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Abstract: Volatile phenols like phenylpropanoid and benzoid compounds originate from the
aromatic amino acid phenylalanine, which is biosynthesized via the shikimate/arogenate pathway.
These volatile compounds contribute to the aroma of a number of economically important
plant-derived foods like herbs, spices and fruits. The sequestration of numerous phenylpropanoid
and benzoid compounds as glycosides occurs widely in fruits, and this pool represents an important
source of flavor that can be released during storage and processing. Therefore, this review will provide
an overview of the biosynthesis of free and glycosylated phenylpropanoid and benzoid compounds
and their reactions during food processing, which both lead to the generation of odor-active volatile
phenols in plant-derived foods.

Keywords: polyphenols; glycosyltransferase; odor perception; biosynthesis; olfaction; key
food odorants

1. Introduction

Intensive research during the last two decades has shown that flavonoids, stilbenes, tannins,
phenylpropanoids, lignans and coumarins (often generically called (poly)phenols to illustrate that
this class of compounds possess one or multiple aromatic rings and at least one hydroxyl group)
are important secondary metabolites in plant-derived foods. Over 7000 known structures have been
reported so far, illustrating the high structural diversity of these natural products [1]. The pronounced
dynamics in cross-disciplinary research on (poly)phenols are mainly due to their putative health
benefits on the one side and their role as technologically valuable natural food ingredients on the
other side; the latter intended to replace synthetic food additives. For example, polyphenols have
been associated with positive effects on cardiometabolic health, cognition, type II diabetes, obesity,
neuroinflammation and others [2–5]. More recent research has demonstrated that a significant part of
the polyphenols ingested is metabolized by human endogenous enzymes and the gut microbiota, and
increasing evidence indicates that the metabolites, rather than the parent polyphenols present in the
plant, constitute the bioactive compounds [6–8]. From a technological point of view, polyphenols are of
interest because they contribute to color [9], antioxidant activity [10] and preservation of foods [11]. In
addition, some phenolic compounds, such as caftaric acid and tannins, are known to impart bitterness
and astringency [12–14]. However, (poly)phenols can also shape the aroma of foods if they are volatile
as such or serve as precursors for volatile degradation products. This review is therefore focused on
highly odiferous volatile phenols that contribute to the aroma of foods, either as positive contributors
or as so-called off-flavor compounds in tainted products of diminished quality.
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2. The Concept of the Chemical Odorant Space

Food contains over 10,000 volatiles with molecular weights below 290 Da [15]. However, while
volatility is a prerequisite for a compound to be perceived nasally, only a small fraction of these
molecules contributes to the overall aroma of food. So far, about 230 volatiles have been identified as
so-called “key food odorants” (KFOs) [16]. These KFOs are the best natural agonists for approximately
400 human olfactory receptors (ORs) [17]. Aroma research has shown that the distinctive aroma for 227
different food commodities is determined by a relatively small subset of 3 to 40 KFOs. For example,
the distinct butter aroma consists of only three compounds: diacetyl, (R)-δ-lactone and butyric acid.
These three compounds are present in butter at concentrations above their odor threshold values and
represent the chemical odor code for a buttery aroma. The 230 KFOs span, therefore, the chemical
odorant space of our food.

3. Odor-Active Phenols in Food

About 10% of all known KFOs are volatile phenols, and their structures are listed in Figure 1,
together with their trivial names and, in parentheses, their frequency of occurrence in percent in 227
food samples.
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hydroxyl group is present in free form in these structures, and polyphenolic molecules are missing 
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each structure the trivial name and, in parentheses, the frequency of occurrence in percent in the 227
food samples are given. Mono- (a), di- (b) and trihydroxylated (c) derivatives are shown.

The top three odor-active phenols in food are vanillin, guaiacol and 4-vinylguaiacol. In spices,
herbs and fruits, phenols with a C3 sidechain are found frequently, whereas in fermented food like
alcoholic beverages, the C3 sidechain is often shortened to one or two C atoms by microbial degradation
(see below). The aromatic ring can bear up to three hydroxyl groups. However, no more than one
hydroxyl group is present in free form in these structures, and polyphenolic molecules are missing
completely because of their greatly reduced volatility, which excludes any aroma activity.
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4. Perception of Odor-Active Phenols

The biochemical mechanism for perception of odor-active phenols is now well understood and is
a remarkable piece of Nobel Prize winning research (Nobel Prize in Physiology or Medicine 2004 for
Richard Axel and Lina B. Buck for their discoveries of odorant receptors and the organization of the
olfactory system) [17]. Odor perception is initiated by an odorant molecule binding to receptors that
are located in the cilia of olfactory receptor cells in the nasal epithelium. The cells are thus activated
and send electric signals that are relayed in the so-called glomeruli in the olfactory bulb. The signals
are transmitted to higher regions of the brain, and the integrated signal pattern is finally interpreted as
a specific odor impression. It is clear that these olfactory receptors (ORs) play a key role in odorant
perception. Up to now, for approximately 40% of the 400 functional human ORs, agonists have been
identified in bioassays [18]. Research on structure–activity relationships of the human OR10G receptors
has shown that these receptors are broadly tuned to volatile phenols (Table 1) [19]. Obviously, the
phenolic foodborne stimulus space has co-evolved with our olfactory receptors. It is utmost remarkable
that these nasal receptor proteins are also expressed in other tissues like the skin, the intestine and even
in white blood cells. Thus, it is conceivable that these small molecules exert other biological effects on
the human body beside their odor activity, and once ingested they may overcome cellular barriers and
reach other target tissues. Recent research on low-molecular weight metabolites from polyphenols as
effectors for attenuating neuroinflammation and for prevention of cardiovascular diseases shows that
this rationale is, indeed, valid [4,6].

Table 1. Structure–activity relationship of OR10G receptors [19].

Structure OR10G3 OR10G4 OR10G7 OR10G9
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Table 1. Cont.

Structure OR10G3 OR10G4 OR10G7 OR10G9
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5. Generation of Volatile Phenols in Food

5.1. De Novo Biosynthesis in Planta

In planta, volatile phenols are generated from phenylalanine (Figure 2) that delivers the C6C3

building block of all phenylpropanoids [20,21]. The key enzyme is the well-characterized enzyme
phenylalanine ammonia lyase (PAL) that controls the flux through this pathway [22]. The pathway,
up to the production of coumaryl and coniferyl alcohol, is shared with the lignin biosynthetic
pathway. Hydroxylation of the aromatic ring and subsequent reduction of the corresponding acetate
ester yields volatile phenylpropanoids of the widespread C6C3-type. The enzymes responsible for
acetate ester formation and reduction have been characterized in sweet basil and anise [23–25]. The
genes involved in the biosynthesis of methoxylated phenylpropenes have recently been cloned and
characterized, notably in strawberry, apple, tomato and grape [20]. For example, manipulating the
levels of phenylpropenes validated the importance of eugenol to strawberry fruit aroma [26,27], thus
demonstrating how this knowledge can ultimately lead to the improvement of crops with respect to
their odor traits. Chain-shortening by β-oxidation finally yields C6C1- and C6-type benzoids. A special
case is the generation of vanillin from ferulic acid, which is catalyzed by the action of a single enzyme
that has recently been cloned and characterized from Vanilla planifolia [28,29]. Likewise, a gene for
p-hydroxystyrene biosynthesis has been characterized in Pyrus communis that encodes a phenolic acid
decarboxylase yielding p-hydroxystyrene from p-coumaric acid [30].
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Figure 2. Metabolic pathways in plants that lead to the formation of volatile benzoids and
phenylpropanoids from phenylalanine [31]. AADC: aromatic amino acid decarboxylase; BAH: benzoic
acid 2-hydroxlase; BPB: benzoylCoA:benzylalcohol/2-phenylethanol benzoyltransferase; BSMT: benzoic
acid/salicylic acid carboxyl methyltransferase; CoA: coenzyme A; NADPH: nicotinamide adenine
dinucleotide phosphate (reduced form); PAAS: phenylacetaldehyd synthase; PAL: phenylalanine
ammonia lyase; SAM: S-adenosyl methionine.

5.2. Microbial Formation of Volatile Phenols

During food processing by fermentation, microorganisms are capable of degrading nonvolatile
phenylpropanoids to volatile, highly odiferous phenols. Showcased is the yeast-mediated formation of
ethyl- and allylphenols by decarboxylation and reduction during the alcoholic fermentation in wine
and beer production (Figure 3) [32]. If these degradation products are formed in excessively high
concentrations, aroma defects, like a “horse sweat” note in wine, can develop [33,34].
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Volatile phenols can be formed from labile precursors during thermal treatment of food [37]. In 
soft pretzels, 4-vinylguaiacol can be generated from hemicelluloses like arabinoxylans that contain 
covalently bound ferulic acid, which is liberated during the alkaline treatment of the dough and 
thermally decarboxylated by the subsequent baking process (Figure 5) [38]. During coffee roasting, 

Figure 3. Formation of allyl- and ethylphenols by yeast during fermentation.

Degradation of aromatic amino acids, such as tyrosine, during fermentation can yield volatile
phenols as well. The cresol-forming enzyme p-hydroxyphenylacetate decarboxylase (HPAD) is a
member of the glycyl radical enzyme (GRE) superfamily and plays prominent roles in the primary
metabolism of anaerobic-fermenting bacteria (Figure 4) [35].
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Figure 4. Formation of p-cresol by anaerobic-fermenting bacteria. HPAD:
p-hydroxyphenylacetate decarboxylase.

The catalytic mechanism of HPAD has been studied in detail and involves activation of
p-hydroxyphenylacetate (HPA) by concerted abstraction of an electron and the phenolic proton
to generate a phenoxy-acetate radical anion, with the radical delocalized over the aromatic ring [36].
Decarboxylation and H-radical rebound finally yields p-cresol, which is released from the enzyme by
exchange with HPA.

5.3. Thermal Formation of Volatile Phenols During Food Processing

Volatile phenols can be formed from labile precursors during thermal treatment of food [37]. In
soft pretzels, 4-vinylguaiacol can be generated from hemicelluloses like arabinoxylans that contain
covalently bound ferulic acid, which is liberated during the alkaline treatment of the dough and
thermally decarboxylated by the subsequent baking process (Figure 5) [38]. During coffee roasting,
decarboxylation of ferulic acid yields 4-vinylguaiacol, guaiacol and phenol [39]. The pyrolysis of wood
yields a variety of volatile phenols as well that are responsible for the antioxidative and aromatic
properties of smoke, which is used for food conservation by smoking [40] and wine aromatization by
storage in toasted barrels [41,42].
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6. Glycosidically Bound Volatile Phenols in Food

6.1. Structures of Glycosidically Bound Phenols

Sequestration of phenols as glycosides occurs commonly in fruit, and this so-called bound pool
represents an important source of flavor compounds that can be released during processing, as
well as by controlled application of enzymes, heat or acids [43]. Mono- and diglycosides like
glucosides, arabinofuranosylglucosides, rutinosides and apiofuranosylglucosides are structures
frequently occurring in fruits (Figure 6) [31].
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6.2. Biosynthesis of Glycosidically Bound Phenols

In general, the biosynthesis of glycosidically bound small molecule volatiles is catalyzed by
uridine diphosphate glycosyltransferases (UDP-GTs) [44,45]. These enzymes use UDP-activated sugars
as cofactors and transfer the sugar moiety onto the aglycone by an SN2-type reaction with inversion of
the configuration at the anomeric C-atom, resulting in the formation of β-glycosides. By sequential
biosynthesis, further sugar molecules can be transferred onto the first one by forming diglycosides like
apiofuranosyl-glucosides (Figure 7). All plant UDP-GTs show a typical GT-B fold-structure and harbor
a highly conserved plant secondary product glycosyltransferase (PSPG) motif that enables UDP-sugar
donor binding at the active site. Cloning, heterologous expression and biochemical characterization of
UDP-glucose: small-molecule GTs from Vitis vinifera have shown that these enzymes show acceptor
promiscuity and glycosylate structurally diverse substrates like monoterpenes, (poly)phenols and
aliphatic alcohols [46–48].
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However, this promiscuity can be the cause of smoky off-flavor notes in wines [49]. Volatile
phenols that are generated during bush fires can penetrate into the leaf tissue of grapevine. It was shown
that these phenols can be glycosylated by promiscuous GTs, translocated into the berry and liberated
during storage of the produced wine, thus tainting this product with a smoky off-flavor [50–52].

7. Conclusions

This review has provided an overview of the biosynthesis of free and glycosylated phenylpropanoid
and benzoid compounds and their reactions during food processing, with an emphasis on the odor-active
phenols and their glycosylated precursors. Molecular sensory science and the concept of the chemical
odorant space have impressively shown that these volatile phenols are indeed important contributors to
the aroma of plant-derived foods. Knowledge on the biosynthesis of these target molecules, including
the underlying regulation mechanisms, will ultimately lead to the improvement of crops with respect
to their odor traits [53].
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