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Abstract: Alternative splicing (AS) is a crucial process to enhance gene expression driving organism
development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein
isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and
deletions) involving consensus splicing regulatory sequences in a specific gene may result in the
production of aberrant and not properly working proteins. In this review, we introduce the key steps
of splicing mechanism and describe all different types of genomic variants affecting this process
(splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep
intronic changes). Then, we provide an updated approach to improve splice variants detection. First,
we review the main computational tools, including the recent Machine Learning-based algorithms,
for the prediction of splice site variants, in order to characterize how a genomic variant interferes
with splicing process. Next, we report the experimental methods to validate the predictive analyses
are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins
(proteomics experiments). For both prediction and validation steps, benefits and weaknesses of
each tool/procedure are accurately reported, as well as suggestions on which approaches are more
suitable in diagnostic rather than in clinical research.

Keywords: alternative splicing; splicing sites; splice variant; prediction tools; machine learning;
experimental validation; variant classification

1. Introduction

How many protein coding genes have been described in humans? The answer is
approximately 25,000–30,000. This exorbitant number is nothing when compared with
the almost 90,000 different proteins that form human proteome. This phenomenon can
be possible thanks to mechanisms of alternative splicing (AS), a process that was first
proposed by Gilbert in 1978 [1]. AS is crucial to enhance gene expression, to drive cel-
lular differentiation and organism development. More than 95% of human genes have
been found to undergo alternative splicing in a developmental, tissue-specific or signal
transduction-dependent way [2]. During AS, exons, or portions of exons or noncoding
regions within a pre-messenger RNA (pre-mRNA) transcript, are differentially fixed or
skipped, resulting in multiple protein isoforms [3]. Regulation of alternative splicing is
complex with several elements interacting in a coordinated manner including cis-acting
and trans-acting factors, spliceosome components as well as chromatin or RNA struc-
ture together with the presence of alternative transcription initiation (ATI) or alternative
transcription termination (ATT) sites [3].

In addition, the presence of genomic variants, involving consensus splicing regulatory
sequences in different parts of a gene, may modify the splicing process, alter the mRNA
and eventually affect the corresponding protein-coding sequence [4].

The estimate of variant impact on RNA processing is not always simple, and can lead
to improper variant classification. The aim of this review is to provide an updated approach
to this challenge. In the first part, we describe the key element involved in pre-mRNA
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maturation and the potential consequences of genomic variant on the splicing process.
Then, we review the main computational tools that allow identifying and characterizing
genomic variants that may alter the splicing process. Particular attention is paid to the
Machine Learning (ML) approach. We discuss the main strengths and weaknesses of the
different approaches, to enable the researchers to estimate and choose the right tool/s
for their purposes. In the second part, the experimental methods to validate the in silico
predicted splicing variants are described, suggesting which approaches are more suitable
in diagnostic rather than in clinical research.

2. Constitutive Splicing vs. Alternative Splicing

Whatever the mechanism, the final goal of splicing is to remove introns from a protein-
coding RNA to generate a mature mRNA to produce a functional protein. Constitutive
splicing follows the order in which exons are in the gene, whereas AS represents a variation
from this preferred sequence where some exons are skipped, producing a variety of
mature mRNA and thus different proteins. At least five strategies (Figure 1) of AS have
been described.
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Figure 1. Constitutive splicing and the five main types of alternative splicing. Cassette alternative
exon and the alternative 3’ or 5’ splice site are the most common in humans (30% and 25%, respec-
tively), while intron retention is typical of metazoans and less present in humans (10%). Arrows
indicate the resulted sequence after intron/exon removal.

In the “mutually exclusive exons”, one out of two exons (or one group out of two exon
groups) is maintained, while the other one is spliced out [5]. In the “cassette alternative
exon”, which represents the most common mechanism in vertebrates (30% in humans) and
invertebrates, an exon may be spliced out of the primary transcript or retained [3]. The
“alternative 3’ or 5’ splice site” (25% of AS in humans) can produce two splice transcripts:
one contains the extension and the other excludes it. These transcripts can be formed in
different ratios, one can be more abundant compared with the other. If an alternative 3’
splice acceptor site is used, we observed a change of the 5’ boundary of the downstream
exon. When an alternative 5’ splice site is used, the 3’ boundary of the upstream exon is
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changed [6]. Finally, in “intron retention”, which is the preferred mechanism by lower
metazoans and represents 10% of AS in humans [7], an intron sequence may be spliced
out or retained. The retained sequence is not flanked by introns. In humans, all these
steps of intron excision and exons ligation, are carried out by the spliceosome complex, a
large ribonucleoprotein machinery in which more than 300 proteins assemble in sequence
with the uridine-rich small nuclear RNA molecules (U snRNAs) to form individual small
nuclear ribonucleoprotein complexes (snRNPs). In human nuclei, the majority of splicing
reactions are carried out by U1, U2, U3 snRNPs, and U4/U6.U5 tris-snRNP [8] (Figure 2a).
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Figure 2. (a) U1 binds to exon 1 and U2 binds to exon 2 in order to define 5’ ends of the intron before
removal. Addition of tri-snRNP U4/U6.U5 determines the full spliceosome assembly in humans.
(b) Role of cis- and trans-regulatory sequences during alternative splicing. Cis-regulatory elements
are located in the alternatively spliced exon or in its flanking introns. Cis-factors positively modulate
intronic/exonic splicing enhancers (ISE/ESE) and negatively regulate intronic/exonic splice silencer
(ISS/ESS). Cis-sequences are bound by trans-factors such as serine/arginine (SR) proteins or the
heterogeneous nuclear ribonucleoprotein (hnRNP).

Pre-mRNA is recognized by splicing machinery at conserved RNA elements: the 5’
splice site at the exon-intron border (donor site), the 3’ splice site at the intron–exon border
(acceptor site), and the branch point, which is followed by a polypyrimidine track [9,10]
and placed approximately 18–40 nucleotides upstream of the acceptor site [11] (Table 1).
In order, donor site is recognized by U1 snRNP [12], then the U2 auxiliary factor binds to
the polypyrimidine and the acceptor site [10] generating a complex called “E complex”.
Next, U2 snRNP binds the branchpoint, resulting in the A complex [13]. Binding of the
U4/U6.U5 tri-snRNP leads to the B complex [14], which is first activated [15].

Table 1. Conserved RNA elements recognized by the splicing machinery.

Splice Sites Nucleotides

5’ splice site CAG/GUAAGU
Branch point sequence YUNAY
Polypyrimidine tract Yn

3’ splice site NYAG/G
Y = C/U; N = any nucleotide; “n” = number of pyrimidine constituting the polypyrimidine tract.
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What influences the final decision of which exons will end up in the mature mRNA?
Usually shorter exon length, weaker splicing signals at different splice site or higher
sequence conservation adjacent orthologues alternative exons are the main factors partic-
ipating in the choice [16]. Additionally, a pivotal role in deciding exons in final mRNA
is played by cis-acting elements and trans-acting factors. Cis-acting elements are short
nucleotide motifs and include exonic or intronic splicing enhancer and associate with the
trans-acting factor serine/arginine-rich (SR) proteins. Enhancer elements play a leading
role in constitutive splicing. Similarly, also belonging to the cis-acting proteins are exonic
or intronic splicing silencer which are bound by heterogeneous nuclear ribonucleoproteins
(hnRNPs) negative trans-acting factors and mainly participate to alternative splicing [3]
(Figure 2b). In addition to cis-regulatory sequences and their cognate trans-acting factors,
alternative splicing is controlled by its coupling to RNA polymerase II (RNAPII) tran-
scription [17]. This coupling requires the C-terminal domain (CTD) of the RNAPII largest
subunit. CTD phosphorylation affects the transcriptional properties of RNAPII and the
outcome of co-transcriptional AS by mediating the consequences of splicing factors and
by modulating transcription elongation rates [17]. CTD takes part in gene expression-
related functions from 5’ capping, splicing, polyadenylation, and chromatin remodelling,
becoming a key factor in governing the interactions between transcription and splicing. To
complicate the picture even more, is the existence of alternative transcription initiation (ATI)
and alternative transcription termination sites (ATT) present in the 5’ UTRs and 3’ UTRs,
respectively [18], which contribute to generate transcriptome diversity. It is evident that
incidence and functional implication of different types of alternative events varies between
functional domains of transcripts. As a result, AS is common in the 5’ UTRs and coding
sequences but is rare in the 3’ UTRs given the modest intron density in this region [18].
Finally, the presence of a premature termination codon (PTC) can cause changes in the
splicing pattern of a pre-mRNA. Exon skipping is common under the selective pressure of a
PTC, when normally introduction of a PTC into the open reading frame of a protein-coding
gene will represent a protective mechanism, leading to nonsense-mediated mRNA decay
able to avoid the translation of functionally defective proteins [19].

In addition, both alternative and constitutive splicing are affected by chromatin
structure, which works either by modulating the RNAPII elongation rate or by promoting
the recruitment of splicing factors [20]. The resultant mature mRNA is, thus, a reflection of
DNA modifications such as DNA methylation or histone modifications.

3. Genomic Variants Affecting Splicing Process

Considering the complexity of splicing and its role in the correct protein synthesis, any
alteration of this process may cause modifications of specific mRNAs and proteins, and thus
lead to aberrant cellular functions [21]. The presence of genomic variants, e.g., nucleotide
substitutions, insertions and deletions, involving consensus splicing regulatory sequences
in a specific gene, may modify the splicing process, cause partial or complete intron gain
or exon loss from the mature mRNA and ultimately alter mRNA and corresponding
protein-coding sequence [4].

Even though splicing variants may disrupt cis-acting splicing elements or involve
trans-acting factor, usually the term “splicing variant” is used to refer to a mutation in the
cis consensus sequences. These variants may be present in both exons and introns and
lead to disruption of existing splice sites, creation of new ones, or activation of cryptic
sites. They can also affect splicing enhancers and silencers or modify the mRNA secondary
structure, impairing the binding of the spliceosome elements.

The typical consequence of these variants is exon or exon fragment skipping during
the splicing process. When the result is an in-frame deletion, a shortened protein will be
produced. Though the deletion causes the shift of the open reading frame, a premature stop
codon may be created and a shorter protein may be synthesized. On the other hand, the
presence of the PTC in the transcript may also result in a faster mRNA degradation. The
degradation of the defective messenger RNA, which occurs through a protective process
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called nonsense mediated decay (NMD), prevents aberrant protein synthesis and results in
the same effect as gene deletion or nonsense mutation [22].

3.1. DNA Variants in Canonical Splicing Sites

The “classical” definition of splicing variant refers to DNA variants affecting canonical
splicing sites: splicing acceptor and donor sites, branch point adenosine, and polypyrimi-
dine tract. Variants involving any of those sequences may alter pre-mRNA splicing, leading
to exon skipping/shortening, or partial/full intron retention in the mRNA [23–25].

3.1.1. Variants in Splicing Acceptor and Donor Sites

Variants in splicing acceptor and donor sites involve highly conserved sequences
defining exon-intron boundaries and therefore may modify the interaction between pre-
mRNA and splicesome complex. The most classical variants involve the +1 and +2 residues
at the 5’ donor splice site and −1 and −2 residues at the 3’ acceptor splice site. These
variants may cause a single exon skipping (the most frequent consequence), or lead to
the occurrence of an alternative splicing site, when the presence of the variants exposes a
cryptic splice site in a neighboring exon or intron. As a consequence, an intron fragment
can be included or an exon fragment can be removed, depending on the position of the
cryptic splice site in intron or exon, respectively [26,27].

When searching for canonical splice variants for diagnostic or research purposes, exon
DNA and short neighboring intron sequences are commonly the templates for Sanger se-
quencing or next-generation sequencing (NGS), thus these variants are easily identified [28].

3.1.2. Variants Affecting Branch Point and Polypyrimidine Tract

The branch point motif is located between −9 and −400 bp downstream from the
acceptor site and in humans is characterized by the consensus sequence YUNAY. Since the
sequences of the branch point are highly degenerated, their exact localization may be hard
to identify; however, these sequences are crucial for the spliceosome complex formation.
Variants in the branch point motif might cause an exon skipping, as a consequence of
improper binding of snRNP splicing proteins and disruption of the acceptor splicing site,
or lead to intron partial/total intron retention, if they create a new 3’ splice site [29].

The polypyrimidine tract is localized until 40 bp from the acceptor splice site, upstream
of the branch point motif. This sequence is recognized by polypyrimidine tract-binding
proteins belonging to spliceosome complex, which are involved in alternative splicing
regulation. Variants in this sequence probably result in splicing alterations, even though
only few of these variants have been identified so far [30].

In general, variants at the branch point and polypyrimidine tract are very rare. A
possible explanation is that they are difficult to identify, since their consensus sequences
are degenerated and their exact localization is hard to predict. In addition, they are not
usually considered when the genomic DNA is analyzed for diagnostic purposes, and the
interest is mainly focused on coding sequences.

3.2. Exonic Variants Affecting Splicing

In addition to canonical splice variants, also mutations in the exonic sequences may
strongly affect splicing process. These exonic variants may exert a dual effect. Indeed,
they can lead to modifications of pre-mRNA processing and the loss of an exon fragment,
introducing a new 5’ or 3’ splice site or activating a cryptic site, which could be stronger
than the original one. On the other hand, the exonic variant may disrupt an exonic splicing
enhancer (ESE) causing the whole exon skipping [31].

As a result of the habit to evaluate the missense variants focusing on the amino acid
and not on the nucleotide variant itself, the exonic mutation causing splicing alterations
are often misclassified as synonymous, missense, or nonsense variants. Thus, it is possible
that their effect on gene expression, including pre-mRNA processing, may be overlooked.
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However, as discussed below, this possibility should not be neglected, since several reports
have disclosed the effects of missense DNA variants on mRNA, as reviewed in [28].

3.3. Deep Intronic Variants

Deep intronic variants are localized within large introns, far from exon boundaries.
Such variants may generate novel acceptor or donor sites, which are bound by the spliceo-
some complex and used in combination with the existing intronic cryptic splice sites. They
may also create novel regulatory elements and lead to the recognition of the specific intronic
sequences as exonic sequences (detailed review in [32]). As a result, such variants may lead
to the inclusion of an intron fragment, called pseudo-exon, into the mature transcript. The
inclusion of a pseudo-exon in the mRNA generally modify the reading frame introducing
a premature stop codon [33].

Deep intronic mutations are not common, and difficult to identify since are located
in regions not usually analyzed in routine procedures. However, it has been becoming
increasingly evident that deep intron regions play an important role in different physio-
logical and pathological mechanisms related to mRNA processing [34,35]. Since the effect
of intronic variants on transcript splicing and protein synthesis may be significant, the
analysis for their presence should be considered when the standard screening of coding
regions and exon/intron boundaries is not conclusive.

4. Identification of Splice Variants in NGS Era

An accurate classification of genomic variants is the cornerstone of genomic and
precision medicine. Only identifying the causative variant of inherited disorders and
evaluating its actual consequences on proteins and cells is possible to offer a helpful
genetic counseling and improve patients’ clinical management. The recent advent of next
generation sequencing (NGS) technologies has allowed obtaining an accurate identification
of the variants present in an individual’s genome, revolutionizing the times and ways to
achieve genomic data. Gene panels, exome and genome sequencing consent to identify the
majority of coding variants for several disorders [36]. However, despite these huge technical
improvements, the biological and clinical interpretation of a large part of identified variants
remains challenging [37]. This difficulty is particularly evident in the identification of
splice variants.

It has been estimated that up to 15% of all point variants causing human genetic disor-
ders involve splice site consensus sequences, particularly at intronic positions, resulting
in splicing defects [38]. The percentage of splicing variants reported in the Human Gene
Mutation Database (HGMD) is about 9% (27,959/323,661) (HGMD database, accessed
on 5 August 2021). However, this number seems underestimated, since it only marginally
takes into account nucleotide substitutions in coding regions, which are usually considered
as missense, nonsense, or silent variants. Based on in silico data, it has been reported that
the proportion of exonic variants that may affect splicing, but have been originally classified
as missense/nonsense in the HGMD, can reach up to 25% of all the variants present in the
database [39,40]. In addition, not only point variants but also other genetic variants, such as
small indels, can modify cis splicing regulatory elements and affect the splicing process [41].
These data indicate that variants affecting splicing play an important role in the etiology of
genetic disease and underline the importance of a correct variant interpretation.

The characterization of potential splice variants is usually based on the analysis of
RNA from the patient or some other laboratory techniques, including in vitro assay [38].
However, laboratory tests for splicing variants are expensive and time-consuming, so other
approaches have been set up to reduce costs and times of analysis. The use of in silico
prediction tools allows focusing on those variants with real chance of being deleterious
and selecting them for further experimental validation.
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5. Predictive Tools for Splice Variant Identification

The tools available for splicing analysis were originally developed for research pur-
poses; however, they have been becoming integral part of the diagnostic process, as a first
step of variant characterization. In general, splice site prediction tools have increased sensi-
tivity (~90–100%) relative to specificity (~60–80%) in predicting splice site abnormalities [4].

Several algorithms have been proposed, differing among each other in the approach
they use for splice variant prediction. They can be divided into two big categories: early
computational methodologies and the more recent Machine Learning-based tools.

5.1. Early Computational Methodologies for Splice Variant Prediction

The main differences among these methodologies rely on the consensus sequences
they used for the comparison with the input sequences, and the statistical model used for
the analysis. Table 2 shows the key features of some of these tools.

5.1.1. Input Sequences

Most of the tools focus on the analysis of consensus splicing donor and acceptor
sequences at exon-intron junctions and require the sequence input at least including
positions from−3 to +6 in the case of 5′ donor site and or from−20 to +3 for the 3′ acceptor
sites. Examples of these tools, based on different computational models, are SpliceView [42],
GeneSplicer [43], Spliceport [44], GENSCAN [45], NetGene2 [46], NNSplice [47], and
MaxEntScan [48].

Other tools have been developed to predict whether a single nucleotide variant
can affect the branch site motif or polypirymidine tract, e.g., SVM-BPfinder [49] and
IntSplice [50].

A more limited number of algorithms analyze the input sequence to predict exon skip-
ping, cryptic site activation, or generation of aberrant transcripts (CRYP-SKIP [51]), or to
identify though and how distant a variant may influence the splicing process (Spliceman [52]).

Several tools have been built to predict the effect of a specific variant on exonic splicing
enhancers (ESEs) and exonic splicing silencers (ESSs). These tools may be very useful
in the characterization of exonic variants. Examples of this kind of algorithms are ESE
Finder [53,54], ESRseq [55], and FAS-ESS [56], all three based on individual experimental
data, HEXplorer [57], and RESCUE-ESE [58], which rely on computational analysis of
nucleotide motifs or k-mer distributions, and SpliceAid [59], searching for interactions
between validated RNA target motifs and human splice regulatory proteins.

Other tools focus on motifs involved in the binding to RNA-binding proteins (RBPs).
RBPmap uses motifs well characterized in the literature and analyzes their evolutionary
conservation to define potential binding sites [60]. Splicing Factor Finder performs a
mapping of splicing factor binding sites considering both genomic environment and
evolutionary conservation of the regulatory motifs [61].

Finally, other bioinformatic tools perform predictive analysis evaluating whether a
variant may affect mRNA secondary structure. Examples of these algorithms are pFold or
UNAFold [62,63].

5.1.2. Statistical Models

One of the most frequently used algorithm is the basic Position Weight Matrix (PWM)
model [64], which scores and ranks each nucleotide on the splice site sequence based on its
frequency from its aligned consensus sequence. The PWM model has been used in several
tools, for example in the SpliceView [42], which considers mutual dependency between
nucleotides in different positions.

The Maximal Dependence Decomposition (MDD) model, used in GENSCAN [45],
is a decision tree method that captures most significant dependencies between positions
by dividing the dataset into subgroups and modeling each subset separately. The MDD
model has been implemented by adding Markov models (MM), which identifies additional
dependencies among adjacent positions, in the tool GeneSplicer [43].
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The Maximum Entropy Distribution (MED) is probably the method that currently
allows the most unbiased approximation for modeling short sequence motifs. MED can be
considered as a framework, rather than a single model, which enables to generate different
models by modifying the applied constraints. MED only assumes that the distribution
is consistent with the empirical features which are obtained from known data. It takes
into account dependencies between both adjacent and non-adjacent positions. The tool
MaxEntScan [48] uses this approach and shows high flexibility, since the user may choose
between default or personalized models. In addition, MaxEntScan can employ other
algorithms, such as the PWM, MDD, and MM models, to perform the analysis and compare
the results.

5.1.3. Tools Combining Multiple Algorithms

Some tools utilized different algorithms to implement the strength of the analysis.
Human Splicing Finder [65] performs predictions using the PWM and MED models and
analyzing branch points, ESEs, and ESSs. SROOGLE is a webserver based on nine different
algorithms able to analyze sequences belonging to thirteen groups of splicing-regulatory
sequences [66]. Automatic Analysis of SNP sites (AASsites) employs five gene prediction
programs to evaluate the impact of SNPs on splicing [67]. Finally, EX-SKIP and HOT-SKIP
examine the probability that substitutions in each exonic position cause exon skipping,
using several integrate approaches to analyze potential ESE/ESS sequences [68].

Table 2. List of predictive tools and used strategies.

Tool Name Analyzed Regions Predictive Model URL Ref.

Canonical Splice Sites

MaxEntScan 5′ and 3′ SSMs PWM, MDD, MM,
and MED

http://hollywood.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html

(accessed on 3 September 2021)
[48]

SpliceView 5′ and 3′ SSMs PWM
http://bioinfo.itb.cnr.it/~webgene/
wwwspliceview.html (accessed on 3

September 2021)
[42]

GeneSplicer 5′ and 3′ SSMs MDD
https://www.cbcb.umd.edu/software/

GeneSplicer/gene_spl.shtml (accessed on
3 September 2021)

[43]

Spliceport 5′ and 3′ SSMs SVM http://spliceport.cbcb.umd.edu/
(accessed on 3 September 2021) [44]

GENSCAN 5′ and 3′ SSMs MDD
http:

//hollywood.mit.edu/GENSCAN.html
(accessed on 3 September 2021)

[45]

NetGene2 5′ and 3′ SSMs NN
http://www.cbs.dtu.dk/services/

NetGene2/(accessed on 3 September
2021)

[46]

NNSplice 5′ and 3′ SSMs NN
https://www.fruitfly.org/seq_tools/
splice.html (accessed on 3 September

2021)
[47]

SVM-BP Finder BPs + PPT SVM
http://regulatorygenomics.upf.edu/
Software/SVM_BP/ (accessed on 3

September 2021)
[49]

IntSplice BPs + PPT SVM
https://www.med.nagoya-u.ac.jp/

neurogenetics/IntSplice_v1.0/index.php
(accessed on 3 September 2021)

[50]

http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://bioinfo.itb.cnr.it/~webgene/wwwspliceview.html
http://bioinfo.itb.cnr.it/~webgene/wwwspliceview.html
https://www.cbcb.umd.edu/software/GeneSplicer/gene_spl.shtml
https://www.cbcb.umd.edu/software/GeneSplicer/gene_spl.shtml
http://spliceport.cbcb.umd.edu/
http://hollywood.mit.edu/GENSCAN.html
http://hollywood.mit.edu/GENSCAN.html
http://www.cbs.dtu.dk/services/NetGene2/
http://www.cbs.dtu.dk/services/NetGene2/
https://www.fruitfly.org/seq_tools/splice.html
https://www.fruitfly.org/seq_tools/splice.html
http://regulatorygenomics.upf.edu/Software/SVM_BP/
http://regulatorygenomics.upf.edu/Software/SVM_BP/
https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice_v1.0/index.php
https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice_v1.0/index.php
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Table 2. Cont.

Tool Name Analyzed Regions Predictive Model URL Ref.

Cryptic sites

CRYP-SKIP exons + flanking
intronic sequences

multiple logistic
regression

https://cryp-skip.img.cas.cz/ (accessed
on 3 September 2021) [51]

Spliceman variant + flanking
nucleotides L1 distance metric

http://fairbrother.biomed.brown.edu/
spliceman/ (accessed on 3 September

2021)
[52]

Exonic Sequences

ESE Finder ESE PWM
http://krainer01.cshl.edu/cgi-bin/tools/

ESE3/esefinder.cgi?process=home
(accessed on 3 September 2021)

[53,54]

RESCUE-ESE SREs
experimental +
computational

approach

http://hollywood.mit.edu/burgelab/
rescue-ese/ (accessed on 3 September

2021)
[58]

ESRseq ESE + ESS PWM
https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3149502/ (accessed on 3

September 2021)
[55]

Hexplorer SREs
experimental +
computational

approach

https://www2.hhu.de/rna/html/
hexplorer_score.php (accessed on 3

September 2021)
[57]

FAS-ESS ESS MED
http:

//hollywood.mit.edu/fas-ess/(accessed
on 3 September 2021)

[56]

SpliceAid ESE + ESS + ISE + ISS
scanning against

validated splicing
sequences

http://www.introni.it/splicing.html
(accessed on 3 September 2021) [59]

Conservation

RBPmap RBP sites Weighted-Rank (WR) http://rbpmap.technion.ac.il/ (accessed
on 3 September 2021) [60]

Splicing Factor
Finder RBP sites WR

https:
//pubmed.ncbi.nlm.nih.gov/19296853/

(accessed on 3 September 2021)
[61]

RNA Secondary Structure

pFold RNA sequence
stochastic

context-free grammar
(SCFG)

https:
//pubmed.ncbi.nlm.nih.gov/12824339/

(accessed on 3 September 2021)
[62]

UNAFold RNA sequence

free energy
minimization,

partition function
calculations, and

stochastic sampling

http://www.unafold.org/ (accessed on 3
September 2021) [63]

Combined Analysis

EX-SKIP ESEs + ESSs four algorithms https://ex-skip.img.cas.cz/ (accessed on
3 September 2021) [68]

HOT-SKIP ESEs + ESSs four algorithms https://hot-skip.img.cas.cz/ (accessed on
3 September 2021) [68]

Sroogle SSM + BP + PPT +
SRE nine algorithms http://sroogle.tau.ac.il/ (accessed on 3

September 2021) [66]

Human Splicing
Finder (*)

SREs, splice sites or
branch sites PWM and MED http://www.umd.be/HSF3/ (accessed on

3 September 2021) [65]

(*) free only for academic use. SSMs: Splice Site Motifs; BPs: Branch Site Motifs; PPT: PolyPirymidine Tract; ESE: Exonic Splicing Enhancer;
ESS: Exonic Intronic Splicing silencer; ISE: Intronic Splicing Enhancer ISS: Intronic Splicing Silencer; SRE: Splicing Regulatory Element;
RBP: RNA Binding Protein; ORF: Open Reading Frame; PWM: Position Weight Matrix; MDD: Maximal Dependence Decomposition;
MM: Markov models; MED: Maximum Entropy Distribution; SVM: Support Vector Machine; NN: Neural Network.

https://cryp-skip.img.cas.cz/
http://fairbrother.biomed.brown.edu/spliceman/
http://fairbrother.biomed.brown.edu/spliceman/
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://hollywood.mit.edu/burgelab/rescue-ese/
http://hollywood.mit.edu/burgelab/rescue-ese/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149502/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149502/
https://www2.hhu.de/rna/html/hexplorer_score.php
https://www2.hhu.de/rna/html/hexplorer_score.php
http://hollywood.mit.edu/fas-ess/
http://hollywood.mit.edu/fas-ess/
http://www.introni.it/splicing.html
http://rbpmap.technion.ac.il/
https://pubmed.ncbi.nlm.nih.gov/19296853/
https://pubmed.ncbi.nlm.nih.gov/19296853/
https://pubmed.ncbi.nlm.nih.gov/12824339/
https://pubmed.ncbi.nlm.nih.gov/12824339/
http://www.unafold.org/
https://ex-skip.img.cas.cz/
https://hot-skip.img.cas.cz/
http://sroogle.tau.ac.il/
http://www.umd.be/HSF3/
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5.2. Machine Learning-Based Tools

The name “Machine Learning” (ML) was used for the first time in 1959 by Arthur
Samuel, who defined ML as the “field of study that gives computers the ability to learn
without being explicitly programmed” [69]. ML methods generally analyze previously
collected data to build data-based models, find out statistically significant patterns, and on
this basis make predictions on novel data. Therefore, it can be said that ML algorithms are
able to “learn” from datasets and utilize the acquired knowledge to analyze similar data [70].

Algorithm “training” is usually performed using experimentally verified pathogenic
variants as positive examples, and known benign variants as negative reference. In this
way, ML software progressively identifies patterns able to discriminate between pathogenic
and benign variants and subsequently uses these patterns to correctly predict whether a
new variant may be pathogenic or not. During the training, some specific algorithms are
used to develop an initial model. The model is then challenged on a test set and its efficacy
is evaluated. In this way, the model can be progressively improved to maximize its efficacy.

Some elements are fundamental in the learning process. First, all ML models need
both training and testing datasets, which must be absolutely independent from each other.
In other words, if an entry is present in one set, it should not appear in the other one. To
obtain this, a dataset is often divided into two subsets that are used as training set and test
set, respectively. The lack of overlapping ensures better results, since it avoids that the
model recognizes in the test set the same items it had already seen in the training phase, and
therefore displays a performance better than real [36]. Moreover, it is important to balance
positive or negative datasets, as the excess of positive datasets can cause underfitting and
that of negative dataset can generate overfitting models [36].

The variables in a dataset that are input to a ML model are called “features”. Data
are classified or separated based on these variables. Different features may be used:
many of them are often sequence-based, e.g., the frequency or position of specific nu-
cleotides in a given region, others are biochemical features, such as GC content and
thermodynamic properties.

The availability of public datasets of variants is very important for developing
ML-based prediction tools. Among these databases, an important role is played by
experimentally-derived RNA-seq datasets, which provide an effective link between genome
and transcriptome features, and databases that report a classification variants based on
potential pathogenicity, such as ClinVar [71].

Regression and classification algorithms are used for prediction in Machine learning.
Regression algorithms are used to make prediction on continuous values, while classifica-
tion algorithms are used on discrete data. They divide the data into different classes and
are used to identify the class to which a new data entry is most likely to belong. Table 3
reports a brief description of the different methods used in machine learning, exhaustively
reviewed elsewhere [72,73].

Table 3. Brief summary of the main characteristics of the different methods used in ML.

Method Main Characteristics

Regression

• Evaluation of the relationships between input variables and associated outputs and modeling of
the relationship between them.

• Use of continous values.
• Linear regression: the simplest form, the basic idea is simply finding a line that best fits the data.
• Multiple linear regression and polynomial regression: focus on non-linear problems
• Logistic regression: models the probability of an observation to belong to a finite number of

classes, typically two (0 and 1).

Classification

• Finding of a model or function which helps in separating the data into classes based on different
parameters.

• Use of discrete values.
• Categorization of data under different labels, according to some parameters given in input
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Table 3. Cont.

Method Main Characteristics

Support Vector Machine
(SVM)

• Classification algorithm based on a hyperplane space that linearly separates training
observations of different classes and creates a demarcation among the categories.

• Every unseen sample is classified into one of the classes, depending on the side on which it
appears.

• Data that cannot be separated by a single continuous hyperplane are usually transformed using
the kernel functions.

Decision Tree

• Tree-like support tools used to correspond to a cause and its effect.
• Each node of the tree represents a test of one or more features of the observation and determines

the following nodes to go through.
• The last nodes of the decision tree, where a decision is taken, are defined leaves of the tree
• The more nodes are present, the more accurate the decision tree will be.
• It can use regression or classification algorithms.

Random Forest

• Combination of multiple decision trees, usually resulting in an improved predictive
performance.

• Use of an “ensemble learning methods” (methods that use multiple learning algorithms to
obtain better predictive performance than any of the constituent learning algorithm alone).

• Efficient modeling of complex and nonlinear data types, overcoming the limitations of Decision
Trees.

• It can use regression or classification algorithms.

Neural Network (NN)

• Similarity to the biological neural network, it is a collection of connected nodes called “artificial
neurons”, which, like in the synapses in a real brain, can transmit information to other nodes or
“neurons”.

• It is a network of mathematical equations.
• It works on input variables and, by going through a network of equations, transforms them in

one or more output variables.
• Networks are built up of layers, each responsible for a linear transformation, followed by a

nonlinear activation function.
• There are an input layer, one or more hidden layers, and an output layer
• Generally, more nodes and more layers allow the neural network to make much more complex

calculations.
• It can use regression and classification algorithms, or combinations of them.

Deep Neural Networks
(DNNs)

• NNs with multiple hidden layers between the input and output layers.

Convolutional Neural
Networks (CNN)

• Its architecture is analogous to that of the connectivity pattern of neurons in visual cortex of the
human brain.

• The hidden layers include layers that perform convolutions (in mathematics convolution is a
mathematical operation on two functions that produces a third function that expresses how the
shape of one is modified by the other).

Several ML-based prediction algorithms have been developed in the last years. They
mainly differ in ML architecture, experimental datasets they use, and functions they
propose. The main ML tools used for splice prediction are shown in Table 4, including
details about ML methods, training/testing datasets, strengths and weaknesses of each tool.

Among the earliest ML-based tools, CADD [74,75] has been trained using both benign
and pathogenic variant sets. It outputs a score that can be interpreted as a measure of
pathogenicity. The first version of CADD used an SVM-based approach. Subsequently,
L2-regularized logistic regression—a kind of regression model allowing the modeling and
prediction of a binary dependent variable—has been adopted since it leads to improved
sensitivity and specificity [74]. The CADD scoring has soon become a gold standard for the
prediction of variant impact and the reference to evaluate other predictive tools. However,
it has some limits that may weaken its efficacy: it uses conservation scores, thus it is really
effective for protein-coding impact prediction, but it is lacking in predicting variant effect
at the transcript level [36].
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This limit is overcome by TraP [76], a random forest-based tool, which analyzes non-
coding variant impact at the transcript level, providing a score between 0–1. The score
can be used as a measure of the impact a variant is likely to have on a transcript. It has
been shown that TraP scoring works better than the CADD model on the prioritization
of variants impacting on splicing. In addition, TraP identifies also pathogenic intronic
variants and evaluates the potential impact of variants across multiple transcripts, a feature
usually not considered by many prediction tools [77].

Another tool is CryptSplice [78], an SVM-based method, which aims to predict the
variant impact on generation of cryptic splice sites. It evaluates three situations: a canonical
site weakened by the introduction of a new splice site in its proximity, a canonical site
replaced by a novel site, and the introduction of a functional deep intronic splice site.

S-CAP [79] is an example of a tool designed to predict the pathogenicity of splice-
impacting variants. S-CAP distinguishes and separately analyzes 6 distinct regions,: 3′

intronic, 3′ canonical site, exonic, 5′ canonical site, 5′ extended, and 5′ intronic, all within
50 bases from the canonical exon-intron junction. This approach tries to overcome the limit
of most ML models that tend to prioritize canonical splice site variants and underestimate
the pathogenicity of intronic variants.

Another approach has been used to develop the tool PEPSI (Prediction of variant Effect
on Percent Spliced In) [80], a random forest regression model trained on multiple layers of
features related to sequence conservation and regulatory sequence elements. Its peculiarity
is to integrate secondary structure information in predicting variants that disrupt splicing
regulatory elements (SREs). In a comparative analysis with other splice prediction tools,
PEPSI framework has shown comparable sensitivity and precision in predicting variants
able to alter splicing. Nevertheless, the approach of PEPSI of evaluating SRE changes based
on the probability of secondary structure formation has displayed several limitations that
may reduce its effectiveness in detecting splice-disrupting variants.

SpliceAI [81], a deep learning tool consisting of a 32-layer deep residual neural net-
work, analyzes each position of a pre-mRNA transcript and assesses the probabilities it
is a splice donor, splice acceptor, or neither. SpliceAI has been designed to infer features
from the transcript sequence itself. It generates scores for gain or loss of acceptor or donor
for all nucleotides within 50 bp of the variant of interest. Then, for each of these four
possibilities, the nucleotide within the region affected by the most significant change is
returned. When used in a near-agnostic approach to model training, SpliceAI is able to
identify novel features by itself, potentially increasing global knowledge of splicing process.
Considering the power of the model, SpliceAI may be considered the current gold standard
for clinical interpretation of splice-impacting variants.

Table 4. List of ML prediction tools with the kinds of used strategies.

Tool Name Prediction Model Datasets Key-Points Ref

CADD Score of pathogenicity

Rirst version:
linear SVM Later

versions:
L2-regularized

logistic regression

Training datasets: Benign:
evolutionarily neutral
variants; Pathogenic:
simulated de novo

pathogenic variants
Testing datasets: Benign:

benign variants;
Pathogenic: pathogenic

ClinVar variants, somatic
cancer mutation

frequencies

Effective tool for
protein-coding

impact prediction;
may not be

informative for
poorly-conserved

regions

[74,75]

CryptSplice

Impact of variants on
existing splice sites,
cryptic splice site

prediction

SVM with RBF
kernel

True and false splice sites
from GenBank-derived

datasets

Identify creation of
cryprtic

acceptor/donor site;
use of a quite

obsolete database

[78]
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Table 4. Cont.

Tool Name Prediction Model Datasets Key-Points Ref

DARTS

Prediction of alternative
splicing using both cis
sequence features and
mRNA levels of trans

RBPs

DNN and Bayesian
Hypothesis Testing RNA-seq data (*) Evaluation of RBP

impact on splicing [82]

MMSplice

Multiple predictions:
exon skipping,

competitive
interactions, changes in
splicing effciency, and

pathogenicity

Modular NN,
linear and logistic

regression

Donor/acceptor modules:
GENCODE v24 true

(known sites) and false
(random sequences) splice

sites Exon/intron
modules: MPRA data

from [83]

Easily clinically
applicable training
set; contains false

positive/unverified
sites

[84]

MutPred
Splice

Impact of coding region
substitutions on

disruption of pre-mRNA
splicing

Linear SVM

Positive: HGMD exonic
disease-causing/disease-

associated variants
Negative: HGMD

disease-causing missense,
not reported to disrupt

exon splicing, high
frequency exonic SNPs

(SNP- from 1000 Genomes
Project [85]

Suitable for use in an
NGS

high-throughput
setting to identify

and prioritize
potentially

splice-altering
variants

[86]

PEPSI

Prediction of coding and
noncoding variant

impact on pre-mRNA
splicing based on

sequence conservation,
RNA secondary

structure, and regulatory
sequence elements

Random forest
regression model

Data obtained form the
Vex-seq experiment

(measurement of the ∆PSI
of 2055 variants from the

Exome Aggregation
Consortium (ExAC;

[Kircher et al., 2014]) v24 a
selection of chromosomes

as training set, the
remaining ones as testing

set (*)

Indels and intronic
variants included [80]

S-CAP

Score of variant
pathogenicity using

compartmentalization of
genomic regions

DNN

Pathogenic variants
selected from HGMD and
ClinVar; benign variants

from gnomAD

Evaluation of
intronic pathogenic

variants;
variants lying more
than 50 bp into the

intron are not
covered by the

model

[79]

SPANR Cassette exon skipping
prediction

NN modeled on
Bayesian

framework

PSI values for all human
exons across 16 tissues,
based on the Illumina

Human Body Map
project (*)

Web server easy to
use, availability of a

dataset of
pre-computed scores

for all eligible
variants in the

genome; evaluation
of exon sequence

only

[87]

SpliceAI
Prediction of variant

impact on loss or gain of
acceptor/donor sites

32-layer DNN

Protein-coding transcripts
from GENCODE v24 (a

selection of chromosomes
as training set, the

remaining ones as testing
set) (*)

Very powerful tool
able to use a

“near-agnostic”
approach

[81]
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Table 4. Cont.

Tool Name Prediction Model Datasets Key-Points Ref

SpliceFinder

Classification of variants
based on impact on

donor site, acceptor site
or non-splice-site

CNN

Sequences of donor,
acceptor, and

non-splice-site, randomly
selected from human

reference genome (90% for
training, 10% for testing,

and then 20% of the
training data for

validation)

Non-canonical splice
sites can also be

predicted correctly;
decreased number of

false positives

[88]

TraP Quantification of impact
of variant on transcripts Random forest

Benign: De novo
mutations in healthy

individuals Pathogenic:
selected synonymous

variants associated with
rare disease (*)

High performance in
distinguishing
pathogenic and

benign variants, both
intronic and
synonymous;
evaluation of

potential impact of
variants across

multiple transcripts

[76]

(*) data from NGS experiments. SVM: Support Vector Machine; RBF: Radial Basis Function, DNN: Deep Neural Network; NN: Neural
Network; CNN: Convolutional Neural Network.

6. Interpretation and Evaluation

Considering the number of in silico tools available for splice variant impact prediction,
the choice and interpretation of results may be challenging. It may sound obvious, but the
starting point for a good result analysis is to know the bases and the assumptions of the
different tools.

A tool predicting competitive splice site interactions, for example, gives information
different form one predicting exon skipping, and their results can be conflicting, simply
because they analyze diverse features. On the other hand, this can become a strength for
the prediction, since the different approaches adopted by the different tools provide the
users with the possibility to evaluate variant impact from many perspectives. In general
terms, in silico tools may perform predictions either on splicing impact or pathogenicity of
a variant. In the first case, most tools report analysis results as a score, that is a numerical
measure of the strength of the splicing signal. The range may varies, but in general a
higher score corresponds to a stronger similarity to the consensus sequence or a greater
probability that a site is a true splice site. However, a score is just a number whether there
is no an affordable threshold separating positive sites from negative ones. It is possible to
set a cutoff value to evaluate though a variant is causing splicing defects, but this value is
usually arbitrarily chosen by the users and can change across different tools in different
studies [89]. Therefore, it may provide useful information, but should not be regarded as
an absolute reference to discriminate between variants.

In the case of tools predicting variant pathogenicity, users should be aware that the
training of a model is based on human annotations of pathogenicity, reported in databases
as ClinVar [71]. These annotations reflect the current variant classification and the current
knowledge of splice-impacting variants, and probably report some misclassification for
the less characterized splice variant types [36]. This is a common bias of prediction tools:
all of them are based on, or learn from, available experimental data and databases, thus
they can be improved only obtaining a higher number of validated data. For this reason,
a continuous update of databases is fundamental to progressively implement and refine
prediction reliability.

Based on these considerations, as a general approach, the use of multiple tools, relying
on different assumptions, for splice variant impact prediction is recommended. The
different programs have different strengths and weaknesses, depending on the algorithm
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they use, and this may allow reducing the possibility of errors. Of course, since the practical
use of tools and the result interpretation is not always easy and often time-consuming, the
tools that analyze more features simultaneously may be very helpful.

On the other hand, care may need to be taken with the tool selection: many of them do
use different algorithms, but these algorithms are actually based on similar assumptions.
In this case, the combination of predictions from different tools does not strengthen the
analysis and should be considered as a single evidence in variant interpretation [85].
In addition, many tools share common limits. Only few tools (CADD, MMSplice, and
SpliceAI), for example, are able to predict the splice impact of indels, even though indels
involving specific region, as the PPT, may exert relevant effects on splicing even more than
single nucleotide variants [90,91]. Additionally, deep intron variants are rarely included
in the analyzed regions or in the training sets, thus many tools may be poorly effective in
predicting splice modifications involving these low-frequency sites.

Another underestimated mechanism is the presence of long-distance splicing interac-
tions: splicing may be also affected by the interactions of trans-acting splicing complexes
with binding sites across all intron lengths [92,93]. SpliceAI considers a wider genomic
context than other tools, with a significant increase of model performance. In addition,
this tool may be very useful in the research of long-range determinants of splicing, pro-
viding novel information and eventually increasing and deepening our knowledge of
splicing mechanisms.

As better discussed below, the ACMG guidelines have recently defined the criteria for
splicing variant evaluation [4]. In particular, they state that the computational evidence
should not be overestimated, also considering that the algorithms can have vastly different
predictive capabilities for different genes. In general, only though all the predictive tools
agree on the prediction, this evidence can be counted as supporting. However, these are
anyway predictions, and their use in sequence variant interpretation should be cautious.
It is not recommended that they be used as the only source of evidence for clinical and
diagnostic aims, but any positive findings from in silico tools necessitate to be confirmed
using in vitro approaches.

7. Validation of Predicted Splicing Variants

Validation methods, which complement and substantiate predictive analyses, consist
in the studies of the functional effect produced by a potential splicing variant. Func-
tional testing can be performed on RNA (transcriptomics analysis) and/or at protein level
(proteomics experiments) [26,27].

7.1. Transcriptomics Functional Testing

Transcriptome analysis focuses only in the protein-coding region of a gene, facili-
tating the detection of variants that influence RNA expression rather than detection on
DNA [94]. Before the description of different functional testing, the major advantages
and disadvantages of RNA handling need to be explained. Although RNA isolation from
patients is considered a simple and fast procedure, RNA manipulation is not so easy.
Other weaknesses are represented by the purity and the degradation rate of this genetic
material. In practice, the identification of cell lines and/or tissues as optimal source of
RNA is still challenging. In the majority of cases, blood (leukocytes) or cultured cells
(generally fibroblasts) represent the best options to isolate a huge amount of RNA from
patients in order to identify splicing defects [94,95]. Tissues may be the ideal source for
comparison of effects resulting from aberrant splicing in healthy and affected samples
and should definitively determine if the splicing mutation causes disease. However, the
appropriate tissues are often not available and, when available, the genetic material suffers
from fixation treatment, so it is hard to obtain high yield of RNA [95,96]. In addition,
RNA is a highly prone-to-degradation molecule and the NMD process [97] represents the
predominant cause of false-negative results in RNA analysis. If cells tend to prevent the
translation of aberrant splice transcripts (carrying the mutated allele), which are commonly
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degraded, only the normal allele is detectable (in heterozygosis condition) and splicing
cannot be proved [29,94]. In order to circumvent NMD, patients’ cells need to be treated
with puromycin or cylcoheximide (the most common NMD inhibitors) to stabilize RNA
and resolve this intrinsic problem [26,96,98].

Experimental procedures for identification of the alternative splicing sites can be
classified into two groups on basis of their degree of multiplexity, which is a measure of how
many different genes can be investigated by a given experiment. The class of “low to mid-
plex methods” includes Northern blotting, RT-PCR and minigene assay, while microarrays,
Tiling array and RNA-seq are methods belonging to the “higherplex technologies” [99].

Northern blotting is a relatively old technique that can be performed for detection
and quantitation of mRNAs in order to determine whether the predicted variant affects
splicing. The procedure is based on hybridization of patient-isolated RNA with specific
radioactively-labeled RNA probes to obtain information about size and amount of RNA
encoded by the gene of interest [100]. Quantifying RNA is useful to measure the expression
of a particular gene, and this method can also provide a direct comparison of RNA level be-
tween several samples, based on size disparity between differentially spliced transcripts by
electrophoresis [101]. In general, Northern blot requires a huge amount of RNA and mea-
sures only steady-state mRNA levels. All these limitations lead to choose the PCR, a more
accurate technique, as preferred validation method of predicted splicing variants [102].

Reverse transcription PCR (RT-PCR) is one of the most used and low-cost methods
to reveal if the identified variant can influence the mRNA sequence [26,27]. This highly
sensitive approach, consisting in the amplification of the target sequence and following
detection of products on agarose gel, requires a low quantity of RNA for the analysis of
a large number of samples and several different genes in one single experiment. Over
the years, a multitude of PCR-based strategies has been developed, followed by Sanger
sequencing, to successfully identify the precise mutation causing aberrant splicing.

An alternative method to RT-PCR and sequencing is represented by the minigene
assay, which compares the splicing mechanism of mutant and wild-type exons within
an alternatively spliced gene [103]. It is based on the cloning of the specific sequence of
interest, with and without mutations, in a plasmid. In case of exonic mutations suspected
of affecting splicing, the exon and a small amount of flanking intronic regions are inserted
into the construct, whereas deep intronic mutations can be detected inserting into the
minigene the two exons surrounding the intronic region of interest. Cells transfected with
the plasmid will produce the mRNA derived from the minigene that can be selectively
amplified by RT-PCR and then analyzed on agarose gel [96]. This system may be useful for
analysis of genes with a reduced expression in leukocytes or fibroblasts [104].

Several advantages over previous approaches have been obtained with the develop-
ment of high-throughput technologies, either hybridization- or sequence-based, to unravel
the complexity of transcriptome. In particular, Microarrays and direct RNA sequencing
have been widely used in order to validate the in silico predictions [29,105].

The microarray method belongs to the hybridization-based approaches. It uses mi-
crochips covered with short probes for the large-scale analysis of gene expression [106].
Patients’ isolated-RNA and reference RNA are fluorescently labelled and then hybridized
on the array. Following hybridization, fluorescent signals on microarray are captured by a
laser system, generating an image to evaluate gene expression and for subsequent data
processing (Figure 3) [107,108].

Monitoring simultaneously thousands of genes, microarray approach can detect splice
site mutations and identify diagnostic or prognostic biomarkers which allow to discover
a different expression pattern in healthy and disease conditions [109]. However, the
sensitivity of microarray (detection range comprised between 1 and 10 copies of mRNA per
cell) may result insufficient in case of low-expressed genes, limiting detection of relevant
changes [108,110]. The whole-genome tiling array, an updated version of microarray,
has been designed to cover the entire genome and not only specific regions, providing
a global and more unbiased view of gene expression in samples with different clinical
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conditions [111,112]. Nevertheless, both conventional and whole-genome microarrays are
affected by numerous sources of noise, such as background problems and non-specific
hybridization [113,114], threatening the reliability of analysis [105].
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Figure 3. Microarray technology. RNA of two samples (normal/reference RNA and patient-isolated
RNA) are differently labeled, mixed, and then spotted on the same microchip. After hybridization,
the chip is scanned at two wavelengths to capture signals of the two different dyes. Scanner of the
array generates an image for interpretation of the results. Green spots indicate expression in normal
cells, while red spots indicate only expression in affected cells. Yellow signal means co-expression
(not significant result).

Recent advances in new sequencing technologies have triggered an increasing shift
from hybridization arrays towards sequence-based methods, in order to improve the de-
tection of novel splicing sites [115,116]. For example, RNA-seq (RNA sequencing) has
emerged as a new tool for the investigation of the whole transcriptome by directly sequenc-
ing cDNAs, improving gene expression studies, and unraveling the complex nature of
alternative splicing mechanism [116]. As reported by Saedian and collaborators, the power
of RNA-seq technology resides in the capability to identify pathogenic variants which
cannot be captured by Whole Exome Sequencing (synonymous/silent and nonsynony-
mous/nonsense exon variants or mutations occurring in deeply intronic regions) probably
affecting splicing events [26,117,118].

RNA-seq workflow is depicted in Figure 4.
Briefly, the initial phase consists in the RNA isolation using standard procedure,

followed by the selection of an RNA subtype among different subpopulations (mRNA,
tRNA, ncRNA, miRNA) [116]. The construction of an appropriate RNA-seq library is the
next key step, which determine how accurately the final sequencing output reflects the
original transcriptome [105]. RNA is fragmented to create short transcripts (200–500 bp)
in order to minimize secondary structure formation and to reduce end biases [119]. RNA
sequences are then converted into cDNA which undergoes 3′-adenylation and ligation of
adaptor molecules to both ends of the fragments before amplification through PCR [120].
PCR products are then subjected to sequencing that will produce shorts sequences (reads)
to align with a reference genome to perform the gene expression profile [121].

RNA-seq provides a powerful tool for transcriptome-based applications beyond the
limitations of microarrays, but it also has some pitfalls. Benefits and drawbacks of the two
methodologies and the main differences between them are following discussed and listed
in Table 5.
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Figure 4. RNA-sequencing workflow. RNA-seq is a three-step method: (1) library construction;
(2) sequencing; (3) bioinformatic analysis. The RNA species of interest is selected and converted
to complementary DNA, which is then amplified by PCR in order to prepare a sequencing library.
Sequencing results in the generation of short sequences (reads) that need to be aligned to a reference
genome. Then, different approaches can be used for transcript assembly to detect quantitative
gene expression.

Table 5. Benefits and drawbacks of high-throughput technologies [115].

Microarray Rna-Seq

Benefits

• Availability of standardized approaches and
protocols

• Low cost procedure (compared to RNA-seq)

• Analysis of the whole transcriptome
• Wide dynamic range
• Alternative splicing sites can be detected with no

biases
• High specificity and sensitivity

Drawbacks

• Analysis only for pre-defined genes
• Limited dynamic range
• Absence of specificity for hybridization-based

approach
• Eventual loss of new variants
• (depending on probe density)

• Optimization of the protocols is still poor
• Expensive procedure compared to microarray
• Complex data analysis

First of all, RNA-seq analysis consists in the full sequencing of the whole transcrip-
tome and can detect a larger percentage of differentially expressed genes compared to
microarrays which are limited to pre-defined genes and analyze only a portion of protein-
coding regions. Together with the higher specificity and sensitivity, an important benefit
of RNA-Seq over microarrays is represented by its ability to quantify almost all types of
RNAs, mapping the whole genome and enabling identification of new transcripts and
previously unrecognized splice variants. By contrast, microarray requires the indispensable
a priori knowledge of the sequences being investigated and transcript-specific probes [116],
which reduce gene expression analysis across a narrower dynamic range, significantly
limiting new splicing variants discovery [121–123].

However, the RNA-Seq approach has some challenges that prevent a complete techno-
logical switch to sequencing in gene expression profiling: (1) RNA-seq produces large size
files, which are considerably more complex than microarray results; (2) Sequencing data
analysis requires an advanced bionformatic approach and expensive computational tools;
(3) There are no standard protocols and adequate reference databases, which make data
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interpretation more difficult; 4) although RNA-seq has become increasingly affordable,
RT-PCR followed by Sanger sequencing is more manageable in term of costs [121].

7.2. Proteomics Analysis

Differently from functional testing on genetic materials, proteomics analysis is usually
performed by immunohistochemistry. By contrast to RNA-based techniques, proteins are
not commonly isolated from patients’ samples because of high risk of contamination during
the extraction procedure that can mostly give low yields of product [94,95]. In order to test
a protein on a functional level, the Protein Truncation Test (PTT) or In-Vitro Synthesized
Protein assay (IVSP) [124] was developed to identify variants that introduce a premature
stop codon, compromising protein translation. In practice, the procedure consists of a
RT-PCR followed by in vitro translation of the PCR product into proteins or radiolabelled
proteins through the 3H-Leucine incorporation. Performing the SDS-PAGE, proteins are
separated on basis of their size. Additionally, when radioactive amino acids are used, gel
is then blotted and exposed to X-ray. In both non-radioactive and radioactive PTT the
analysis will reveal if shorter than normal-size variants are synthesized. Obtaining proteins
of lower mass than the expected full-length proteins means that there are mutations in the
analyzed gene (i.e., deletions, duplications, and variants affecting splicing) affecting the
normal RNA processing (Figure 5) [26,125].

Once truncated proteins have been identified, an in vitro assay could then be de-
signed to directly test their function in cellular pathways and biological processes, for
example, their DNA binding properties or enzymatic activity. Of course, performing DNA
sequencing, splicing site mutations can be validated as variants encoding aberrant proteins.

Of note, false positive PTT results only rarely occurs, by contrast of several causative
events that might produce false negatives results: low-purity RNA and errors during
amplification process [94].

Several improvements have been made over time to the original procedure in order to
increase the experimental throughput: in example, the substitution of radioactive-labeled
with biotin-labeled amino acids has facilitated detection through fluorescent-conjugated
antibodies, or the use of specific protein tagging N- and C-terminal sequence of the
synthesized proteins has allowed to detect truncating changes without performing SDS-
PAGE [125,126].

Two-dimensional gel electrophoresis, Western blotting, and mass spectrometry are
considered alternative methods to the PTT assay, even if they detect truncating variants
as well as variants carrying amino acid substitutions [94,111], without testing functional
activity of the mutated protein.

Despite advancements in the procedure and the employment of alternative methods,
PTT has been mostly replaced by sequencing technology; however, it still remains a good
method to test functional activity of aberrant proteins already validated by transcriptomics,
with a detection efficiency close to 100% [26,94].
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Figure 5. Overview of the protein truncation test. DNA or cDNA obtained from RNA by retro-
trascription can be used as a template to perform PCR. During amplification process, an RNA
polymerase promoter and a translation initiation sequence (ATG) are added to products, together
with a consensus Kozak sequence to improve the process. Then, the RNA polymerase promoter
initiates transcription and the ATG sequence is used to start translation of RNA into protein. PCR
fragments are then separated on basis of their size by agarose gel-electrophoresis, and mutations
affecting splicing can be revealed. In the radioactive PTT, addition of radiolabelled amino acids in
nascent proteins requires blotting after SDS-PAGE and then exposition to X-ray to analyze results
(not shown). Finally, only DNA sequencing can confirm if the production of truncated proteins is
due to aberrant splicing.

8. Splice Variant Characterization in Diagnostics

The recent NGS technologies allow sequencing large panel of genes, or whole exomes
and genomes, for a wide range of disorders, and identifying candidate causative variants
for these conditions. The assessment of the real functional impact of variants on genetic
diseases is a key element in the proper interpretation of their clinical significance. This
evaluation may be particularly challenging in the case of variants affecting the splicing
process. While the variants that impact donor and acceptor splice site motifs are usually
identified as splice variants, exonic and intronic variants outside of the donor and acceptor
splice site motifs are often overlooked. The American College of Medical Genetics and
Genomics (ACMG) have recently developed updated guide lines for the interpretation of
sequence variants, including splice site variants [4]. ACMG guidelines remind that it is
important to evaluate the possibility that a variant may act directly through the specific
DNA change rather than through the amino acid change. Exonic variants should not
be annotated as synonymous, missense, or nonsense, based on predicted codon and the
amino acid they affect, but an analysis of their impact on splicing should be performed. Of
course, this analysis should take into account the patient’s clinical history. For example, the
segregation of the variant with a phenotype in a family is evidence for the association of the
variant with the disorder, even though that variant has been classified as “silent”. Therefore,
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further studies on actual role of the variant in the disease are needed before assuming
that a synonymous nucleotide change will have no effect. In addition, some disorders
are characterized by highly stereotyped variants that introduce a premature termination
codon in the protein [127]: in this case an evaluation of splice impact of a variant classified
as “missense” should be considered. It must be remembered that a splice variant causing
deletion (or insertion) of one or more amino acids, and then strongly modifying the protein,
is more likely to disrupt protein function than a missense variant changing only one amino
acid. Care must be also taken to potential in-frame deletion/insertion, which could anyway
alter protein critical domains and potentially lead to a gain-of-function effect.

Deep intronic variants are also more difficult to characterize: only a few data on them
are available, since they are poorly considered in clinical testing, as the routine analyses do
not include these genomic regions. However, the analysis for the presence of such variants
should be evaluated when the identification of potentially pathogenic variants in the coding
regions and exon/intron boundaries is not effective, and the patient presentation is highly
suggestive of a variant in a specific gene [26].

Since misclassification of variants have been reported for several diseases [128–131],
an accurate evaluation of potential variant impact on splicing is recommended. A scheme
resuming the strategy to characterize splice variants is depicted in Figure 6.
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The first step of this analysis is an in silico approach, using tools able to predict the
effect of a variant on splicing. The algorithms can have different predictive reliability for
different genes, and display their own strengths and weaknesses, therefore it is recom-
mendable to use several tools, or tools incorporating different kind of predictions. Of
course, the choice of the tool is crucial: it is necessary to consider the location of the variant
in the gene (exonic, intronic, deep intronic), and use a tool able to analyze that specific
region. The advent of ML-based approaches has recently increased the predictive power
and enhanced the genomic regions considered for the prediction.

As a general rule, when all of the in silico programs agree on the prediction, then
this evidence can be considered as supporting. However, though in silico predictions
disagree, then this evidence should not be used for variant classification. When prediction
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algorithms neither predict an impact on a splice consensus sequence nor the creation of a
new splice consensus sequence, and the nucleotide position is not conserved over evolution
then it is less likely that the variant affects the splicing [4].

Nevertheless, these tools perform predictions, and their use in sequence variant
interpretation should be cautious. It is not recommended to use these predictions as the
sole basis to make a clinical evaluation. An experimental confirmation is always necessary.

Validation methods can be performed both at gene (mainly through RT-PCR and RNA
sequencing) and at protein level (using PTT). Even with the advent of high-throughput
methodologies, which allow to fully characterize the transcriptome, conventional ex-
perimental RT-PCR, followed by Sanger sequencing, remains the preferred method of
analysis for diagnosis of diseases caused by aberrant splicing. For the investigation of a
genotype–phenotype correlation in research, RT-PCR may be replaced by microarrays or
predominantly by direct sequencing of cDNA, even if RNA-seq is still highly expensive
and data interpretation is difficult and troublesome for many laboratories.

9. Conclusions

Variants affecting splicing account up to 15% of all point variants causing human
genetic disorders. However, recent laboratory evidence has shown that the percentage of
these variants seems to be underestimated, since it considers mainly variants involving
canonical splice sites. The proper classification of splice variants is essential for the correct
diagnosis and genetic counseling. It is currently based on predictive bioinformatics analysis
and experimental validation.

Prediction tools and experimental procedures are directly linked to each other. The
availability of experimentally validated variants is fundamental for the continuous update
of variant databases. All the prediction tools are based on, or learn from, verified variant
classification; thus, they may be enhanced only by acquiring more validated experimental
data. On the other hand, reliable predictions provided by effective tools may guide variants
classification and reduce the number of variants to validate. For this reason, it is important
to deepen our knowledge of splicing process, extending the studies outside of the canonical
donor and acceptor splice site motifs for splicing mechanisms, in particular in intronic
regions. Concurrently, clinical variants databases must be updated with validation results.
These advances will be critical to increase the accuracy of bioinformatics predictions and
thereby improve the assessment of variant pathogenicity.

Author Contributions: Writing: G.R., S.C., and C.R.; figures, editing and revision: G.R., S.C., and
C.R.; supervision: C.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gilbert, W. Why genes in pieces? Nat. Cell Biol. 1978, 271, 501. [CrossRef]
2. Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nat. Cell Biol. 2010, 463, 457–463.

[CrossRef]
3. Wang, Y.; Liu, J.; Huang, B.O.; Xu, Y.-M.; Li, J.; Zhang, J.; Min, Q.-H.; Yang, W.-M.; Wang, X.-Z. Mechanism of alternative splicing

and its regulation. Biomed. Rep. 2015, 3, 152–158. [CrossRef] [PubMed]
4. Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards

and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [CrossRef] [PubMed]

5. Pohl, M.; Bortfeldt, R.H.; Grützmann, K.; Schuster, S. Alternative splicing of mutually exclusive exons—A review. Biosystems
2013, 114, 31–38. [CrossRef] [PubMed]

http://doi.org/10.1038/271501a0
http://doi.org/10.1038/nature08909
http://doi.org/10.3892/br.2014.407
http://www.ncbi.nlm.nih.gov/pubmed/25798239
http://doi.org/10.1038/gim.2015.30
http://www.ncbi.nlm.nih.gov/pubmed/25741868
http://doi.org/10.1016/j.biosystems.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23850531


Methods Protoc. 2021, 4, 62 23 of 27

6. Koren, E.; Lev-Maor, G.; Ast, G. The Emergence of Alternative 3′ and 5′ Splice Site Exons from Constitutive Exons. PLoS Comput.
Biol. 2007, 3, e95. [CrossRef]

7. Zheng, J.-T.; Lin, C.-X.; Fang, Z.-Y.; Li, H.-D. Intron Retention as a Mode for RNA-Seq Data Analysis. Front. Genet. 2020, 11, 586.
[CrossRef] [PubMed]

8. Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [CrossRef]
9. Turunen, J.J.; Verma, B.; Nyman, T.A.; Frilander, M.J. HnRNPH1/H2, U1 snRNP, and U11 snRNP cooperate to regulate the

stability of the U11-48K pre-mRNA. RNA 2013, 19, 380–389. [CrossRef]
10. Wachutka, L.; Caizzi, L.; Gagneur, J.; Cramer, P. Global donor and acceptor splicing site kinetics in human cells. Elife 2019,

8, e45056. [CrossRef]
11. Wickramasinghe, V.O.; Gonzàlez-Porta, M.; Perera, D.; Bartolozzi, A.R.; Sibley, C.R.; Hallegger, M.; Ule, J.; Marioni, J.C.;

Venkitaraman, A.R. Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is
determined by 5′ splice site strength. Genome Biol. 2015, 16, 201. [CrossRef]

12. Kondo, Y.; Oubridge, C.; Van Roon, A.-M.M.; Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein
particle, reveals the mechanism of 5′ splice site recognition. Elife 2015, 4, e04986. [CrossRef] [PubMed]

13. Perriman, R.; Ares, M. Invariant U2 snRNA Nucleotides Form a Stem Loop to Recognize the Intron Early in Splicing. Mol. Cell
2010, 38, 416–427. [CrossRef] [PubMed]

14. Bertram, K.; Agafonov, D.E.; Liu, W.-T.; Dybkov, O.; Will, C.L.; Hartmuth, K.; Urlaub, H.; Kastner, B.; Stark, H.; Lührmann, R.
Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nat. Cell Biol. 2017, 542, 318–323. [CrossRef]

15. Zhang, X.; Yan, C.; Zhan, X.; Li, L.; Lei, J.; Shi, Y. Structure of the human activated spliceosome in three conformational states. Cell
Res. 2018, 28, 307–322. [CrossRef]

16. Zheng, C.L.; Fu, X.-D.; Gribskov, M. Characteristics and regulatory elements defining constitutive splicing and different modes of
alternative splicing in human and mouse. RNA 2005, 11, 1777–1787. [CrossRef]

17. Muñoz, M.J.; de la Mata, M.; Kornblihtt, A.R. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends
Biochem. Sci. 2010, 35, 497–504. [CrossRef]

18. Shabalina, S.A.; Spiridonov, A.N.; Spiridonov, N.A.; Koonin, E.V. Connections between Alternative Transcription and Alternative
Splicing in Mammals. Genome Biol. Evol. 2010, 2, 791–799. [CrossRef] [PubMed]

19. Oren, Y.S.; Pranke, I.M.; Kerem, B.; Sermet-Gaudelus, I. The suppression of premature termination codons and the repair of
splicing mutations in CFTR. Curr. Opin. Pharmacol. 2017, 34, 125–131. [CrossRef]

20. Jimeno-González, S.; Reyes, J.C. Chromatin structure and pre-mRNA processing work together. Transcription 2016, 7, 63–68.
[CrossRef]

21. Chabot, B.; Shkreta, L. Defective control of pre–messenger RNA splicing in human disease. J. Cell Biol. 2016, 212, 13–27. [CrossRef]
[PubMed]

22. Sterne-Weiler, T.; Sanford, J.R. Exon identity crisis: Disease-causing mutations that disrupt the splicing code. Genome Biol. 2014,
15, 201–208. [CrossRef]

23. Krawczak, M.; Thomas, N.S.; Hundrieser, B.; Mort, M.; Wittig, M.; Hampe, J.; Cooper, D.N. Single base-pair substitutions in
exon-intron junctions of human genes: Nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 2007, 28, 150–158.
[CrossRef] [PubMed]

24. Habara, Y.; Takeshima, Y.; Awano, H.; Okizuka, Y.; Zhang, Z.; Saiki, K.; Yagi, M.; Matsuo, M. In vitro splicing analysis showed
that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G->A mutations in
introns of the dystrophin gene. J. Med. Genet. 2008, 46, 542–547. [CrossRef]

25. Cariola, F.; Disciglio, V.; Valentini, A.M.; Lotesoriere, C.; Fasano, C.; Forte, G.; Russo, L.; Di Carlo, A.; Guglielmi, F.; Manghisi, A.;
et al. Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome. Int. J. Biol. Markers
2018, 33, 534–539. [CrossRef]

26. Anna, A.; Monika, G. Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018,
59, 253–268. [CrossRef] [PubMed]

27. Dufner-Almeida, L.G.; Carmo, R.T.D.; Masotti, C.; Haddad, L.A. Understanding human DNA variants affecting pre-mRNA
splicing in the NGS era. Adv. Genet. 2019, 103, 39–90. [CrossRef]

28. Caminsky, N.G.; Mucaki, E.J.; Rogan, P.K. Interpretation of mRNA splicing mutations in genetic disease: Review of the literature
and guidelines for information-theoretical analysis. F1000Research 2014, 3, 282. [CrossRef]

29. Ward, A.J.; Cooper, T.A. The pathobiology of splicing. J. Pathol. 2009, 220, 152–163. [CrossRef] [PubMed]
30. Wimmer, K.; Roca, X.; Beiglböck, H.; Callens, T.; Etzler, J.; Rao, A.R.; Krainer, A.R.; Fonatsch, C.; Messiaen, L. Extensive in silico

analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5′ splice-site disruption. Hum. Mutat. 2007,
28, 599–612. [CrossRef]

31. Vaz-Drago, R.; Custódio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum. Genet. 2017, 136, 1093–1111.
[CrossRef] [PubMed]

32. Popp, M.W.-L.; Maquat, L.E. Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annu. Rev. Genet. 2013,
47, 139–165. [CrossRef]

http://doi.org/10.1371/journal.pcbi.0030095
http://doi.org/10.3389/fgene.2020.00586
http://www.ncbi.nlm.nih.gov/pubmed/32733531
http://doi.org/10.1038/nrm3742
http://doi.org/10.1261/rna.036715.112
http://doi.org/10.7554/eLife.45056
http://doi.org/10.1186/s13059-015-0749-3
http://doi.org/10.7554/eLife.04986
http://www.ncbi.nlm.nih.gov/pubmed/25555158
http://doi.org/10.1016/j.molcel.2010.02.036
http://www.ncbi.nlm.nih.gov/pubmed/20471947
http://doi.org/10.1038/nature21079
http://doi.org/10.1038/cr.2018.14
http://doi.org/10.1261/rna.2660805
http://doi.org/10.1016/j.tibs.2010.03.010
http://doi.org/10.1093/gbe/evq058
http://www.ncbi.nlm.nih.gov/pubmed/20889654
http://doi.org/10.1016/j.coph.2017.09.017
http://doi.org/10.1080/21541264.2016.1168507
http://doi.org/10.1083/jcb.201510032
http://www.ncbi.nlm.nih.gov/pubmed/26728853
http://doi.org/10.1186/gb4150
http://doi.org/10.1002/humu.20400
http://www.ncbi.nlm.nih.gov/pubmed/17001642
http://doi.org/10.1136/jmg.2008.061259
http://doi.org/10.1177/1724600818766496
http://doi.org/10.1007/s13353-018-0444-7
http://www.ncbi.nlm.nih.gov/pubmed/29680930
http://doi.org/10.1016/bs.adgen.2018.09.002
http://doi.org/10.12688/f1000research.5654.1
http://doi.org/10.1002/path.2649
http://www.ncbi.nlm.nih.gov/pubmed/19918805
http://doi.org/10.1002/humu.20493
http://doi.org/10.1007/s00439-017-1809-4
http://www.ncbi.nlm.nih.gov/pubmed/28497172
http://doi.org/10.1146/annurev-genet-111212-133424


Methods Protoc. 2021, 4, 62 24 of 27

33. Diederichs, S.; Bartsch, L.; Berkmann, J.C.; Fröse, K.; Heitmann, J.; Hoppe, C.; Iggena, D.; Jazmati, D.; Karschnia, P.; Linsenmeier,
M.; et al. The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding
RNA and synonymous mutations. EMBO Mol. Med. 2016, 8, 442–457. [CrossRef]

34. Conboy, J.G. Unannotated splicing regulatory elements in deep intron space. Wiley Interdiscip. Rev. RNA 2021, 12, e1656.
[CrossRef] [PubMed]

35. Rowlands, C.F.; Baralle, D.; Ellingford, J.M. Machine Learning Approaches for the Prioritization of Genomic Variants Impacting
Pre-mRNA Splicing. Cells 2019, 8, 1513. [CrossRef] [PubMed]

36. Frebourg, T. The Challenge for the Next Generation of Medical Geneticists. Hum. Mutat. 2014, 35, 909–911. [CrossRef]
37. Baralle, D.; Lucassen, A.; Buratti, E. Missed Threads. The Impact of Pre-mRNA Splicing Defects on Clinical Practice. EMBO Rep.

2009, 10, 810–816. [CrossRef]
38. Wang, G.-S.; Cooper, T.A. Splicing in disease: Disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 2007,

8, 749–761. [CrossRef]
39. Lim, K.H.; Ferraris, L.; Filloux, M.E.; Raphael, B.J.; Fairbrother, W.G. Using positional distribution to identify splicing elements

and predict pre-mRNA processing defects in human genes. Proc. Natl. Acad. Sci. USA 2011, 108, 11093–11098. [CrossRef]
[PubMed]

40. Zhang, X.; Lin, H.; Zhao, H.; Hao, Y.; Mort, M.; Cooper, D.N.; Zhou, Y.; Liu, Y. Impact of human pathogenic micro-insertions and
micro-deletions on post-transcriptional regulation. Hum. Mol. Genet. 2014, 23, 3024–3034. [CrossRef] [PubMed]

41. Rogozin, I.B.; Milanesi, L. Analysis of donor splice sites in different eukaryotic organisms. J. Mol. Evol. 1997, 45, 50–59. [CrossRef]
42. Pertea, M.; Lin, X.; Salzberg, S.L. GeneSplicer: A new computational method for splice site prediction. Nucleic Acids Res. 2001,

29, 1185–1190. [CrossRef]
43. Dogan, R.I.; Getoor, L.; Wilbur, W.J.; Mount, S. SplicePort–An interactive splice-site analysis tool. Nucleic Acids Res. 2007,

35, W285–W291. [CrossRef]
44. Burge, C.B.; Karlina, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268, 78–94. [CrossRef]
45. Hebsgaard, S.M.; Korning, P.G.; Tolstrup, N.; Engelbrecht, J.; Rouzé, P.; Brunak, S. Splice site prediction in Arabidopsis thaliana

pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996, 24, 3439–3452. [CrossRef]
46. Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved Splice Site Detection in Genie. J. Comput. Biol. 1997, 4, 311–323.

[CrossRef] [PubMed]
47. Yeo, E.; Burge, C.B. Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals. J. Comput.

Biol. 2004, 11, 377–394. [CrossRef]
48. Corvelo, A.; Hallegger, M.; Smith, C.W.J.; Eyras, E. Genome-Wide Association between Branch Point Properties and Alternative

Splicing. PLoS Comput. Biol. 2010, 6, e1001016. [CrossRef]
49. Shibata, A.; Okuno, T.; Rahman, M.A.; Azuma, Y.; Takeda, J.-I.; Masuda, A.; Selcen, D.; Engel, A.G.; Ohno, K. IntSplice: Prediction

of the splicing consequences of intronic single-nucleotide variations in the human genome. J. Hum. Genet. 2016, 61, 633–640.
[CrossRef] [PubMed]

50. Divina, P.; Kvitkovicova, A.; Buratti, E.; Vorechovsky, I. Ab initio prediction of mutation-induced cryptic splice-site activation and
exon skipping. Eur. J. Hum. Genet. 2009, 17, 759–765. [CrossRef] [PubMed]

51. Lim, K.H.; Fairbrother, W.G. Spliceman—A computational web server that predicts sequence variations in pre-mRNA splicing.
Bioinformatics 2012, 28, 1031–1032. [CrossRef] [PubMed]

52. Cartegni, L.; Wang, J.; Zhu, Z.; Zhang, M.Q.; Krainer, A.R. ESEfinder: A web resource to identify exonic splicing enhancers.
Nucleic Acids Res. 2003, 31, 3568–3571. [CrossRef] [PubMed]

53. Smith, P.J.; Zhang, C.; Wang, J.; Chew, S.L.; Zhang, M.Q.; Krainer, A.R. An increased specificity score matrix for the prediction of
SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006, 15, 2490–2508. [CrossRef]

54. Ke, S.; Shang, S.; Kalachikov, S.M.; Morozova, I.; Yu, L.; Russo, J.J.; Ju, J.; Chasin, L.A. Quantitative evaluation of all hexamers as
exonic splicing elements. Genome Res. 2011, 21, 1360–1374. [CrossRef]

55. Wang, Z.; Rolish, M.E.; Yeo, E.; Tung, V.; Mawson, M.; Burge, C.B. Systematic Identification and Analysis of Exonic Splicing
Silencers. Cell 2004, 119, 831–845. [CrossRef]

56. Erkelenz, S.; Theiss, S.; Otte, M.; Widera, M.; Peter, J.O.; Schaal, H. Genomic HEXploring allows landscaping of novel potential
splicing regulatory elements. Nucleic Acids Res. 2014, 42, 10681–10697. [CrossRef]

57. Fairbrother, W.G.; Yeh, R.-F.; Sharp, P.A.; Burge, C.B. Predictive Identification of Exonic Splicing Enhancers. Science 2002,
297, 1007–1013. [CrossRef] [PubMed]

58. Piva, F.; Giulietti, M.; Nocchi, L.; Principato, G. SpliceAid: A database of experimental RNA target motifs bound by splicing
proteins in humans. Bioinformatics 2009, 25, 1211–1213. [CrossRef]

59. Paz, I.; Kosti, I.; Ares, M., Jr.; Cline, M.; Mandel-Gutfreund, Y. RBPmap: A web server for mapping binding sites of RNA-binding
proteins. Nucleic Acids Res. 2014, 42, W361–W367. [CrossRef]

60. Akerman, M.; David-Eden, H.; Pinter, R.Y.; Mandel-Gutfreund, Y. A computational approach for genome-wide mapping of
splicing factor binding sites. Genome Biol. 2009, 10, R30. [CrossRef] [PubMed]

61. Knudsen, B.; Hein, J. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 2003,
31, 3423–3428. [CrossRef] [PubMed]

http://doi.org/10.15252/emmm.201506055
http://doi.org/10.1002/wrna.1656
http://www.ncbi.nlm.nih.gov/pubmed/33887804
http://doi.org/10.3390/cells8121513
http://www.ncbi.nlm.nih.gov/pubmed/31779139
http://doi.org/10.1002/humu.22592
http://doi.org/10.1038/embor.2009.170
http://doi.org/10.1038/nrg2164
http://doi.org/10.1073/pnas.1101135108
http://www.ncbi.nlm.nih.gov/pubmed/21685335
http://doi.org/10.1093/hmg/ddu019
http://www.ncbi.nlm.nih.gov/pubmed/24436305
http://doi.org/10.1007/PL00006200
http://doi.org/10.1093/nar/29.5.1185
http://doi.org/10.1093/nar/gkm407
http://doi.org/10.1006/jmbi.1997.0951
http://doi.org/10.1093/nar/24.17.3439
http://doi.org/10.1089/cmb.1997.4.311
http://www.ncbi.nlm.nih.gov/pubmed/9278062
http://doi.org/10.1089/1066527041410418
http://doi.org/10.1371/journal.pcbi.1001016
http://doi.org/10.1038/jhg.2016.23
http://www.ncbi.nlm.nih.gov/pubmed/27009626
http://doi.org/10.1038/ejhg.2008.257
http://www.ncbi.nlm.nih.gov/pubmed/19142208
http://doi.org/10.1093/bioinformatics/bts074
http://www.ncbi.nlm.nih.gov/pubmed/22328782
http://doi.org/10.1093/nar/gkg616
http://www.ncbi.nlm.nih.gov/pubmed/12824367
http://doi.org/10.1093/hmg/ddl171
http://doi.org/10.1101/gr.119628.110
http://doi.org/10.1016/j.cell.2004.11.010
http://doi.org/10.1093/nar/gku736
http://doi.org/10.1126/science.1073774
http://www.ncbi.nlm.nih.gov/pubmed/12114529
http://doi.org/10.1093/bioinformatics/btp124
http://doi.org/10.1093/nar/gku406
http://doi.org/10.1186/gb-2009-10-3-r30
http://www.ncbi.nlm.nih.gov/pubmed/19296853
http://doi.org/10.1093/nar/gkg614
http://www.ncbi.nlm.nih.gov/pubmed/12824339


Methods Protoc. 2021, 4, 62 25 of 27

62. Markham, N.R.; Zuker, M. UNAFold: Software for Nucleic Acid Folding and Hybridization. Methods Mol. Biol. 2008, 453, 3–31.
[CrossRef]

63. Shapiro, M.B.; Senapathy, P. RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications
in gene expression. Nucleic Acids Res. 1987, 15, 7155–7174. [CrossRef]

64. Desmet, F.-O.; Hamroun, D.; Lalande, M.; Collod-Beroud, G.; Claustres, M.; Béroud, C. Human Splicing Finder: An online
bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37, e67. [CrossRef] [PubMed]

65. Schwartz, S.; Hall, E.; Ast, G. SROOGLE: Webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids
Res. 2009, 37, W189–W192. [CrossRef]

66. Faber, K.; Glatting, K.-H.; Mueller, P.J.; Risch, A.; Hotz-Wagenblatt, A. Genome-wide prediction of splice-modifying SNPs in
human genes using a new analysis pipeline called AASsites. BMC Bioinform. 2011, 12 (Suppl 4), S2. [CrossRef]

67. Raponi, M.; Kralovicova, J.; Copson, E.; Divina, P.; Eccles, D.M.; Johnson, P.; Baralle, D.; Vorechovsky, I. Prediction of single-
nucleotide substitutions that result in exon skipping: Identification of a splicing silencer inBRCA1exon 6. Hum. Mutat. 2011,
32, 436–444. [CrossRef] [PubMed]

68. Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [CrossRef]
69. Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, YN, USA, 2006.
70. Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of

rela-tionships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [CrossRef]
71. Libbrecht, M.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [CrossRef]
72. Camacho, D.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological Networks.

Cell 2018, 173, 1581–1592. [CrossRef] [PubMed]
73. Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the

human genome. Nucleic Acids Res. 2019, 47, D886–D894. [CrossRef]
74. Kirke, J.; Jin, X.-L.; Zhang, X.-H. Expression of a Tardigrade Dsup Gene Enhances Genome Protection in Plants. Mol. Biotechnol.

2020, 62, 563–571. [CrossRef]
75. Gelfman, S.; Wang, Q.; McSweeney, K.M.; Ren, Z.; La Carpia, F.; Halvorsen, M.; Schoch, K.; Ratzon, F.; Heinzen, E.L.; Boland, M.J.;

et al. Annotating pathogenic non-coding variants in genic regions. Nat. Commun. 2017, 8, 236. [CrossRef]
76. Davydov, E.V.; Goode, D.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a High Fraction of the Human Genome

to be under Selective Constraint Using GERP++. PLoS Comput. Biol. 2010, 6, e1001025. [CrossRef] [PubMed]
77. Lee, M.; Roos, P.; Sharma, N.; Atalar, M.; Evans, T.A.; Pellicore, M.J.; Davis, E.; Lam, A.-T.N.; Stanley, S.E.; Khalil, S.E.; et al.

Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites. Am. J. Hum. Genet.
2017, 100, 751–765. [CrossRef] [PubMed]

78. Jagadeesh, K.A.; Paggi, J.M.; Ye, J.S.; Stenson, P.D.; Cooper, D.N.; Bernstein, J.A.; Bejerano, G. S-CAP extends pathogenicity
prediction to genetic variants that affect RNA splicing. Nat. Genet. 2019, 51, 755–763. [CrossRef]

79. Wang, R.; Wang, Y.; Hu, Z. Using secondary structure to predict the effects of genetic variants on alternative splicing. Hum. Mutat.
2019, 40, 1270–1279. [CrossRef]

80. Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.;
Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [CrossRef]

81. Zhang, Z.; Pan, Z.; Ying, Y.; Xie, Z.; Adhikari, S.; Phillips, J.; Carstens, R.P.; Black, D.L.; Wu, Y.; Xing, Y. Deep-learning augmented
RNA-seq analysis of transcript splicing. Nat. Methods 2019, 16, 307–310. [CrossRef]

82. Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.;
Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [CrossRef]

83. Cheng, J.; Nguyen TY, D.; Cygan, K.J.; Çelik, M.H.; Fairbrother, W.G.; Avsec, Ž.; Gagneur, J. MMSplice: Modular modeling
improves the predictions of genetic variant effects on splicing. Genome Biol. 2019, 20, 48. [CrossRef]

84. The 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini,
J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]
[PubMed]

85. Mort, M.; Sterne-Weiler, T.; Li, B.; Ball, E.V.; Cooper, D.N.; Radivojac, P.; Sanford, J.R.; Mooney, S.D. MutPred Splice: Machine
learning-based prediction of exonic variants that disrupt splicing. Genome Biol. 2014, 15, R19. [CrossRef] [PubMed]

86. Xiong, H.Y.; Alipanahi, B.; Lee, L.J.; Bretschneider, H.; Merico, D.; Yuen, R.; Hua, Y.; Gueroussov, S.; Najafabadi, H.; Hughes,
T.R.; et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015, 347, 1254806.
[CrossRef]

87. Wang, R.; Wang, Z.; Wang, J.; Li, S. SpliceFinder: Ab initio prediction of splice sites using convolutional neural network. BMC
Bioinform. 2019, 20 (Suppl. 23), 652. [CrossRef] [PubMed]

88. Jian, X.; Boerwinkle, E.; Liu, X. In silico tools for splicing defect prediction: A survey from the viewpoint of end users. Genet. Med.
2014, 16, 497–503. [CrossRef]

89. Coolidge, C.J.; Seely, R.J.; Patton, J.G. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res.
1997, 25, 888–896. [CrossRef]

http://doi.org/10.1007/978-1-60327-429-6_1
http://doi.org/10.1093/nar/15.17.7155
http://doi.org/10.1093/nar/gkp215
http://www.ncbi.nlm.nih.gov/pubmed/19339519
http://doi.org/10.1093/nar/gkp320
http://doi.org/10.1186/1471-2105-12-S4-S2
http://doi.org/10.1002/humu.21458
http://www.ncbi.nlm.nih.gov/pubmed/21309043
http://doi.org/10.1147/rd.33.0210
http://doi.org/10.1093/nar/gkt1113
http://doi.org/10.1038/nrg3920
http://doi.org/10.1016/j.cell.2018.05.015
http://www.ncbi.nlm.nih.gov/pubmed/29887378
http://doi.org/10.1093/nar/gky1016
http://doi.org/10.1007/s12033-020-00273-9
http://doi.org/10.1038/s41467-017-00141-2
http://doi.org/10.1371/journal.pcbi.1001025
http://www.ncbi.nlm.nih.gov/pubmed/21152010
http://doi.org/10.1016/j.ajhg.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28475858
http://doi.org/10.1038/s41588-019-0348-4
http://doi.org/10.1002/humu.23790
http://doi.org/10.1016/j.cell.2018.12.015
http://doi.org/10.1038/s41592-019-0351-9
http://doi.org/10.1038/nature19057
http://doi.org/10.1186/s13059-019-1653-z
http://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
http://doi.org/10.1186/gb-2014-15-1-r19
http://www.ncbi.nlm.nih.gov/pubmed/24451234
http://doi.org/10.1126/science.1254806
http://doi.org/10.1186/s12859-019-3306-3
http://www.ncbi.nlm.nih.gov/pubmed/31881982
http://doi.org/10.1038/gim.2013.176
http://doi.org/10.1093/nar/25.4.888


Methods Protoc. 2021, 4, 62 26 of 27

90. Bryen, S.; Joshi, H.; Evesson, F.J.; Girard, C.; Ghaoui, R.; Waddell, L.B.; Testa, A.C.; Cummings, B.; Arbuckle, S.; Graf, N.; et al.
Pathogenic Abnormal Splicing Due to Intronic Deletions that Induce Biophysical Space Constraint for Spliceosome Assembly.
Am. J. Hum. Genet. 2019, 105, 573–587. [CrossRef]

91. De Conti, L.; Baralle, M.; Buratti, E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA 2013, 4, 49–60.
[CrossRef]

92. Ke, S.; Chasin, L.A. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing. Genome Biol. 2010, 11, R84.
[CrossRef]

93. Dunnen, J.T.D. RNA-Based Variant Detection. In Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 293–298.
94. Frayling, I.M. Methods of molecular analysis: Mutation detection in solid tumours. Mol. Pathol. 2002, 55, 73–79. [CrossRef]
95. Baralle, D. Splicing in action: Assessing disease causing sequence changes. J. Med. Genet. 2005, 42, 737–748. [CrossRef] [PubMed]
96. Dietz, H.C.; Kendzior, R.J. Maintenance of an open reading frame as an additional level of scrutiny during splice site selection.

Nat. Genet. 1994, 8, 183–188. [CrossRef] [PubMed]
97. Vossen, R.; Dunnen, J.T.D. Protein Truncation Test. Curr. Protoc. Hum. Genet. 2004, 42, 9.11.1–9.11.23. [CrossRef] [PubMed]
98. Mo, Y.; Wan, R.; Zhang, Q. Application of Reverse Transcription-PCR and Real-Time PCR in Nanotoxicity Research. In Nanotoxicity;

Reineke, J., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 926, pp. 99–112.
99. He, S.L.; Green, R. Northern Blotting. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 530, pp. 75–87.
100. Harvey, S.E.; Cheng, C. Methods for Characterization of Alternative RNA Splicing. In Long Non-Coding RNAs; Feng, Y., Zhang, L.,

Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1402, pp. 229–241.
101. Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and Potential. Biotechniques 1999, 26, 112–125. [CrossRef]
102. Cooper, T.A. Use of minigene systems to dissect alternative splicing elements. Methods 2005, 37, 331–340. [CrossRef]
103. Singh, G.; Cooper, T.A. Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA

splicing. Biotechniques 2006, 41, 177–181. [CrossRef]
104. Qian, X.; Ba, Y.; Zhuang, Q.; Zhong, G. RNA-Seq Technology and Its Application in Fish Transcriptomics. OMICS A J. Integr. Biol.

2014, 18, 98–110. [CrossRef]
105. Knudsen, S.; Knudsen, S. Guide to Analysis of DNA Microarray Data, 2nd ed.; Wiley-Liss: Hoboken, NJ, USA, 2004.
106. Al-Haggar, M. Evolving Molecular Methods for Detection of Mutations. Gene Technol. 2013, 2, 1–2. [CrossRef]
107. Tarca, A.L.; Romero, R.; Draghici, S. Analysis of microarray experiments of gene expression profiling. Am. J. Obstet. Gynecol. 2006,

195, 373–388. [CrossRef]
108. Jaksik, R.; Iwanaszko, M.; Rzeszowska-Wolny, J.; Kimmel, M. Microarray experiments and factors which affect their reliability.

Biol. Direct 2015, 10, 46. [CrossRef]
109. Haddad, R.; Tromp, G.; Kuivaniemi, H.; Chaiworapongsa, T.; Kim, Y.M.; Mazor, M.; Romero, R. Human spontaneous labor

without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am. J. Obstet. Gynecol.
2006, 195, 394–405.e12. [CrossRef]

110. Maier, T.; Güell, M.; Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583, 3966–3973.
[CrossRef] [PubMed]

111. Yazaki, J.; Gregory, B.D.; Ecker, J.R. Mapping the genome landscape using tiling array technology. Curr. Opin. Plant Biol. 2007,
10, 534–542. [CrossRef]

112. Eklund, A.C.; Turner, L.R.; Chen, P.; Jensen, R.V.; Defeo, G.; Kopf-Sill, A.R.; Szallasi, Z. Replacing cRNA targets with cDNA
reduces microarray cross-hybridization. Nat. Biotechnol. 2006, 24, 1071–1073. [CrossRef] [PubMed]

113. Okoniewski, M.J.; Miller, C.J. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations.
BMC Bioinform. 2006, 7, 276. [CrossRef]

114. Martin, S.A.; Dehler, C.E.; Krol, E. Transcriptomic responses in the fish intestine. Dev. Comp. Immunol. 2016, 64, 103–117.
[CrossRef]

115. Kukurba, K.R.; Montgomery, S. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, pdb.top084970. [CrossRef]
116. Chmel, N.; Danescu, S.; Gruler, A.; Kiritsi, D.; Bruckner-Tuderman, L.; Kreuter, A.; Kohlhase, J.; Has, C. A Deep-Intronic FERMT1

Mutation Causes Kindler Syndrome: An Explanation for Genetically Unsolved Cases. J. Investig. Dermatol. 2015, 135, 2876–2879.
[CrossRef] [PubMed]

117. Saeidian, A.H.; Youssefian, L.; Vahidnezhad, H.; Uitto, J. Research Techniques Made Simple: Whole-Transcriptome Sequencing
by RNA-Seq for Diagnosis of Monogenic Disorders. J. Investig. Dermatol. 2020, 140, 1117–1126.e1. [CrossRef]

118. Zeng, W.; Mortazavi, A. Technical considerations for functional sequencing assays. Nat. Immunol. 2012, 13, 802–807. [CrossRef]
[PubMed]

119. Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [CrossRef]
120. Whitley, S.K.; Horne, W.T.; Kolls, J.K. Research Techniques Made Simple: Methodology and Clinical Applications of RNA

Sequencing. J. Investig. Dermatol. 2016, 136, e77–e82. [CrossRef] [PubMed]
121. Rao, M.S.; Van Vleet, T.R.; Ciurlionis, R.; Buck, W.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Liguori, M.J. Comparison of RNA-Seq

and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver from Short-Term Rat Toxicity Studies.
Front. Genet. 2019, 9, 636. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ajhg.2019.07.013
http://doi.org/10.1002/wrna.1140
http://doi.org/10.1186/gb-2010-11-8-r84
http://doi.org/10.1136/mp.55.2.73
http://doi.org/10.1136/jmg.2004.029538
http://www.ncbi.nlm.nih.gov/pubmed/16199547
http://doi.org/10.1038/ng1094-183
http://www.ncbi.nlm.nih.gov/pubmed/7842017
http://doi.org/10.1002/0471142905.hg0911s42
http://www.ncbi.nlm.nih.gov/pubmed/18428364
http://doi.org/10.2144/99261rv01
http://doi.org/10.1016/j.ymeth.2005.07.015
http://doi.org/10.2144/000112208
http://doi.org/10.1089/omi.2013.0110
http://doi.org/10.4172/2329-6682.1000e104
http://doi.org/10.1016/j.ajog.2006.07.001
http://doi.org/10.1186/s13062-015-0077-2
http://doi.org/10.1016/j.ajog.2005.08.057
http://doi.org/10.1016/j.febslet.2009.10.036
http://www.ncbi.nlm.nih.gov/pubmed/19850042
http://doi.org/10.1016/j.pbi.2007.07.006
http://doi.org/10.1038/nbt0906-1071
http://www.ncbi.nlm.nih.gov/pubmed/16964210
http://doi.org/10.1186/1471-2105-7-276
http://doi.org/10.1016/j.dci.2016.03.014
http://doi.org/10.1101/pdb.top084970
http://doi.org/10.1038/jid.2015.227
http://www.ncbi.nlm.nih.gov/pubmed/26083552
http://doi.org/10.1016/j.jid.2020.02.032
http://doi.org/10.1038/ni.2407
http://www.ncbi.nlm.nih.gov/pubmed/22910383
http://doi.org/10.1038/nrg2484
http://doi.org/10.1016/j.jid.2016.06.003
http://www.ncbi.nlm.nih.gov/pubmed/27450500
http://doi.org/10.3389/fgene.2018.00636
http://www.ncbi.nlm.nih.gov/pubmed/30723492


Methods Protoc. 2021, 4, 62 27 of 27

122. Eilertsen, I.A.; Moosavi, S.H.; Strømme, J.M.; Nesbakken, A.; Johannessen, B.; Lothe, R.A.; Sveen, A. Technical differences between
sequencing and microarray platforms impact transcriptomic subtyping of colorectal cancer. Cancer Lett. 2019, 469, 246–255.
[CrossRef] [PubMed]

123. Roest, P.A.; Roberts, R.; van der Tuijn, A.C.; Heikoop, J.C.; van Ommen, G.-J.B.; Dunnen, J.T.D. Protein truncation test (PTT) to
rapidly screen the DMD gene for translation terminating mutations. Neuromuscul. Disord. 1993, 3, 391–394. [CrossRef]

124. Hauss, O.; Müller, O. The Protein Truncation Test in Mutation Detection and Molecular Diagnosis. In In Vitro Transcription and
Translation Protocols; Grandi, G., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 151–164.

125. Gite, S.; Lim, M.; Carlson, R.; Olejnik, J.; Zehnbauer, B.; Rothschild, K. A high-throughput nonisotopic protein truncation test. Nat.
Biotechnol. 2003, 21, 194–197. [CrossRef] [PubMed]

126. Denier, C.; Labauge, P.; Brunereau, L.; Cavé-Riant, F.; Marchelli, F.; Arnoult, M.; Cecillon, M.; Maciazek, J.; Joutel, A.; Tournier-
Lasserve, E.; et al. Clinical features of cerebral cavernous malformations patients withKRIT1mutations. Ann. Neurol. 2003,
55, 213–220. [CrossRef]

127. Canson, D.; Glubb, D.; Spurdle, A.B. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization:
Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum. Mutat. 2020, 41, 1705–1721.
[CrossRef]

128. Agiannitopoulos, K.; Pepe, G.; Papadopoulou, E.; Tsaousis, G.N.; Kampouri, S.; Maravelaki, S.; Fassas, A.; Christodoulou, C.;
Iosifidou, R.; Karageorgopoulou, S.; et al. Clinical Utility of Functional RNA Analysis for the Reclassification of Splicing Gene
Variants in Hereditary Cancer. Cancer Genom. Proteom. 2021, 18, 285–294. [CrossRef] [PubMed]

129. Soukarieh, O.; Gaildrat, P.; Hamieh, M.; Drouet, A.; Baert-Desurmont, S.; Frébourg, T.; Tosi, M.; Martins, A. Exonic Splicing
Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet. 2016,
12, e1005756. [CrossRef]

130. Ahlborn, L.; Dandanell, M.; Steffensen, A.Y.; Jønson, L.; Nielsen, M.D.; Hansen, T.V.O. Splicing analysis of 14 BRCA1 missense
variants classifies nine variants as pathogenic. Breast Cancer Res. Treat. 2015, 150, 289–298. [CrossRef] [PubMed]

131. Ricci, C.; Riolo, G.; Battistini, S. Molecular genetic analysis of cerebral cavernous malformations: An update. Vessel. Plus 2021, 5.
[CrossRef]

http://doi.org/10.1016/j.canlet.2019.10.040
http://www.ncbi.nlm.nih.gov/pubmed/31678167
http://doi.org/10.1016/0960-8966(93)90083-V
http://doi.org/10.1038/nbt779
http://www.ncbi.nlm.nih.gov/pubmed/12524552
http://doi.org/10.1002/ana.10804
http://doi.org/10.1002/humu.24074
http://doi.org/10.21873/cgp.20259
http://www.ncbi.nlm.nih.gov/pubmed/33893081
http://doi.org/10.1371/journal.pgen.1005756
http://doi.org/10.1007/s10549-015-3313-7
http://www.ncbi.nlm.nih.gov/pubmed/25724305
http://doi.org/10.20517/2574-1209.2021.28

	Introduction 
	Constitutive Splicing vs. Alternative Splicing 
	Genomic Variants Affecting Splicing Process 
	DNA Variants in Canonical Splicing Sites 
	Variants in Splicing Acceptor and Donor Sites 
	Variants Affecting Branch Point and Polypyrimidine Tract 

	Exonic Variants Affecting Splicing 
	Deep Intronic Variants 

	Identification of Splice Variants in NGS Era 
	Predictive Tools for Splice Variant Identification 
	Early Computational Methodologies for Splice Variant Prediction 
	Input Sequences 
	Statistical Models 
	Tools Combining Multiple Algorithms 

	Machine Learning-Based Tools 

	Interpretation and Evaluation 
	Validation of Predicted Splicing Variants 
	Transcriptomics Functional Testing 
	Proteomics Analysis 

	Splice Variant Characterization in Diagnostics 
	Conclusions 
	References

