
ARTICLE

A Plasma-Derived Protein-Metabolite Multiplexed Panel for

Early-Stage Pancreatic Cancer

Johannes F. Fahrmann, Leonidas E. Bantis, Michela Capello, Ghislaine Scelo,
Jennifer B. Dennison, Nikul Patel, Eunice Murage, Jody Vykoukal, Deepali L. Kundnani,
Lenka Foretova, Eleonora Fabianova, Ivana Holcatova, Vladimir Janout, Ziding Feng,
Michele Yip-Schneider, Jianjun Zhang, Randall Brand, Ayumu Taguchi, Anirban Maitra,
Paul Brennan, C. Max Schmidt, Samir Hanash

See the Notes section for the full list of authors’ affiliations.
Correspondence to: C. Max Schmidt, MD, PhD, MBA, FACS, Indiana University School of Medicine, 545 Barnhill Drive EH 129, Indianapolis, IN 46202 (e-mail: maxschmi@
iupui.edu); or Samir M. Hanash, MD, PhD, Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030 (e-mail: shanash@mdanderson.org).

Abstract

Background: We applied a training and testing approach to develop and validate a plasma metabolite panel for the detection
of early-stage pancreatic ductal adenocarcinoma (PDAC) alone and in combination with a previously validated protein panel
for early-stage PDAC.
Methods: A comprehensive metabolomics platform was initially applied to plasmas collected from 20 PDAC cases and 80
controls. Candidate markers were filtered based on a second independent cohort that included nine invasive intraductal
papillary mucinous neoplasm cases and 51 benign pancreatic cysts. Blinded validation of the resulting metabolite panel was
performed in an independent test cohort consisting of 39 resectable PDAC cases and 82 matched healthy controls. The
additive value of combining the metabolite panel with a previously validated protein panel was evaluated.
Results: Five metabolites (acetylspermidine, diacetylspermine, an indole-derivative, and two lysophosphatidylcholines) were
selected as a panel based on filtering criteria. A combination rule was developed for distinguishing between PDAC and
healthy controls using the Training Set. In the blinded validation study with early-stage PDAC samples and controls, the five
metabolites yielded areas under the curve (AUCs) ranging from 0.726 to 0.842, and the combined metabolite model yielded an
AUC of 0.892 (95% confidence interval [CI] ¼ 0.828 to 0.956). Performance was further statistically significantly improved by
combining the metabolite panel with a previously validated protein marker panel consisting of CA 19–9, LRG1, and TIMP1
(AUC ¼ 0.924, 95% CI ¼ 0.864 to 0.983, comparison DeLong test one-sided P¼ .02).
Conclusions: A metabolite panel in combination with CA19-9, TIMP1, and LRG1 exhibited substantially improved perfor-
mance in the detection of early-stage PDAC compared with a protein panel alone.

Pancreatic ductal adenocarcinoma (PDAC) is the third leading
cause of cancer-related mortality, with an overall five-year sur-
vival rate of only approximately 8% (1). Diagnosis of PDAC at an
early stage is uncommon, with the majority of patients present-
ing with locally advanced or metastatic disease (2). Early detec-
tion of PDAC will lead to improved survival. CA19-9 has limited

performance as a PDAC biomarker, particularly in the prediag-
nostic setting (3–5). Moreover, it is noninformative in approxi-
mately 10% of subjects with fucosyltransferase deficiency (6).
Consequently, there is a critical need for additional markers
that display collectively higher sensitivity and specificity for re-
liable detection of early-stage PDAC.
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Previously, we identified and sequentially validated two ad-
ditional proteins, TIMP1 and LRG1, that complemented CA19-9
in distinguishing early-stage PDAC from healthy subjects (7).
Although classification performance improved relative to CA19-
9 alone, further improvements to increase sensitivity at high
specificity are desirable given the low incidence of PDAC.

More than 95% of all existing diagnostic clinical assays look
for small molecules (eg, <1200 Da) (8). CA19-9 is in fact a carbo-
hydrate small molecule antigen. Clinical metabolomics is an
emerging field, and untargeted metabolomics represents a
global unbiased approach for the profiling of small molecules
that is increasingly being implemented in biomarker discovery
from a variety of human biofluids and tissues (9–12).

In the current study, we applied an untargeted metabolo-
mics approach to develop a plasma-derived metabolite bio-
marker panel for PDAC. Our fixed biomarker panel was
subsequently blindly validated in an independent test cohort
consisting of 39 resectable PDAC cases and 82 matched healthy
controls. We additionally evaluated whether a protein-
metabolite multiplexed panel consisting of our metabolite panel
plus a previously validated protein marker panel consisting of
CA19-9, TIMP1, and LRG1 would improve classification perfor-
mance compared with CA19-9 or the protein panel alone.

Methods

Study Population

Detailed information is provided in the Supplementary Methods
(available online). All human blood samples were obtained fol-
lowing institutional review board approval, and patients pro-
vided written informed consent. For discovery studies, plasma
samples from 20 patients with PDAC, 70 healthy controls, and
10 patients with chronic pancreatitis were obtained from the
Evanston Hospital and MD Anderson Cancer Center (Cohort 1).
Plasma samples obtained from the Indiana University School of
Medicine, consisting of 51 patients with low–dysplastic grade
pancreatic cysts and nine patients with invasive intraductal
papillary mucinous neoplasms (IPMNs) were used for biomarker
sequential selection and initial validation (Cohort 2). An inde-
pendent plasma sample set for blinded testing of the combined
biomarker panel(s) was obtained from the International Agency
for Research on Cancer and consisted of 39 early-stage PDAC
patients and 82 healthy controls (Test Set). Study flow diagram
and clinical characteristics of the patients in the discovery
cohorts (Cohort 1 and 2) and blinded validation cohort (Test Set)
are presented in Figure 1 and Supplementary Tables 1, 2, and 3
(available online).

Metabolomic Analysis and Enzyme-Linked
Immunosorbent Assay

Detailed information regarding metabolomic analyses and
enzyme-linked immunosorbent assays for CA19-9, LRG1, and
TIMP1 are provided in the Supplementary Methods (available
online). Descriptions of cell lines that were profiled using untar-
geted metabolomics technology are provided in Supplementary
Table 4 (available online). Metabolomic profiling was conducted
on a Waters Acquity UPLC system with 2D column regeneration
configuration (I-class and H-class) coupled to a Xevo G2-XS
quadrupole time-of-flight (qTOF) mass spectrometer.
Chromatographic separation was performed using HILIC
(Acquity UPLC BEH amide, 100 Å, 1.7 mm 2.1� 100 mm) and C18

(Acquity UPLC HSS T3, 100 Å, 1.8 mm, 2.1� 100 mm) columns at
45�C. Mass spectrometry data were acquired in sensitivity and
positive/negative electrospray ionization mode. The acquisi-
tion was carried out with instrument auto gain control to opti-
mize instrument sensitivity over the samples’ acquisition time.
Data processing was performed as previously described (13). To
adjust for intersite variability, each metabolite was standard-
ized by median-centering the metabolite value for each sample
to the median value of the healthy controls. Plasma protein
concentrations for CA19-9, LRG1, and TIMP1 were determined
as previously described (Supplementary Methods, available
online) (7).

Gene Expression Data and Networks

Gene expression for the Badea data set (14) was downloaded
from the Oncomine database (15). The Badea data set was cho-
sen as it contains adequate sample size with respect to controls
(n¼ 39) as compared with other data sets, such as The Cancer
Genome Atlas, and because it allows for comparison of altered
mRNA expression between PDAC and matched adjacent control
tissues, thereby mitigating intersubject variations. Networks
were visualized using cytoscape (16).

Statistical Analyses

Receiver operating characteristic (ROC) curve analysis was per-
formed to assess the performance of biomarkers in distinguish-
ing PDAC cases from healthy controls and subjects diagnosed
with benign pancreatic disease (chronic pancreatitis or pancre-
atic cysts). Detailed methods regarding the development of the
biomarker panel are included in the Supplementary Methods
(available online). Briefly, model building was based on a logistic
regression model using the logit link function. The estimated
AUC of the proposed metabolite panel was derived by using the
empirical ROC estimator of the linear combination correspond-
ing to the aforementioned model. The protein-metabolite multi-
plexed panel of metabolites and proteins was developed by
combining the two underlying panels (metabolite and protein)
as two composite markers with the use of a logistic regression
model that incorporates the logit link function. For the testing
set, all P values reported for individual marker AUC testing are
Wilcoxon based, whereas for comparing two correlated AUCs,
the Delong test was employed. We note that for the Test Set,
the coefficients of the trained logistic regression model are con-
sidered fixed and known; hence traditional tests can be applied.
For comparison of mRNA expression from the Badea data set, P
values were calculated using paired two-sided t tests. A P value
of less than .05 was considered statistically significant under all
circumstances.

Results

Identification of Pancreatic Cancer Metabolite
Biomarkers and Model Development

Untargeted metabolomics analysis was conducted on a discov-
ery cohort (Cohort 1) consisting of 20 PDAC cases (10 early and
10 late stage) and 80 controls (70 healthy subjects and 10 sub-
jects with chronic pancreatitis) (Figure 1). Candidate biomarkers
were initially selected based on statistically significant ROC
AUCs (two-sided Wilcoxon rank-sum test P < .05); candidate
markers were subsequently filtered against a second
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independent cohort (Cohort 2) consisting of nine PDAC (five
early and four late stage) and 51 subjects with benign pancreatic
cysts (BPCs) (Figure 1) based on statistically significant ROC
AUCs (two-tailed Wilcoxon rank-sum test P < .05) and main-
taining the same direction of change (Supplementary Tables 5
and 6, available online). In the case of individual lipid species, to
mitigate nonspecificity due to external factors such as dietary
patterns or randomness, emphasis was given to those lipids that
showed uniformity in the performance characteristics among the
entire lipid class (ie, >80.0% of the detected individual lipids in a
given lipid class exhibited concordant increases/decreases in
cases relative to controls) (Supplementary Figure 1, available on-
line). Five metabolites were selected that met the aforementioned
criteria that consisted of (N1/N8)-acetylspermidine (AcSperm),
diacetylspermine (DAS), lysophosphatidylcholine(18:0)
(LPC(18:0)), LPC(20:3), and an indole-derivative (Figure 2; fragmen-
tation spectrum is provided in Supplementary Figure 2, available
online).

Next, we developed a biomarker panel combination rule for
PDAC based on a logistic regression model. The model was devel-
oped using data from the Training Set (Figure 1). In the compari-
son of PDAC vs healthy subjects, the resulting panel of AcSperm
þ DAS þ LPC(18: 0) þ LPC(20: 3) þ indole-derivative yielded an
AUC of 0.903 (95% confidence interval [CI]¼ 0.818 to 0.989), which
exhibited 69.0% sensitivity at 99.0% specificity (Figure 3A).

Testing of Metabolite Biomarker Panel in an
Independent Test Set of Resectable PDAC Plasma
Samples

Blinded validation of the five metabolites individually and as a
panel was performed in an independent set of plasma samples
consisting of 39 resectable PDAC cases and 82 matched healthy
controls (Test Set). All five biomarkers yielded statistically sig-
nificant differences (one-tailed P < .001) in PDAC cases vs
healthy controls, with individual AUCs ranging from 0.726 to
0.842 (Table 1). The fixed logistic regression model for the five-
metabolite panel yielded an AUC of 0.892 (95% CI ¼ 0.828 to
0.956), with 66.7% sensitivity at 95.0% specificity (Figure 3B,
Table 1).

Comparison of Classifier Performance of Metabolite Plus
Protein Markers CA19-9, TIMP1, and LRG1 vs Classifier
Performance CA19-9 or Protein Markers Alone

Previously, we identified and sequentially validated two addi-
tional proteins, TIMP1 and LRG1, capable of complementing
CA19-9 in distinguishing PDAC from healthy subjects (7). We
therefore interrogated whether a protein-metabolite multi-
plexed panel consisting of our protein markers (CA19-9, TIMP1,

Figure 1. Schematic of study design. AUC ¼ area under the curve; PDAC ¼ pancreatic ductal carcinoma.
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and LRG1) together with our metabolite panel would improve
classification performance as compared with CA19-9 or our pro-
tein panel alone in distinguishing PDAC from healthy subjects.
When applied to the Training Set (29 PDAC vs 10 matched EHO
healthy controls), the protein-metabolite multiplexed panel
yielded an AUC of 0.972 (95% CI ¼ 0.928 to 1.000). This estimate
was statistically significantly better than CA19-9 alone
(AUC¼ 0.859, 95% CI ¼ 0.743 to 0.975, comparison DeLong test
one-tailed P ¼ .03) but not the protein panel (AUC ¼ 0.948, 95%
CI ¼ 0.883 to 1.000, comparison DeLong test one-tailed P¼ .11)
(Figure 4A). During blinded validation, the resulting protein-
metabolite multiplexed panel yielded an AUC of 0.924 (95% CI ¼
0.864 to 0.983) (Figure 4B). This estimate was statistically signifi-
cantly greater than either CA19-9 alone (AUC ¼ 0.800, 95% CI ¼
0.708 to 0.891, comparison DeLong test one-tailed P< .001) or
the protein panel alone (AUC¼ 0.863, 95% CI ¼ 0.782 to 0.946,
comparison DeLong test one-tailed P ¼ .02) (Figure 4B). Youden-

based cutoffs and associated pairs of sensitivity and specificity
attained at these cutoffs for the protein-, metabolite-, and
protein-metabolite multiplexed panel for the Test Set are pro-
vided in Supplementary Table 7 (available online).

Polyamine Metabolism and PDAC

We explored further whether PDAC cells secreted AcSperm and
DAS. We analyzed cell lysates and serum-free conditioned me-
dia from 11 PDAC cell lines. Metabolomic analysis of cell lysates
revealed detectable levels of AcSperm in all 11 PDAC cell lines,
whereas DAS was detected in nine out of 11 PDAC cell lines
(Figure 5A). Analysis of conditioned media indicated positive
rates (area units per hour per 100 mg protein) of AcSperm accu-
mulation in all 11 cell lines. Positive rates of DAS accumulation
were observed in eight of the 11 cell lines (Figure 5B).

Figure 2. Distributions of the five metabolite biomarkers in discovery cohorts 1 and 2. Box and whisker plots are shown for individual metabolites. Values represent the

ratios of the respective metabolite relative to historical quality control reference measurement (see the “Methods”). Statistical significance was determined by two-

sided Wilcoxon rank-sum test. PDAC ¼ pancreatic ductal carcinoma.

Figure 3. Areas under the curve (AUCs) of individual metabolites and metabolite panels in the Training and Test Sets. A) Receiver operating characteristic (ROC) curves

for individual metabolites and the five-marker metabolite panel for distinguishing pancreatic ductal adenocarcinoma (PDAC; n¼29) from healthy subjects (n¼10). B)

ROC curves for individual metabolites and the five-marker metabolite panel for distinguishing resectable PDAC (n¼39) from healthy subjects (n¼82; Test Set 1). AUC ¼
area under the curve; CI ¼ confidence interval.
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Exploration of mRNA expression of polyamine-related enzymes
in the Badea data set (14) indicated statistically significant (two--
sided paired t test P<.001) PDAC-associated elevations in spermine
synthase (SMS) and spermidine/spermine acetyltransferase (SAT1)
compared with adjacent control tissue, whereas spermidine syn-
thase (SRM), polyamine oxidase (PAOX), and spermine oxidase
(SMOX) were statistically significantly reduced (two-sided paired t
test P < .001, <.001, and .002, respectively), collectively suggesting
increased acetylation of polyamines and subsequent secretion
rather than their oxidation (Figure 5C).

Lipids Metabolism and PDAC

To determine whether PDAC cells catabolize/scavenge extracel-
lular lipids, we examined the lipid composition of serum-
containing media from PANC1 and Su8686 cells 24, 48, and
72 hours postconditioning. Our analysis indicated

time-dependent reductions in several lysophospholipids
(Supplementary Figure 3, available online), including LPC(18:0)
and LPC(20:3) (Figure 5D). Concomitantly, glycerophosphocho-
line, a degradation product of LPCs, exhibited a time-dependent
increase in conditioned media (Figure 5D), collectively implicat-
ing active catabolism of extracellular LPCs. Evaluation of mRNA
expression for enzymes involved in the generation and catabo-
lism of LPCs indicates numerous PDAC-associated elevations
including autotaxin (ENPP2) and lysophospholipase LYPLA1 that
were statistically significant (two-sided paired t test P < .001)
relative to adjacent control tissue in the Badea data set
(Figure 5E). Moreover, relative to adjacent control tissue, PDAC
tissue exhibited statistically significantly higher mRNA expres-
sion of genes encoding for cell surface receptors that are known
to be activated by LPCs, including GPR4, GPR68, TLR2, TLR4, and
LPAR1 (two-sided paired t test P ¼ .05, <.001, <.001, <.001, and
.03, respectively) (Figure 5E).

Table 1. Performance of individual metabolite markers and metabolite panel in the validation cohort (Test Set)

Metabolite AUC (95% CI) P* Specificity†, % Sensitivity‡, %

Indole-derivative§ 0.726 (0.631 to 0.822) <.001 11.3 23.1
LPC(18:0)§ 0.842 (0.764 to 0.920) <.001 26.3 51.3
LPC(20:3)§ 0.841 (0.757 to 0.925) <.001 11.3 48.7
Acetylspermidine 0.755 (0.659 to 0.852) <.001 27.5 33.3
Diacetylspermine 0.801 (0.712 to 0.890) <.001 27.5 51.3
5-marker

metabolite panel
0.892 (0.828 to 0.996) <.001 43.3 66.7

*P values for corresponding area under the curve results, Wilcoxon rank-sum test one-sided. AUC ¼ area under the curve; CI ¼ confidence interval; LPC ¼
lysophosphatidylcholine.

†% specificity at 95% sensitivity.

‡% sensitivity at 95% specificity.

§AUCs <0.5 are flipped (ie, equivalent to 1-AUC due to reverse ordering).

Figure 4. Areas under the curve (AUCs) for protein-metabolite multiplexed panel, five-marker metabolite-panel, three-marker protein panel, and CA19-9. A and B) Receiver

operating characteristic (ROC) curves for protein-metabolite multiplexed panel, five-marker metabolite-panel, three-marker (LRG, TIMP1, CA19-9) protein panel, and CA19-9

in the Training Set (29 PDAC vs 10 healthy subjects) and independent Test Set (39 PDAC vs 82 healthy subjects). AUC¼ area under the curve; CI ¼ confidence interval.
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Discussion

Using an untargeted metabolomics approach, we have identi-
fied and validated a five-marker metabolite-derived biomarker
panel for distinguishing PDAC from healthy subjects.
Importantly, a protein-metabolite multiplexed panel consisting
of metabolite and previously identified protein biomarkers (7)
resulted in improved classification performance relative to ei-
ther the metabolite, CA19-9, or protein panel alone. Thus the
combination of different biomarker types yielded superior
results relative to a single biomarker type.

Of note, we did not observe differences in plasma branched-
chain amino acids (BCAA) between cases and controls, as was
previously reported in prediagnostic samples (17). In the prior
reported study, the predictive value of BCAAs was most promi-
nent two to five years before diagnosis, with levels returning to-
ward baseline closer to diagnosis (17), consistent with our
observation of no differences in plasma BCAAs in samples
taken at the time of diagnosis.

Altered polyamine metabolism has been linked to tumori-
genesis and hyperproliferative disorders, being intimately in-
volved in cell cycle progression (18). Polyamine synthesis is

Figure 5. Polyamine and lipid metabolism in PDAC. A) Abundances (area units þ/- SD) of N1/N8-acetylspermidine or diacetylspermine in cell lysates of 11 PDAC cell

lines. B) Abundance (area units þ/- SD) of N1/N8-acetylspermidine or diacetylspermine in serum-free media collected one, two, four, and six hours post conditioning

from 11 PDAC cell lines. C) Network displaying enzymes involved in the biosynthesis of polyamines and their acetylated derivatives. Node color (light gray ¼ decreased;

dark gray ¼ increased) and size depict the direction and magnitude of change in mRNA expression of respective enzymes between PDAC and adjacent control tissue.

Thickened node border illustrates statistical significance (two-sided paired t test P < .05). Box and whisker plots illustrate the distribution of mRNA expression for the

respective enzyme between PDAC and adjacent control tissue. mRNA expression data were obtained from Oncomine (15) and are based on the Badea data set (14). D)

Percent change in serum-containing media composition of lysophosphatidylcholine(18:0), lysophosphatidylcholine(20:3), and glycerophosphocholine in PANC1 and

SU8686 PDAC cell lines following 24, 48, and 72 hours of culturing. E) Heat map depicting mRNA expression of enzymes and surface receptors known to directly partici-

pate in the metabolism or binding of lysophosphatidylcholines between PDAC and adjacent control tissue. Data were obtained from Oncomine (15) and are based on

the Badea data set (14). Unsupervised clustering was performed using Euclidean distance with Ward’s method.
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regulated by the rate-limiting enzymes ODC1 and AMD1,
whereas their catabolism is regulated by SAT1 (18,19). Previous
findings indicated increased abundance of putrescine and
AcSperm in pancreatic carcinomas as compared with histologi-
cally unaffected pancreas (20). Conversely, many polyamines
including AcSperm were elevated in sera of cases compared
with healthy controls (20). Our findings and those of others indi-
cate amplification of polyamine catabolism, a notion that is
reflected in plasmas of subjects with PDAC. Notably, our in vitro
findings demonstrated an inverse association between rates of
AcSperm and DAS accumulation in conditioned media, collec-
tively highlighting an intrinsic heterogeneity that exists among
PDAC with respect to polyamine catabolism. These findings
also provide merit for analyzing both polyamine markers as bio-
markers for PDAC. Conversely, the elevation of DAS is not
uniquely attributed to pancreatic cancer (9,21) inherently, sug-
gesting a more general role in its broader utility as a screening
marker for cancer.

Other previous studies indicated that plasma LPCs are statis-
tically significantly lower in PDAC relative to healthy controls
(10,22) or subjects with chronic pancreatitis (23), consistent with
our findings. Our cell line data indicated that PDAC cells catabo-
lize lysophospholipids, a notion that is supported by gene ex-
pression data in the Badea data set. However, PDAC alone
cannot account for the reduction in plasma LPC levels entirely,
particularly in the early stages of the disease. It is plausible that
reductions in plasma LPCs may be a reflection of both increased
catabolism by cancer cells and altered liver function that co-
occurs with disease (24–26).

A limitation for studies aimed at discovery and/or validation
of pancreatic cancer early detection is accessibility to adequate
number of patients with early-stage (stage IA) disease or with
premalignant lesions. To this end, we acknowledge that the cur-
rent panel requires further validation in independent cohorts.
We additionally recognize that the current multiplexed protein-
metabolite panel has not been tested for its ability to distin-
guish PDAC from other benign conditions or malignancies, an
important consideration when fully assessing its utility as a
screening tool.

In conclusion, we have developed and validated a
metabolite-derived biomarker panel for early-stage PDAC that
complements our previously identified protein-based bio-
marker panel. Given the low prevalence of PDAC, our current
multimarker signature would be best suited for screening pro-
grams targeting high-risk subjects rather than the average-risk
population. These include individuals older than age 50 years
with new-onset diabetes mellitus, asymptomatic kindred of
high-risk families, subjects with chronic pancreatitis, and
patients incidentally diagnosed with mucin-secreting cysts of
the pancreas (27–30). Further improvement in performance for
early detection application may result from expansion of the
panel to include other marker types, such as circulating tumor
DNA and autoantibodies to tumor antigens (31–33).
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