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Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations
of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates.
Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism
of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of
reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process
itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human
cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic
stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and
repair, will be discussed here.

1. Introduction

Arsenic is one of the most abundant elements in the
Earth’s crust [1]. Chemically, it is classified as metalloid,
exhibiting organic (when linked with carbon and hydrogen)
and inorganic (combined with oxygen, chlorine, and sulfur,
among other elements) forms [2]. Inorganic arsenic (iAs)
can be present naturally in soil, especially in rocks containing
copper or lead, and in the atmosphere as airborne dust. Addi-
tionally, anthropogenic activities, such smelter operations,
can cause water contamination [3, 4]. In the environment,
iAs can be found in several oxidation states, more frequently
as trivalent (iAs[III], also known as arsenite) and pentavalent
(iAs[V] or arsenate) species [5]. These forms are differently
metabolized by mammals (see below) and exhibit distinct
grades of toxicity.

Several health effects have been documented as a con-
sequence of iAs exposition, with the majority of harmful
exposure coming from ingestion through drinking water.
iAs-associated malignancies include skin lesions, hyperten-
sion, ischemia, some endemic peripheral vascular disorders

(e.g., “black foot disease”), severe arteriosclerosis, neu-
ropathies, noticeably, many types of cancer [6–9]. A number
of studies have established significant associations and/or
dose response trends between iAs in drinking water and
occurrence of tumors of the skin, bladder, kidney, liver,
prostate, and lungs [10–15].

The evidence of a relationship between iAs in drinking
water and cancer is extensive and sufficient, leading to
the International Agency of Research on Cancer (IARC)
to consider this metalloid as a Group 1 human carcino-
gen. The estimated cancer-death risk associated with daily
consumption of 1.6 liters of water with iAs concentrations
of 50 μg/L is 21/1,000 [16]. For these reasons, the World
Health Organization and the U.S. Environmental Protection
Agency have recommended a threshold of 10 μg/L for iAs
concentration in drinking water [17, 18].

Despite efforts to reduce high-scale exposure, many
nations throughout the world have iAs concentrations in
water that are above the recommended level [19–21].
Approximately 40 million people worldwide are thought to
be exposed to iAs levels that can be considered dangerous
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[19]. Among them, 21 million people in Bangladesh and
India (West Bengal) are exposed to drinking water with iAs
concentrations >50 μg/L [22], and shockingly, iAs concen-
tration in water wells in these areas has been documented
as high as 1000 μg/L [23]. In China, it has been estimated
that more than 3 million people are exposed to iAs from
groundwater [24], while in southwestern Taiwan, some
residents have used well water contaminated with iAs for
more than 50 years (some ingesting as much as 1000 μg
iAs/day) [25–27]. In Northern Chile, the population was
exposed to levels of iAs in drinking water around 900 μg/L
between 1958 and 1970, with nearby towns registering
exposures of 600 μg/mL as late as 1994 [11].

2. Arsenic Biotransformation

About 80–90% of ingested As[III] or As[V] is absorbed
from the gastrointestinal tract [28–30]. Data derived from
autopsies has determined that muscles, bones, kidneys,
and lungs have the highest absolute accumulated amounts
of iAs, while skin and excretory/storage organs, such as
nails and hair, are the most concentrated [31]. iAs[III]
exhibits a significantly higher biological activity than As[V];
however, effects observed in mammals could be similar,
since absorbed As[V] is mostly reduced to As[III] on the
initial steps of arsenic metabolism in mammals [32, 33].
Interestingly, there is evidence for interindividual differences
in iAs metabolism/excretion in humans and other species
[34, 35].

The biotransformation process of iAs occurs via methy-
lation through alternating reduction of As[V] to As[III], and
subsequent addition of methyl groups [36]. This methylation
process uses S-adenosylmethionine (SAM) as a methyl group
donor, through a SAM-dependant As[III]-methyltransferase,
initially isolated from rat liver and a human homologue of
cytochrome19 [37]. This enzyme catalyzes the transfer of a
methyl group from SAM to As[III] producing methylated
and dimethylated arsenic compounds. Trivalent methylated
species, such monomethylarsonous acid (MMA[III]) and
dimethylarsinic acid (DMA[III]), have been detected in the
urine of patients chronically exposed to iAs in drinking
water [38, 39]. Methylated pentavalent arsenicals such as
monomethylarsonic acid (MMA[V]) and dimethylarsinic
acid (DMA[V]) are major metabolites of iAs in human urine,
with DMA[V] being the final metabolite in humans [39–
41]. Derivate methylated species from iAs metabolisms are
considered relevant agents during arsenic carcinogenicity,
specially through induction of oxidative stress and impairing
DNA repair processes. These aspects will be discussed in the
following sections.

Despite evidence of biotransformation role in arsenic
carcinogenicity, it has been demonstrated that arsenic can
induce malignant transformation in cell lines with deficient
arsenic-methylation capacity. Arsenic methylation-deficient
RWPE-1 human prostate cells undergo malignant transfor-
mation when exposed to 5.0 μM of iAs[III] during 30 weeks
[42]. Alternative mechanism of arsenic-induced malignant
transformation might be associated with mitochondrial

dysfunction (see below), specifically through transcription
and replication of the mitochondrial genome, in which the
mitochondrial transcription factor A (mtTFA) and its reg-
ulators, such the nuclear respiratory factor-1 (NRF-1), play
key roles [43, 44]. In this context, it has been demonstrated
that mtTFA and NRF-1 expressions levels are increased
in cells exposed to iAs[III] in a concentration-dependent
manner, suggesting that arsenic regulates mitochondrial
activity through an NRF-1-dependent pathway [45].

3. Arsenic Carcinogenicity: Role of
Oxidative Stress

Despite the strong relationship between iAs exposure and
cancer, the exact mechanism is still unknown. There is
evidence supporting low level mutagenic activity of iAs;
however, it has also been shown that iAs can induce
transformation in several cell types [46, 47]. Moreover, iAs
can interfere with a number of biological processes, including
DNA methylation, since the arsenic biotransformation path-
way uses SAM as a methyl group donor. Therefore, epigenetic
mechanisms have also been proposed to participate in iAs-
induced carcinogenesis [48].

Biotransformation of iAs has been proposed to generate
final and intermediate metabolites exhibiting higher toxicity
and reactivity compared to originally ingested iAs [5, 49,
50]. Methylated species, especially DMA[V], have been
demonstrated to be genotoxic and cytotoxic [46, 49, 51–
53]. Several studies have shown that DMA[V] can exhibit
carcinogenic potential in mammals, mainly in lungs, skin,
liver, kidney, thyroid, and urinary bladder [39, 54–58]. It has
been proposed that DMA[V] can participate in promoting
tumorigenesis of lungs and skin in mouse via the production
of dimethylated arsenic peroxide [(CH3)2AsOO·], a type
of reactive oxygen species (ROS) generated during iAs
metabolism [53, 54].

In the light of these facts, oxidative stress has been
proposed as a plausible general mode of action for iAs
carcinogenesis [59–63]. Oxidative stress is characterized by
generation of several ROS, such as superoxide anion (O2

−),
hydroxyl radical (·OH), hydrogen peroxide (H2O2), singlet
oxygen (1O2), and peroxyl radical (LOO), among others [64].
One of the primary species formed in iAs-induced oxidative
stress is O2

−, followed by a cascade of secondary ROS such as
H2O2 and ·OH [61].

iAs exposure results in the generation of ROS in various
cellular systems, and its production has been proposed as
one of the early biological events on iAs-related carcinogenic
process [65]. In addition, cultured vascular endothelial cells
exposed to iAs increase oxygen cell consumption contribut-
ing to increased ROS production, stimulating cell signaling
and activating transcription factors [66]. Conversely, ROS
scavengers can suppress arsenic-induced oxidative stress and
its cytotoxic effects in cells [67, 68]. It has also been described
that iAs exposure can affect expression of genes associated
with stress-related components, DNA damage and repair-
responsive genes, activation of transcription factors such
as the AP-1 complex, and increases in proinflammatory
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cytokines, which could influence response to acute arsenic
toxicity [69]. Alternatively, ROS generation by iAs can
involve hepatic and renal heme oxygenase isoform 1, gen-
erating among others species, free iron which subsequently
participates in reactions where H2O2 is reduced to OH− and
·OH [69]. Additionally, the oxidation of iAs[III] to As[V]
during formation of intermediary arsine species can also
generate H2O2 [70].

Mechanisms of iAs carcinogenicity could vary between
different tissues, due to different oxygen concentrations, and
accumulation of iAs species, endogenous reducing agents,
and ferritin, among others factors [71, 72]. For example,
lungs are exposed to the highest oxygen tensions in the body,
and DMA[III], and its derivates (including ROS) are excreted
through the lung, which could explain why this organ is
frequently affected by iAs-induced carcinogens [60].

It has been suggested that arsenic-associated mitochon-
drial dysfunction, mitochondrial DNA (mtDNA) depletion,
and induction of mtDNA deletions may contribute to the
carcinogenicity in humans [73]. Also, mitochondria might
be an important target of arsenic-induced genotoxicity
[74]. On the other hand, since mitochondria is a major
source of intracellular ROS, arsenic-mediated disruption of
its function can lead to an increase in intracellular ROS
levels and subsequently, to an increased mutagenic potential,
either directly or by decreasing DNA repair capacity [73].
Relationships between mitochondria and arsenic-mediated
effects are supported by observations such as suppression of
arsenic-induced apoptosis in HeLa cells by the antioxidant
action of N-acetyl-cysteine, which prevents mitochondrial
membrane depolarization [75]. Alternatively, arsenic can
act directly through condensing mitochondrial matrix and
opening of permeability transition pores [76].

4. DNA and Chromosomal Damage by
iAS-Induced Oxidative Stress

Genotoxic mechanisms associated with arsenic carcinogenic-
ity remain controversial. While some groups argue against
this type of interaction, others have postulated this can be
a significant mode of action. Rossman [46] has proposed
that arsenite does not react directly with DNA. In the
same way, toxic doses (10–15 μM) of iAs[III] act as a poor
mutagen at the gpt mutagenic target in transgenic Chinese
hamster G12 cells [77]. On the other hand, it has been
proposed that iAs[III] is a significant mutagen that induces
mainly large chromosomal mutations [78]. Alternatively,
arsenic has been shown to be mutagenic to mitochondrial
DNA and can potentially induce nuclear DNA damage by
activating mitochondrial ROS through increased expression
of mtTFA [45]. Also, arsenic can induce mutations as well
as methylation changes in the mouse testicular Leydig cell
genome [79]. Similarly, comet assay performed on human
prostate epithelial cells exposed to 100 pg/mL of arsenic
exhibited tail-like structures, suggesting induction of nuclear
DNA damage [45].

iAs is known to damage chromosomes [80]. Due to
little evidence of covalent binding between iAs and DNA

structures, it has been proposed that much of the DNA
damage observed during iAs exposure is indirect, occurring
mainly as a result of ROS induction which generates DNA
adducts, DNA strand breaks, cross links, and chromosomal
aberrations [81, 82]. Figure 2 indicates the sequence of events
related to ROS induced DNA damage after iAs exposure.
Depending on which cell cycle phase exposure occurs, as
a consequence DNA oxidation, iAs can result in gross
chromosomal aberrations including DNA strand breaks [61,
69].

5. DNA Strand Breaks

iAs can induce DNA strand breaks even at low concen-
trations. Main related-events are summarized in Figure 1.
Single-strand DNA (ssDNA) breaks are the most common
lesions induced by exogenous genotoxins [83]. Arsenic-
induced ssDNA breaks are likely caused through ROS, either
directly by free-radical attack on the DNA bases or indirectly
during the course of base excision repair (BER) mechanisms
[84]. Arsenic-induced ROS has been shown to promote
ssDNA breaks in mice lungs [70]. Furthermore, human
fibroblast cell lines exposed to iAs exhibit ssDNA breaks and
DNA-protein adducts, as well as sister chromatid exchanges
[85].

iAs is also capable of producing double-strand DNA
(dsDNA) breaks at concentrations of 5 μM in mammalian
cells [86]. These are one of the most deleterious and
mutagenic DNA lesions experienced in human cells, leading
to gross losses of genetic material [87]. Therefore, iAs is
also proposed to act as a cocarcinogen, exacerbating damage
induced by other agents. In this context, 1 μM of iAs increases
UVR-mediated DNA strand breaks by interfering with
Poly-adenosine diphosphate-ribose polymerase 1 (PAPR-1)
activity, which plays an important role in the ssDNA or
dsDNA breaks repair process [88].

MMA[III] was found to be a potent clastogen in late
G1- or S-phase-treated cells; however, lesions induced by
MMA[III] are quickly repaired through BER mechanisms
when they are induced in G0- or G1-phase of the cell cycle
[84]. Trivalent arsenicals might induce either chromatid-
or chromosome-type aberrations during treatment in G0
or G1. If ssDNA or dsDNA breaks produced by iAs-
induced ROS pass the S-Phase (DNA synthesis), replication
occurs and chromatid- and chromosome-type aberrations
can be produced [89]. Evidence pertaining to these type of
aberrations is discussed below.

6. Arsenic-Induced Chromatid and
Chromosomal Aberrations

Arsenic is a known inducer of chromosomal and chromatid
aberrations. Lee et al. [90] demonstrated that iAs can
effectively induce methotrexate-resistance in mouse 3T6
cells, resulting in selection of cells with amplification of
the dihydrofolate reductase gene [91]. Genetic changes were
observed in bladder tumor (transitional cell carcinoma,
TCC) from 123 patients in Argentina and Chile, exposed to
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Figure 1: Arsenic-induced DNA strand breaks. After ingestion, iAs biotransformation process could lead to iAs excretion, mainly conjugated
with Glutathione (GSH). On the other hand, biotransformation process may generate reactive oxygen species (ROS), probably in a specific
sequence: superoxide anions (O2

−), hydrogen peroxide (H2O2), and hydroxyl radicals (·OH). These species can induce both single-strand
(ssDNA) and double-strand (dsDNA) breaks by inducing oxidative damage. In parallel, they can inhibit DNA break repair mechanisms both
for ssDNA breaks (mainly base excision repair [BER]) and for dsDNA breaks (homologous recombination [HR] and/or nonhomologous end
joining [NHEJ]). Additionally, ROS derived from iAs biotransformation can act as cocarcinogens, for example, increasing damage potential
of ultraviolet (UV) light. All these events could be associated, in part, to iAs-related carcinogenic mechanism.
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Figure 2: Events related with ROS-induced DNA damage after iAs
exposure. Specific sequence of reactive oxygen species generation as
a consequence of iAs biotransformation in mammals.

iAs concentrations exceeding 500 μg/L. Individuals exposed
to high As concentrations (>300–600 μg/L) exhibited a
higher total number of chromosomal aberrations, support-
ing the hypothesis that exposure to iAs increases genomic
instability. Furthermore, chromosomal aberrations (specif-
ically DNA copy-number alterations) were more abundant
among iAs-exposed bladder TCC tumors from southwest
Taiwan compared with nonexposed tumors from the same
area [92]. Some alterations were common to those found
in other studies, suggesting that nonrandom events are

associated with As-induced urinary TCC formation and
progression [93].

Other large-scale cytogenetic aberrations have been
observed in iAs-exposed populations. Gonsebatt et al. [94]
analyzed cytogenetic effects in individuals exposed to dif-
ferent levels of As in drinking water. People exposed to
iAs at an average of 400 μg/L showed a significant increase
in frequency of chromatid and isochromatid deletion in
first-metaphase lymphocytes and micronuclei in oral and
epithelial exfoliated cells compared to individuals with lower
exposures. Women and children from the northeast Andean
Region of Argentina exposed to 200 μg/L of iAs in drinking
water displayed higher micronuclei frequency compared to
people exposed to very low iAs concentrations, but did not
have altered frequency of other aberrations, such as sister
chromatid exchange, specific translocations, or cell-cycle
progression [95].

7. Oxidative Damage

DNA modifications due to iAs-induced ROS can produce
oxidative damage, which can be measured through the
presence in urine of products of guanine oxidation in
position 8 (8-oxo-2′-deoxyguanosine (8-oxodG), 8-hydroxy-
guanine [8-oxo-G], 8-hydroxyguanosine [8-oxy-Guo] and 8-
hydroxy-2′-deoxyguanosine [8-OHdG] [64]. After DMA[V]
administration in terminal bronchiolar Clara cells from
mice, markers for oxidative stress were detected, including
8-oxodG [96]. Additionally, it has been demonstrated that
the presence of 8-OHdG was associated with administration
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of DMA[V] in iAs-related human keratoses, squamous cell
carcinoma, basal cell epithelioma, and normal skin from iAs-
intoxicated patients [97–99]. Also, iAs[III] can induce 8-
OHdG and promote genomic instability by damaging DNA
and inducing oncogene expression (including several factors
regulating cell cycle progression) human breast cancer MCF-
7 adenocarcinoma epithelial cells exposed to iAs[III] [100].
Oral administration of DMA[V] increases 8-oxo-G levels
through (CH3)2AsOO· [54, 55].

8. Inhibition of DNA Repair Mechanisms
Associated with Arsenic Exposure

iAs can also induce DNA damage by interfering with the
DNA repair processes. Inhibition or impairment of the
DNA repair processes, principally the repair of DNA strand
breaks, is considered one of the main mechanisms of
iAs carcinogenesis [88, 101, 102]. For example, DMA[V]
affects DNA repair and replication mechanisms in human
alveolar cells, leading to persistence DNA damage (mainly
apurinic/apyrimidinic sites) and generating ssDNA breaks as
a consequence [103, 104].

DNA base damage (induced by oxidative stress) can
be repaired through excision repair mechanisms, which are
subdivided into BER and nucleotide excision repair (NER)
pathways [105]. BER is the predominant repair pathway
for DNA lesions caused by ROS, and the first candidate
in iAs-related DNA repair [69, 106]. Transcription levels of
genes related to BER mechanisms are altered in a gene, age-
, dose-, and duration-dependent manner in lung tissue of
mice exposed to iAs [107]. On the other hand, iAs was also
shown to alter BER mechanisms in GM847 lung fibroblasts
and HaCaT keratinocytes, increasing levels of BER-related
enzymes and repair capacity [108].

Several enzymes participate in the BER mechanism, some
of which are known to be modulated by iAs. Among them,
DNA polymerase β (Polβ) and DNA ligase I (LIG1) have
been described as affected by As[III] [109, 110]. Normally,
after generation of 5′ incision on an abasic site leaving a 3′-
hydroxyl and a 5′-deoxyribose 5-phosphate, Polβ hydrolyses
the 5′-sugar phosphate and adds at least one nucleotide to
the 3′-hydroxyl end. The remaining strand is nick sealed
by LIG1, and PARP-1 may recruit the required proteins
[108]. However, in lung fibroblasts and HaCaT keratinocytes
exposed to As[III], Pol β mRNA levels are downregulated
in a dose-dependent manner (doses >1 μM), and at doses
lower than 1 μM both Pol β mRNA and protein levels,
and consequently, BER activity, were significantly increased
[108]. Additionally, this enzyme is stimulated in response
to low doses iAs and modulated by other sources of
oxidative stress [111–114]. Interestingly DNA copy-number
alterations (CNAs) in lung squamous cell carcinoma (SqCC)
from iAs-exposed patients from northern Chile contain the
Polδ 1 (DNA polymerase δ 1, catalytic subunit), which codes
for the proofreading domain of the DNA polymerase δ
complex and also participates in ssDNA breaks repair process
[115–119].

It has been proposed that iAs[III] works at transcrip-
tional level to repress a group of genes encoding for DNA

Chromosome 3

Figure 3: Comparison of CNA frequency at chromosome 3
between lung SqCC exposed and nonexposed to iAs. The figure
represents a comparison of CNA frequency at chromosome 3
generated from 52 lung SqCC biopsies by using a submegabase
resolution tiling-set rearray (SMRTr) platform. Of those, 22 derived
from arsenic-exposed smokers and never smokers patients from
Northern Chile (red) and 30 were current and ex-smokers North
American patients without known arsenic exposure nonexposed
(blue). Frequency of alteration results for exposed and nonexposed
SqCCs cases has been overlaid in this figure, with regions in yellow,
denoting a sector of overlapping alteration status in both groups.
The magnitude of red, yellow and blue bars represents percentage
of samples exhibiting corresponding alteration (0–100%, with blue
vertical lines representing 50% frequency). DNA gains and losses
are represented to the right and left of chromosome, respectively.
Adapted from Martinez et al. [115].

repair enzymes participating in BER and NER mechanisms,
mainly through its downregulation. This, in combination
with other events, contributes to toxicity or cancer [120]. In
parallel, changes in expression levels have been also corrob-
orated in human exposed populations. Exposure to arsenic
in drinking water was correlated to decreased expression
of ERCC1, XPB, and XPF in lymphocytes from exposed
individuals [121]. Decreased ERCC1 gene expression was
confirmed in lymphocytes treated with > 1 μM of iAs[III],
and a significant reduction of ERCC1 protein levels was
observed among individuals exposed to drinking water
with low levels of arsenic [122]. Similarly, mRNA levels of
ERCC1 expression were significantly associated with arsenic
concentrations in drinking water, implicating the DNA
repair response was induced by arsenic exposure [123]. On
the other hand, OGG1 expression (which encodes for 8-
oxoguanine DNA glycosylase, involved in base excision repair
of 8-oxoguanine [124]) was strongly associated with arsenic
concentrations [125], revealing involvement of mechanisms
related the effects of arsenic-mediated ROS on DNA.

DNA ligation is a key step in DNA repair pathways [126].
Interestingly, it has been shown that iAs can specifically
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inhibit this process as well. More recently we have found
that the mRNA, protein and activity levels of both DNA
ligase I and ligase III are significantly reduced in mammalian
cells in response to As[III] [109]. Additionally, As[III] retards
DNA break rejoining by interacting with the vicinal dithiols
and thus inhibiting DNA ligation [127]. Mammalian cells
have been shown to exhibit a dose-dependent decrease in
ligase activity with exposure to As[III], corresponding to
a decrease in mRNA levels of this enzyme [108, 128]. On
the other hand, it has been also shown that LIG1 and
other DNA damage/repair genes were increased by As[III]
and As[V] treatment, suggesting a cellular response to iAs-
induced DNA damage [129].

Members of the poly (ADP-ribose) polymerase (PARP)
family also play an important role in the regulation of DNA
damage repair. PARP-1 (accounting for about 90% of the
total cellular poly ADP-ribose formation) acts as a “DNA
damage sensor”, exhibiting high affinity to bind both ssDNA
and dsDNA breaks [130–132]. It has been proposed that lack
of PARP-1 enhances cellular sensitivity to As[III] [133]. Cells
deficient in this gene product display greater telomere attri-
tion. This process can be attributable to susceptibility of the
triple-G-containing structures of telomeric DNA to oxidative
damage [134, 135]. In parallel, cells deficient in PARP-1
exhibit reduced repair of 8-oxoguanine, another marker for
oxidative damage that can potentially be induced by iAs
[136]. Finally, specific CNAs located at located at 10q11.23
in lung SqCC from iAs-exposed patients from northern
Chile contain the PARG (polyADP-ribose glycohydrolase)
gene, which also participates in ssDNA breaks repair process
[102, 115, 137].

9. Genomic Landscape of Arsenic-Related
Lung Cancer

Lungs are the most frequently affected organ by iAs, and
lung cancer remains the main cause of iAs-related death
[24]. Tobacco exposure is the main aetiological factor in lung
cancer; however, iAs ingestion through drinking water also
represents a risk factor, particularly for lung squamous cell
carcinomas (SqCCs). Interestingly, the incidence of SqCC is
decreasing worldwide and is usually associated with cigarette
smoking, but in Northern Chilean populations exposed
to arsenic contaminated drinking water, SqCC frequently
occurs in never smokers, [14, 138] suggesting distinct molec-
ular tumorigenic pathways may underlie arsenic-related can-
cers.

To this effect, it was determined if globally, there existed
CNAs specific to lung SqCC cases from a Northern Chilean
population chronically exposed to iAs in drinking water
[115], using a whole genome tiling-path array compara-
tive genomic hybridization (CGH) platform [139]. It was
detected a surprisingly low frequency of DNA gains at
chromosome arm 3q in lung SqCCs from arsenic-exposed
individuals (Figure 3), which is remarkable, since DNA gains
at 3q are the most widely reported alteration associated with
lung SqCC tumors and cell lines [140, 141].

It was also identified specific DNA gains and losses
associated with lung SqCC from never smokers exposed
to iAs. For example, a specific and frequent DNA gain at
19q13.33 contains genes related to ssDNA breaks repair pro-
cess (POLD1) and neoplastic processes (SPIB and NR1H2).
Additionally, a widespread association of DNA copy number
loss specific to iAs-exposed lung SqCC, concordant with
previous findings showing that arsenic can induce multiple
large deletions through the creation of ROS [142] was
identified. Some of these deletions, mainly at 9q12, may be
relevant to iAs carcinogenic mechanisms, since they have
been described in other iAs-related types of cancer and
involve genes from the forkhead box (Fox) gene family, which
have been linked to tumorigenesis and cancer progression
[143].

This recent information provides evidence of distinct
CNAs associated with lung SqCC occurring in patients who
had exposure to iAs in drinking water and suggests that
alternative molecular pathways are activated in this disease
subset.

10. Conclusion

Arsenic exposure through contaminated drinking water pos-
es a major health concern for over 40 million people world-
wide, where for some, arsenic levels are almost 10 times
higher than recommended thresholds. In addition to causing
a variety of health problems including vascular and neu-
rological conditions, arsenic is an established carcinogen.
The rate of cancer incidence and mortality in populations
exposed to arsenic contaminated drinking water is alarming.
These populations experience particularly exacerbated rates
of cancer in organs where arsenic is most concentrated or
is excreted, including lung, bladder, and skin cancers. The
mechanisms of arsenic-induced carcinogenesis are slowly
being elucidated through the study of the precise DNA
damaging and cytotoxic properties related to the biotrans-
formation, metabolism, and excretion of arsenic. Discovery
of particular genomic and epigenomic lesions induced by
this metalloid should encourage a comprehensive approach
to elucidate how arsenic can induce different types of
cancer. Despite histology similarity, the possibility of iAs-
induced cases biologically distinct entities, compared to
those induced by other environmental carcinogens, must
be considered. Knowledge related to these processes may
lead to specific treatment strategies targeting arsenic-induced
disorders and malignancies.
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