed
quadratures, which spoils a retrieval of the secret quadrature.

To assess the quality of a secret sharing protocol carried out with our resource,
we compute the fidelity between a general input coherent state and the state
reconstructed from many measurements of the secret quadratures. We make use of

the following formula for the fidelity between two Gaussian states46

F¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
AþB
p

�
ffiffiffi
B
p exp � aT VsþVreSð Þ� 1a

	 

; ð19Þ

where Vs and VreS are the covariance matrices of the input secret and reconstructed
secret, respectively; A¼ det(VsþVreS), B¼ (detVs� 1)(detVreS� 1); and a is the
difference of the mean amplitudes of the two Gaussian states. When the secret is
squeezed vacuum, or when the mean field can be retrieved exactly, a¼ 0, which
permits the fidelity to be recast as

F¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
AþB
p

�
ffiffiffi
B
p : ð20Þ

The covariance matrix of the reconstructed secret state and of the initial secret are

VReS¼
D2 x̂jkl
� �

0
0 D2 p̂jkl

� �
� �

ð21Þ

and

Vs¼ D2 x̂sð Þ 0
0 D2 p̂sð Þ

� �
; ð22Þ

respectively, where VreS is measured according to equation (9) and (jkl) is any
access party. From equation (9), since the modes are independently squeezed at the
beginning, the variances of the reconstructed quadratures are computed as

D2x̂jkl¼D2x̂sþ
X5

i¼1

ajkl
i

� �2
D2p̂sqz

i

D2p̂jkl¼D2p̂sþ
X5

i¼1

bjkl
i

� �2
D2p̂sqz

i :

ð23Þ

Figure 5 is obtained from equation (23) under the assumption that the secret is a
coherent state and the squeezing ratio between the modes underlying the graph is
fixed and follows the distribution seen in Fig. 2. The overall squeezing is thus
adjusted with a common scaling factor. If no squeezing is present in the resource,
the best retrieval fidelity among the access parties approaches 2/3, which is
consistent with the teleportation limit achievable with classical resources42.
Likewise, the average fidelity approaches 3/5, consistent with the k/n classical limit
for threshold schemes of quantum secret sharing43. Both the maximum and the
average fidelity, as well as the minimum fidelity across the access parties, approach
a value of unity as the overall squeezing level increases.

To obtain the black dot-dashed curves in Fig. 4, we drew Gaussian-distributed
random values with s.d.’s matching those of the experimentally measured
quadrature squeezing values. Using these random numbers, numerical fidelities are
obtained by simulating the secret sharing process with the use of equation (20).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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