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Purpose. Human papillomavirus (HPV) antigens had been found in colorectal cancer (CRC) tissue, but little evidence demonstrates
the association of HPV with oncogene mutations in CRC. We aim to elucidate the mutated genes that link HPV infection and CRC
carcinogenesis. Methods. Cancerous and adjacent noncancerous tissues were obtained from CRC patients. HPV antigen was
measured by using the immunohistochemical (IHC) technique. The differentially expressed genes (DEGs) in HPV-positive and
HPV-negative tumor tissues were measured by using TaqMan Array Plates. The target genes were validated with the qPCR
method. Results. 15 (31.9%) cases of CRC patients were observed to be HPV positive, in which HPV antigen was expressed in
most tumor tissues rather than in adjacent noncancerous tissues. With TaqMan Array Plates analyses, we found that 39
differentially expressed genes (DEGs) were upregulated, while 17 DEGs were downregulated in HPV-positive CRC tissues
compared with HPV-negative tissues. Four DEGs (MMP-7, MYC, WNT-5A, and AXIN2) were upregulated in tumor vs.
normal tissues, or adenoma vs. normal tissue in TCGA, which was overlapped with our data. In the confirmation test, MMP-7,
MYC, WNT-5A, and AXIN2 were upregulated in cancerous tissue compared with adjacent noncancerous tissue. MYC, WNT-
5A, and AXIN2 were shown to be upregulated in HPV-positive CRC tissues when compared to HPV-negative tissues.
Conclusion. HPV-encoding genome may integrate into the tumor genomes that involved in multiple signaling pathways. Further
genomic and proteomic investigation is necessary for obtaining a more comprehensive knowledge of signaling pathways
associated with the CRC carcinogenesis.

1. Introduction

Colorectal cancer (CRC) is the primary cause of cancer mor-
tality. Although progress has been made, the long-term sur-
vival of patients with metastatic disease is still poor [1].
Both genetic and environmental factors contribute to the
pathogenesis of CRC; about 75% of CRC cases are not hered-
itary and occur spontaneously [2]. The gut microbiota is
closely correlated with the progression of CRC [3, 4]. The

dysbiosis is associated with the genesis and evolution of
CRC, but the relationship remains unclear [5–8]. Accumulat-
ing evidence shows that colonizing microbes can drive cancer
development and progression by direct or indirect effects on
host tissues, potentially through inflammatory pathways or
carcinogenic microbial metabolites; a causative link was
found between chronic inflammation and CRC [9–11]. As
microorganisms establish a persistent infection in host cells,
either in the form of silent or active infections, barrier
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deterioration may be a major contributor to colorectal
tumorigenesis by microbial products that trigger tumor-
elicited inflammation [12, 13].

HPV carries out its life cycle in either the mucosal or the
cutaneous stratified squamous epithelia. An oncogenic HPV
infection is associated with several malignancies, including
cervical cancer [14, 15] and lung cancer [16]. To date, 200
distinct HPV genotypes have been identified, of which at
least 18 belong to the “high-risk” group that is chiefly respon-
sible for the development of cancer [17, 18]. Recently, studies
have demonstrated the possible involvement of HPV in CRC
[19], owing to the detection of HPV antigen or DNA in CRC
tissues [20–22]. However, the findings are not consistent.
HPV DNA was positive in 60 (83.3%) of the 72 total cancer-
ous colorectal samples, and no HPV DNA was observed in
any of the noncancerous tissues in one study [22], while in
another study, HPV DNA also found in 53% of healthy
mucosal tissues [23]. The frequency of HPV DNA in tumor
tissues was higher than that in nontumor colorectal tissues
in a Chinese population [24]. Evidence of HPV existing in
CRC suggests its role in CRC carcinogenesis. Persistent with
a high-risk type of HPV infection is responsible for the pre-
malignant lesions and progression of CRC, which correlated
with the late clinical stage [25–27]. Theoretically, the effect
of a virus on cancer may be mediated through the integra-
tion of the mutagenic viral genome into the host genome,
expression of oncogenic viral proteins, or inhibition of
tumor-suppressive genes [28–30]. HPV-encoding genome
may integrate into the tumor genome, which is considered
an essential step in the malignant progression [31]. Cur-
rently, there is little evidence demonstrating the association
of HPV infection with oncogenic mutations in CRC [32],
and the type of oncogenes involved with HPV remains to
be elucidated.

Gene analysis with microarray technology has shown
great potential in discriminating sophisticated gene profiling,
simultaneously mapping thousands of genes in a single sam-
ple, and giving a measurement of articulated gene expression
patterns [33]. To clarify the molecular mechanism underly-
ing HPV-associated gene mutations in CRC, we used Taq-
Man Array Plates to detect differentially expressed genes
(DEGs) in HPV viral-positive and HPV viral-negative CRC
tissues. To overcome the limitation of the small sample size,
we also took advantage of the bioinformatics technique; the
significant genes associated with CRC screened among the
pool of all DEGs in The Cancer Genome Atlas (TCGA).
Finally, we validated target genes in CRC tissues by conven-
tional quantitative assays (RT-PCR) and aimed to elucidate
whether there is a specific gene mutation pattern involving
HPV-related CRC. Identification of genome aberrations in
CRCs may help to clarify the mechanism of pathogenesis
involved with virus-related CRC.

2. Material and Methods

2.1. Ethics Statement. The Ethics Committee approved this
project of the Shantou University Medical College Ethics
Board. This study was conducted under the Declaration of
Helsinki.

2.2. Patients. All clinical samples were obtained from patients
admitted to the First Affiliated Hospital of Shantou Univer-
sity Medical College. Written informed consent was obtained
from all patients. The CRC patients were selected based on
histologically confirmed CRC at TNM stage I-IV disease with
or without distant metastases. An individual with a history of
polyps, adenomas, or other diseases related to cancer was
excluded. Tumor types were evaluated according to histol-
ogy, immunohistochemistry (IHC), and chromatin assays.
Clinical and histopathologic staging at diagnosis was deter-
mined in all patients by combining histopathologic findings
with surgical records and operative imaging. All selected tis-
sues were based on histopathological diagnoses; adjacent
noncancerous tissue was collected from an area that was
15 cm distal from the tumor. Fresh frozen tissues were
obtained from CRC patients before they underwent curative
surgical resection. Tumor and the nontumor regions were
distinguished using H&E matched slides and microdissected
to pinpoint the tumor as well as nontumor areas. Samples
were kept at -80°C until measurement. The demographic,
clinical, and histopathological data of patients were recorded.
Clinical data including race, gender, associated past medical
history, medication use, family history of colonic cancer,
and laboratory tests were collected for all patients.

2.3. Immunohistochemical Analyses. Immunohistochemical
staining was performed on paraffin sections 4μm thick.
The sections were cut, dewaxed in xylene, and rehydrated
in decreasing concentrations of ethanol. HPV was measured
in the tumor tissues and tumor-adjacent tissues using an IHC
technique according to the manufacturer’s instructions. Con-
sidering the HPV’s pathogenesis, we had chosen the anti-
HPV high-risk subtype antibodies, which is a monoclonal
antibody, reacting with HPV subtypes 6, 11, 16, 18, 31, 33,
42, 51, 52, 56, and 58. The details of antibody are HPVmouse
monoclonal antibody IgG1, ab75574, Lot. GR207368-5,
Abcam, U.K. In negative control sections, the primary anti-
body was omitted. Virus-infected monocytes or lymphocytes
from the same patient and cervical squamous cell carcinoma
were used as the positive control for staining. The sections
were graded based on the estimated percentages of virus
protein-positive cells. IHC staining was evaluated and graded
by two pathologists in isolation from the investigator who
performed the real-time PCR.

2.4. CRC-Associated Oncogene Measurement. Genes
expressed in HPV-positive and HPV-negative tumor tissues
were measured by using TaqMan Array Plates. Fresh speci-
mens were obtained from the initial diagnosis of CRC
patients who underwent curative surgical resection; adjacent
noncancerous tissue was taken far mostly from the tumor.
Total RNA was extracted from the tissue using a PureLink
RNA Mini Kit (Applied Biosystems, USA) according to the
manufacturer’s instructions. The RNA concentration was
measured using the NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific), and RNA quality was evaluated
by using the BioAnalyzer 2100 microcapillary electrophoresis
system (Agilent Technologies, Inc., Santa Clara, CA, USA).
The RNA concentration was adjusted 75 ng/L, so that the
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RNA concentration of each sample was consistent, and then,
reverse transcription was performed. RNA was converted
into cDNA by using a High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, USA). The cDNA micro-
array analysis was performed using the TaqMan® Array
Human Colorectal Cancer Metastasis 96-well plate that con-
tains 92 assays for CRC metastasis-associated genes and four
assays to candidate endogenous control genes. Each plate
includes predefined probes and endogenous controls, ready
for accurate assessment of an entire gene signature in one
simple experiment (Thermo Fisher Scientific). Each patient’s
sample was measured in the tumor tissues and tumor-
adjacent tissues simultaneously, and the gene expression level
was calculated by gene level in tumor tissue minus gene level
in tumor-adjacent tissue. Each cDNA was analyzed using
real-time PCR on the “mixed” TaqMan Array Cards, and
Ct values for target genes were obtained. All Ct values were
normalized with an inner control (GAPDH) gene, and ΔCt
values were calculated. Relative gene expression was com-
puted using the relative expression level for each gene. The
2ΔCt values were calculated by SDS Software v2.3 and
exported. Relative expression values were mean-centered,
and heat maps were generated using the “Cluster” and “Tree-
View” software tools.

2.5. Bioinformatic Analyses. To avoid the limitation of a small
sample size that may not provide a robust prediction, we uti-
lized the TCGA database. The gene expression profile of
GSE20916-RAW.tar was downloaded from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The
GSE20916 dataset contained 145 samples, including 105
CRC tumor tissues and 40 normal colon epitheliums. The
hierarchical clustering analysis was used to categorize the
data into two groups that had similar expression patterns in
CRC and normal colon epitheliums. We used a classical t
-test to identify DEGs with a change ≥ twofold and defined
P < 0:05 to be statistically significant. The Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed to
analyze the DEGs at the functional level. The DEGs were
screened using Expression Console Affymetrix.

2.6. Validation of Target Gene Selection. Target genes were
selected after analyzing the data from the TaqMan Array
Plates and data mining with bioinformatics. Then, we vali-
dated the target genes using tumor tissues of 47 CRC patients.
TaqMan quantitative PCR was used to determine the expres-
sion of the DEGs in the cancerous and adjacent noncancer-
ous tissues (AXIN2 (ID. Hs01063168_m1), MMP-7 (ID.
Hs01042796_m1), MYC (ID. Hs99999003_m1), WNT5A
(ID. Hs00998537_m1), and GAPDH (ID. Hs99999905_
m1), Thermo Fisher Scientific, USA). Specifically, amplified
RNA from each sample was reverse-transcribed using Super-
Script II reverse transcriptase and random primers (Invitro-
gen). cDNA from each reverse-transcribed sample was PCR
amplified using TaqMan quantitative PCR. The quantifica-
tion of the gene copy number, together with the human
albumin gene, was performed with the 7500 Real-Time
PCR System (Applied Biosystems, Courtaboeuf, France).

The expression values for each gene were normalized with
GAPDH.

2.7. Statistical Analyses. Statistical analyses were performed
using SPSS (Version 10.0). Pearson’s chi-squared analysis
and Fisher’s exact test were employed to compare the differ-
ences in categorical variables between patient groups. The
relative gene expression levels were compared between vari-
ous subgroups using the Kruskal–Wallis test (42 groups)
and Mann–Whitney U test (two groups). DEGs were deter-
mined by Welch’s t-test, and precise targets were selected
from the DEGs using the prediction analysis for microarrays
(PAM) software package. Significance was established when
the statistical tests returned P values < 0.05. Software R
(v3.1.1) was used to determine the significance in the Taq-
Man Array Plates, comparing genes expressed in CRC-
HPV+ vs. CRC HPV tumor tissues (heat map).

3. Results

3.1. The Clinicopathological Characteristics of CRC Patients.
To understand whether CRC patients associated with HPV
would have unique features, we investigated their clinico-
pathological characteristics in this study; the parameters
included age, gender, tumor location, histological grading,
lymphatic metastasis, and clinical staging. The 47 patients
included 4 cases of mucinous adenocarcinoma and 43 cases
of nonmucinous adenocarcinoma. Males comprised a more
significant proportion of CRC patients compared to females.
The majority of tumor regions were located in the sigmoid
colon and rectum (Table 1).

Table 1: The clinicopathological characteristics of CRC patients.

Total patients (n)

Cases of patients 47

Gender (male/female) 28/19

Median age (years) (range) 64 (38-82)

Location

Right side of colon 1

Descending colon 1

Ascending colon 3

Transverse colon 6

Sigmoid colon 16

Rectum 19

Hepatic flexure 1

Clinical stage

I 1

II 23

III 19

IV 4

Adenoma histological grade

II 40

III 7

Mucinous/nonmucinous adenocarcinoma 4/43

HPV positive/HPV negative 15/32
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3.2. HPV Antigens in CRC Tissue and Adjacent Noncancerous
Tissue. IHC staining showed that 15 (31.9%) cases were HPV
positive, while 68.1% were HPV negative. HPV antigen was
expressed in most cancerous tissues but not in adjacent non-
cancerous tissues in some CRC patients (Figure 1). At TNM
stage I, all adjacent noncancerous tissues were viral negative,
but at stage IV, half of the adjacent noncancerous tissues
were viral positive. At stages II-III, HPV expression was sig-
nificantly higher in cancerous tissue compared to adjacent
noncancerous tissue. Our results indicated that cancerous tis-
sues had higher levels of HPV expression than adjacent non-
cancerous tissue.

3.3. DEGs of HPV-Positive and HPV-Negative CRC Tissues.
We randomly selected four CRC patients, including two
patients with HPV positive and two patients with HPV neg-
ative, analyzing ninety-two genes with the TaqMan Array
Plates method. Cancerous and adjacent noncancerous tis-
sues (paired samples) were used for the case-matched stud-
ies. Gene expression profiles in case-matched groups were
analyzed using TaqMan Array Plates to screen DEGs
(enumerated in Table 2). Gene expression levels are relative
to GAPDH expression, where GAPDH expression level is
equal to 1. Among the ninety-two genes, eleven were iden-
tified as twofold upregulated between HPV-positive and
HPV-negative groups: APC, CASP3, CDKN1A, IFNG,
MAPK3, MAP2K4, NOS2, PTGS2, PTGER4, SMAD2, and
TP53. Twelve genes increased between onefold and twofold,
namely, ARRB1, CASP9, DCC, EGF, FZD1, IFNGR1, KRAS,
JAK1, MAP2K2, MAP2K6, NFKB1, and TNF. Sixteen genes
increased between 0.5-fold and onefold, namely, AKT1,
GNA5, GNB3, IL-6R, KRAS, NFKB2, PRKACA, PTGS2,
RELA, SMAD4, STAT1, TGF4, TGFB1, TGFBR1, TLR4, and
WNT5A. On the contrary, In the HPV-positive group, seven-
teen genes were downregulated between 0-fold and 0.5-fold,
namely, BAX, BCL2L1, CCND1, CCND2, CDH1, CTNNB1,
DVL1, GRB2, LRP5, MLH1, MMP7, MMP9, MYC, PIK3R1,
PIK3R2, SRC, and TCF3. Five genes decreased between 0.5-
fold and onefold, namely, AXIN2, MAPK1, MSH2, PIK3CA,
and LRP6. The heat map of DEG expression (upregulated
and downregulated genes) is shown in Figure 2. Our data
suggested that the deregulation of the genes may play essen-
tial roles in HPV-associated CRC carcinogenesis. GO analy-
sis results showed that DEGs were significantly enriched in
biological processes including cell cycle, cell division, cell
proliferation, immune response, intracellular signaling cas-
cade, and defense response.

3.4. Bioinformatics Analyzed the DEGs between CRC Tumor
Tissue and Nontumor Tissue. Additionally, we downloaded
145 raw CEL files from the NCBI Gene Expression Omnibus
(GEO) database and normalized them with GeneChip RMA
(GCRMA). Gene expression data were normalized for each
tissue type by computing the Robust Multichip Average
(RMA) directly from the Affymetrix. CEL were files obtained
for tumors, adenoma, and healthy samples. A total of 3500
genes were identified, and the oncogenes associated with
CRC were in the range. From these data, we found 16 onco-
genes with a significantly different expression between the

tumor and healthy tissues. Compared with healthy tissue,
nine genes were upregulated between onefold and twofold
in the CRC group: MMP1, MMP7, MMP9, WNT5A, IL-6,
PTGS2, MYC, BIRC5, and CCND1. Seven genes upregulated
between 0.5-fold and onefold: AXIN2, VEGFA, TLR2,
STAT1, LEF1, MEH2, and TLR4. The downregulated genes
(0.5-fold to 1.0-fold) include IL-6R, TLR3, PIGER2,
MAP2K6, ARRB1, PTGER4, CDKN1A, MAPK3, and TLR7.
The DEG expression heat map is shown in Figure 3. When
adenoma is compared with the healthy tissue, we found that
six genes increased between onefold and twofold: MMP1,
MMP7, WNT5A, MYC, AXIN2, and TLR4, while six genes
increased between 0.5-fold and onefold: MSH2, TP53,
NOS2, CCND2, BAX, and PTGER2. The downregulated
genes include IL-6R, TLR3, ARRB1, and TLR7.

3.5. Target Gene Validation. To expand the sample size, the
TCGA database was exploited to search the DEGs with sig-
nificantly different expression in CRC and non-CRC tissues;
combining with the DEGs from our microarray analysis, we
found that MMP7, WNT5A, MYC, and AXIN2 genes upreg-
ulated in tumor vs. healthy tissues, adenoma vs. healthy tis-
sue in TCGA; these genes were overlapped between the
TaqMan Array Plates data and TCGA data. To validate the
results, we detected them in the 47 samples of CRC using
the qRT-PCR assay. For all the four genes, the results were
concordant with the TaqMan Array Plates data. Initially, a
comparison was made between cancerous tissue and adjacent
noncancerous tissue. The results showed thatMMP-7,MYC,
WNT-5A, and AXIN2 were upregulated in cancerous tissue
compared to adjacent noncancerous tissue, but only MMP-
7 and WNT-5A reached statistical significance (P < 0:05)
(Figure 4). Then, we compared the same four genes between
viral positive and negative groups. MYC, WNT-5A, and
AXIN2 were shown to be upregulated in HPV-positive CRC
tissues when compared to HPV-negative tissues, while
MMP7 was shown to be downregulated in HPV-positive
CRC tissues when compared to HPV negative tissues, but
the difference did not reach the level of statistical significance
(P > 0:05) (Figure 5).

3.6. DEGs’ Principal Component Analysis. We then applied
the hierarchical clustering analysis and principal compo-
nent analysis (PCA) to categorize all the genes into dif-
ferent groups. Unsupervised two-dimensional hierarchical
cluster analysis of relative gene expression data (2DCt
method) reveals distinct clusters of cancer samples and
healthy control samples. With PCA analyses, the 92-
gene signature discriminated four samples into two signif-
icantly separated areas: viral-positive and viral-negative
groups. Our results revealed that isolated areas consider-
ably accurately classify the patterns of viral-positive and
viral-negative CRC (Figure 6). The two-way hierarchical
clustering was also used in the data from TCGA, and
the results revealed significantly separated areas between
CRC cancer tissue and healthy tissues (Figure 7). Our
data show that multiple genes participate in the process
of viral-related CRC.
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CRC section
Black arrow: HPV (−) cell

(a)

Cervical squamous cell 
carcinoma section

Red arrow: HPV (+) cell

(b)

Adjacent nonneoplastic
section of CRC

Black arrow: HPV (−) cell

(c)

CRC section
Red arrow: HPV (+) cell

(d)

Adjacent nonneoplastic
section

Black arrow: HPV (−) cell

(e)

CRC section
Red arrow: HPV (+) cell

(f)

Figure 1: Distribution of HPV viral antigen in CRC tumor tissue and adjacent nonneoplastic tissue by immunohistochemistry staining. (a)
HPV-negative expression in the neoplastic tissue of CRC patients with TNM stage 1. (b) HPV-positive squamous cell in cervical carcinoma
was the positive control. (c, d) Patient 1 (TNM stage 3), with sigmoid colon cancer by which the pathological type is ulcerative moderately
differentiated adenocarcinoma, and tumor cells infiltrate to the serous layer and adipose tissue. HPV staining is positive in tumor tissue
(d) but negative in adjacent nonneoplastic tissue (c). (e, f) Patient 2 (TNM stage 3), with rectal cancer by which the pathological type is
ulcerative moderately differentiated adenocarcinoma, and tumor cells infiltrate to the outer membrane; HPV staining is positive in tumor
tissue (f) but negative in adjacent nonneoplastic tissue (e).
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Table 2: Gene expression profiles in case-matched groups.

Gene

TCGA 96-array
Normal
tissue
(FC)

Tumor
tissue (FC)

Δ
CT

P
HPV-
(FC)

HPV
+(FC)

ADRBK1 7.29 6.41 0.88 <0.001 0.89 1.13

AKT1 8.20 8.20 0.00 0.959 0.87 1.77

APC 5.60 4.30 1.30 <0.001 1.13 3.55

APPL1 9.19 6.66 2.53 <0.001 0.99 1.23

ARRB1 7.71 5.97 1.74 <0.001 1.62 3.15

AXIN2 7.11 6.31 0.80 <0.001 1.18 0.20

BAX 5.08 6.65 1.57 <0.001 1.12 1.11

BCL2L1 6.63 6.14 0.50 <0.001 0.80 0.55

BIRC5 7.70 6.35 1.35 <0.001 0.39 1.17

BRAF 7.45 4.58 2.87 <0.001 1.11 1.13

CASP3 10.04 8.16 1.88 <0.001 1.64 4.50

CASP9 7.17 5.61 1.56 <0.001 0.80 2.19

CCND1 8.66 7.13 1.53 <0.001 0.59 0.53

CCND2 7.75 6.64 1.11 <0.001 1.12 0.87

CDH1 9.20 9.19 0.02 0.862 1.68 1.57

CDKN1A 10.28 9.23 1.04 <0.001 1.12 3.35

CTNNB1 7.09 6.26 0.83 <0.001 0.89 0.87

DCC 3.84 2.86 0.97 <0.001 1.13 2.31

DVL1 8.34 6.84 1.50 <0.001 0.88 0.87

E2F4 8.22 7.09 1.13 <0.001 0.80 0.86

EGF 7.82 3.99 3.83 <0.001 1.76 3.42

EGFR 7.32 5.71 1.61 <0.001 2.18 2.21

FZD1 5.84 4.23 1.61 <0.001 1.73 3.04

GNAS 9.25 7.91 1.34 <0.001 0.80 1.60

GNB3 7.00 5.62 1.38 <0.001 0.82 1.76

GRB2 9.74 7.65 2.09 <0.001 1.63 1.62

GSK3B 7.68 5.44 2.24 <0.001 0.82 1.11

IFNG 5.71 3.51 2.19 <0.001 0.43 2.58

IFNGR1 9.23 7.86 1.37 <0.001 1.56 2.61

IL6R 6.57 5.06 1.50 <0.001 2.24 3.17

JAK1 7.10 6.28 0.82 <0.001 1.13 2.23

KRAS 7.99 6.13 1.86 <0.001 2.24 3.21

LEF1 5.25 4.43 0.82 <0.001 0.22 0.37

LRP5 5.58 5.37 0.21 <0.001 1.12 1.10

LRP6 8.06 5.88 2.17 <0.001 1.59 1.11

MAP2K1 10.33 8.26 2.07 <0.001 1.11 1.12

MAP2K2 6.74 6.26 0.48 <0.001 1.63 3.21

MAP2K4 8.47 6.61 1.86 <0.001 2.33 4.56

MAP2K6 7.57 6.07 1.50 <0.001 1.59 2.60

MAPK1 8.09 6.41 1.68 <0.001 2.31 1.72

MAPK3 9.55 8.51 1.04 <0.001 1.11 4.43

MLH1 10.75 8.29 2.46 <0.001 1.12 0.80

MMP14 6.72 5.24 1.48 <0.001 0.28 0.40

MMP2 5.50 5.12 0.39 <0.001 0.56 0.75

MMP7 7.73 7.85 0.12 0.766 0.13 0.03

MMP9 6.69 7.55 0.87 <0.001 0.81 0.66

Table 2: Continued.

Gene

TCGA 96-array
Normal
tissue
(FC)

Tumor
tissue (FC)

Δ
CT

P
HPV-
(FC)

HPV
+(FC)

MSH2 8.74 7.00 1.74 <0.001 1.61 1.12

MSH6 5.65 5.19 0.46 <0.001 0.80 0.85

MYC 10.92 9.92 0.99 <0.001 0.41 0.17

NFKB1 8.55 7.84 0.72 <0.001 1.11 2.18

NFKB2 4.66 4.45 0.21 <0.001 0.81 1.49

NOS2 6.56 5.51 1.05 <0.001 3.16 5.28

PIK3CA 6.56 4.32 2.23 <0.001 2.26 1.61

PIK3CB 7.50 5.64 1.85 <0.001 1.60 1.60

PIK3R1 8.27 7.53 0.73 <0.001 1.11 1.11

PIK3R2 7.61 6.07 1.54 <0.001 1.74 1.61

PRKACA 5.89 5.11 0.78 <0.001 1.61 2.24

PRKAR1A 9.03 7.94 1.09 <0.001 0.81 1.10

PTGER2 7.31 6.09 1.22 <0.001 0.87 6.43

PTGER4 8.90 7.71 1.18 <0.001 1.78 4.47

PTGS2 5.11 5.22 0.11 0.293 0.44 1.13

REL 6.54 5.31 1.23 <0.001 0.80 1.11

RELA 8.35 7.43 0.93 <0.001 0.54 1.11

RELB 6.23 5.79 0.43 <0.001 0.87 1.11

SMAD2 8.97 6.54 2.43 <0.001 2.27 4.47

SMAD3 6.46 5.47 0.99 <0.001 1.11 1.58

SMAD4 6.04 4.70 1.34 <0.001 1.58 2.23

SOS1 6.84 5.22 1.62 <0.001 1.60 1.73

SRC 5.53 4.72 0.81 <0.001 0.56 0.55

STAT1 8.36 7.26 1.10 <0.001 0.87 1.58

STAT3 7.96 7.35 0.61 <0.001 1.13 1.55

TCF3 7.04 5.59 1.45 <0.001 0.81 0.81

TCF4 7.49 6.86 0.63 <0.001 0.88 1.75

TGFB1 5.60 5.32 0.28 <0.001 0.56 1.11

TGFB2 4.42 3.24 1.18 <0.001 0.56 0.69

TGFB3 5.45 4.10 1.35 <0.001 0.41 0.86

TGFBR1 7.28 5.41 1.87 <0.001 1.11 1.64

TGFBR2 8.03 7.15 0.88 <0.001 1.61 1.75

TLR4 4.41 5.69 1.28 <0.001 1.13 1.75

TLR7 5.83 4.18 1.65 <0.001 1.73 2.26

TLR9 5.66 4.27 1.39 <0.001 0.81 1.11

TNF 4.33 4.58 0.25 <0.001 0.57 1.60

TNFRSF1A 9.46 8.36 1.10 <0.001 1.61 1.62

TP53 6.09 7.19 1.11 <0.001 0.55 2.61

VEGFA 7.27 7.10 0.17 <0.001 0.20 0.40

WNT5A 8.52 6.78 1.74 <0.001 0.28 1.13

Fold change of each sample calculated as follows: Normal/tumor tissue
ðFCÞ = 2f−ðCTðnormalÞ−CTðinternal referenceÞÞg. HPV-/HPV+ group was the mean
CT values of the cancer tissues minus noncancer tissue of the HPV negative
or HPV positive. Due to the small number of samples, no intergroup
comparison was made for the value of 96-array. The FC difference between
HPV- and HPV+ was calculated based on >2 or <0.5 in CT.
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4. Discussion

The human microbiota has implicated in the etiology of
CRC; moreover, the microbiome has proven to be an active
contributor to CRC [3]. FadA protein, a virulence factor

expressed by Fusobacterium nucleatum, can signal epithelial
cells via E-cadherin, a cell-surface molecule essential for
CRC metastasis as well as a component of the WNT/β-
catenin signaling pathway, the most commonly mutated
pathway in CRC [34, 35]. Nowadays, extensive studies have
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Figure 2: The heat map of 23 differentially expressed genes (DEGs) in HPV-positive and HPV-negative CRC tissues. RQ7 and RQ9 were
tumor tissues with HPV negative. RQ4 and RQ12 were tumor tissues with HPV positive. The gene expression data were measured with
microarray methods. Relative expression values (2-ΔCt) of DEGs from HPV-positive/negative sample were calculated and generated the
heat map. DEG expression was shown with different colors. From green to red represent downregulated to upregulated genes.
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revealed the close relationship between gut dysbacteriosis
and CRC, but few have demonstrated the relationship
between persistent viral infection in the gut and carcinogen-
esis of CRC. Recently, HPV antigens have been found in CRC
tumor tissue; however, its pathogenesis remains to be eluci-
dated. The molecular pathways that link HPV infection and
CRC are still undetermined.

Comparative analysis of the DEGs reported by indepen-
dent studies shows a relatively limited degree of overlap due
to variations in population and technical methods [36, 37].
Therefore, it is still trying to delineate the underlying genetic
events for individual CRC patients precisely. TaqMan Array
Plates technology provides a highly effective way to analyze
the expression changes of mRNA in CRC [38]. In this study,
the DEGs detected by TaqMan Array Plates were related to

colorectal carcinogenesis, cell cycle progression, invasion,
antiapoptosis, cell adhesion and proliferation, and carbohy-
drate metabolism. Specifically, we found that 39 DEGs were
upregulated, while 17 DEGs were downregulated when com-
paring HPV-positive CRC tissues with HPV-negative tissues.
The DEGs in HPV-positive tissues were involved in signaling
pathways including activators of Wnt/β-catenin, phosphoi-
nositide 3-kinase (PI3K), mitogen-activated protein kinase
(MAPK), mammalian target of rapamycin (mTOR) signal-
ing, and inhibitors of TGFβ and TP53 signaling, which were
also the most frequent changes in CRC progression. The
DEGs are also involved in cell invasion, adhesion, and tissue
remodeling which may play an essential role in the carcino-
genesis and progression of metastases in CRC [34, 39–41].
With PCA analyses, we found that genes expressed in viral-
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Figure 4: Expression of AXIN2, MYC, MMP7, and WNT-5A in CRC tissue and adjacent noncancerous tissue.
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positive and viral-negative samples have located in distinctly
different areas, which might accurately classify viral-positive-
and viral-negative-related CRC DEGs. Our data is partially
overlapping with TCGA data. TCGA data showed that
DEG expression among CRC, adenoma, and healthy tissue
was different. DEGs in CRC tumor tissue have also signifi-
cantly separated areas with genes expressed in healthy tissue.

The Wnt/β-catenin signaling pathway controls cell pro-
liferation and differentiation in the intestinal crypt microen-
vironment [42]. In the intestinal epithelium, terminally
differentiated intestinal epithelial cells (IECs) were constitu-
tively replaced by newly divided IECs from intestinal stem
cells (ISCs) located in the crypts. This biological process
was tightly controlled by Wnt signaling [43]. Deregulations
of Wnt/β-catenin signaling were associated with CRC [44,
45]. The APC protein, encoded by the APC gene, plays a vital
role in maintaining homeostasis of the gut epithelium and
thus, when mutated, can impart a functional consequence

capable of driving cancerous cell proliferation [46]. In this
study, APC and WNT5A were upregulated in the HPV-
positive group as compared to the HPV-negative group,
indicating that HPV infection may activate the Wnt/β-
catenin signaling pathway. Evidence from the previous study
also supports that microbes play a role in dysregulating the
Wnt/β-catenin signaling pathway as a means of tumor initi-
ation [47]. AXIN proteins act as tumor suppressors that
function through inhibition of Wnt signaling [48]. AXIN2
is a primary transcriptional target of β-catenin–dependent
Wnt signaling, which acts as a scaffold factor in the β-
catenin destruction complex. The two AXIN proteins have
similarity in dysregulation of the Wnt pathway that believed
to be an essential first step in the genesis of CRCs, while
aberrant Wnt pathway activation is in roughly 90% of spo-
radic CRCs [34, 49].

In our study, we found that WNT5A was upregulated
while AXIN2 was downregulated in the HPV-positive group

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

+

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

−

–3

–2

–1

0

1

2

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

+

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

−

–3

–2

–1

0

1

2

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

+

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

−

–4

–2

0

2

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

+

Tu
m

or
 ti

ss
ue

 w
ith

 H
PV

−

–5

–4

–3

–2

–1

0

P = 0.615 P = 0.265

P = 0.913 P = 0.726

Figure 5: Different expression levels of AXIN2, MYC, MMP7, and WNT-5A between HPV-positive and HPV-negative tumor tissues.

9BioMed Research International



as compared to the HPV-negative group. However, both
AXIN2 and WNT5A were upregulated in the HPV-positive
group when we verified the results with qPCR in additional
samples. The data from TCGA showed that AXIN2 was
upregulated in CRC tumor tissues. Our results revealed that
differences in gene expression might be extended in individ-
ual patients with CRC; therefore, a large cohort is required to
eliminate a distinctive difference in CRC oncogenes. The dif-
ferences between microarray and q-PCR should be carefully
examined to reveal the role of AXIN and Wnt signaling in
HPV-associated CRC pathogenesis. Genes mutations in the
Wnt/β-catenin signaling pathway include the c-MYC
proto-oncogene (MYC) [50]. c-Myc is a target of APC signal-
ing, which aberrantly activated in most colorectal cancers
[51]. With the qPCR method, we found that MYC upregu-
lated in all CRC cancerous tissues including HPV-positive
cancerous tissues. MYC encodes a transcription factor that
stimulates cellular proliferation and growth by controlling
the expression of genes whose products regulate metabolism,
ribosome biogenesis, and cell cycle progression [52].

Interferon (IFN) has a wide range of biological functions,
including antiviral, antiproliferative, and immunomodula-
tory properties. IFN-induced cellular antiviral response is
the primary defense mechanism against viral infections.
Consequently, viral infection may disrupt the secretion of
interferon, IFNG, INFGR1, and TNF genes upregulated in
HPV-positive CRC tissues as compared to HPV-negative
CRC tissues in this study. The upregulated IFNG and
INFGR1 may trigger the STAT (signal transducers and acti-

vators of transcription) proteins that mediate some biological
functions and form part of the signaling cascades [53].
Therefore, the intimate relationship between viral infection,
IFN/TNF/IL-6R/STAT1expression, and the associated signal-
ing pathway is valuable in elucidating the mechanism of
virus-associating CRC.

Striking experimental data have shown that gut microbes
play a crucial role in vascularization of the intestinal mucosa
and wound-healing processes [54]. MMPs and VEGFA are
the most critical prometastatic and proangiogenic factors
that inhibit cancer cell apoptosis, decrease cell adhesion,
and induce angiogenesis, resulting in the promotion of the
development and progression of CRC [55]. KRAS is a small
GTPase, playing a significant role in the EGFR-MEKMAP
kinase pathway. KRAS mutations are detectable relatively
early in colon carcinogenesis, which is relevant to tumor pro-
gression and seems to be associated with distant metastases
[56]. The PI3K/Akt signaling pathway affects diverse cell
activities such as proliferation, differentiation, migration,
and apoptosis, which is a crucial antiapoptosis pathway that
regulates cell survival and death [57]. PI3K/Akt signaling
also mediates inflammatory reactions by interacting with
NF-κB [58]. PTEN is a molecular switch that antagonizes
the PI3K/Akt signaling pathway by dephosphorylating
PIP3 to PIP2, which suppresses cell proliferation and pro-
motes apoptosis. Downregulation of PTEN results in an
enrichment of PIP3 and a high expression of Akt [59]. In
this study, we also found that MMPs, VEGFA, JAK1, EGF,
KRAS, AKT1, MAPK3, and MAP2K4 were upregulated in
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HPV-positive CRC. The functions of these genes in virus-
associated CRC need further investigation.

Currently, traditional clinical and pathological parame-
ters are not always sufficient to discriminate high-risk from
low-risk CRC, and validated molecular markers with prog-
nostic value are not yet available [33]. A recent report dem-
onstrated that analysis of the microbiome could serve as a
screening biomarker for CRC [60]. High-risk HPVs are pres-
ent in 53.84% of invasive colorectal cases, which is associated
with an invasive and metastatic phenotype [61]. E6/E7 of
HPV type 16 induces cellular transformation and migration
in human healthy colorectal mesenchymal cells but not epi-
thelial ones, accompanied by the upregulation of D-type
cyclins and cyclin E as well as Id-1 in these cells [62]. Our
results revealed that the HPV antigen was detected more
strongly in tumor tissue than in adjacent nonneoplastic tis-
sue. Moreover, all adjacent noncancerous tissues that were
viral negative at TNM stage I were changed into half of the
adjacent noncancerous tissues that were viral positive at stage
IV. Our results indicated that HPV might be associated with
the CRC stage. When viral proteins begin to accumulate,
progeny viral genomes are replicated and used for secondary
transcription. HPV integration sites, with a preference for

sites of known genomic fragility, are distributed randomly
over the whole genome in one study, and the majority
of integrated HPV genomes appear to be actively tran-
scribed [63]. In this pilot study, DEGs involved various
signaling pathways. A larger cohort to identify genes from
HPV-associated CRC is necessary to obtain comprehensive
knowledge of the signaling pathways associated with CRC
carcinogenesis, discover novel targets for cancer therapy,
and develop new biological drugs [33].

The main limitation of this study is that no significance
was observed between deregulated genes from HPV-
positive vs. HPV-negative CRC cases of the cohort. We could
not exclude the reason for the small sample size. However,
there may be a more complicated mechanism involved. Fur-
ther study with large sample size is needed to elucidate the
HPV-associated CRC.

5. Conclusions

HPV-induced cervical cancer has been widely confirmed
clinically, and the anti-HPV vaccine has made significant
progress in the prevention and treatment of cervical cancer.
At present, studies have found that HPV viral antigens also
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exist in colon cancer tissues. The relationship between HPV
infection and CRC carcinogenesis is very worth studying.
In this study, we demonstrated that tumor tissues had higher
levels of HPV antigen than adjacent nonneoplastic tissue.
Moreover, we found that 39 differentially expressed genes
(DEGs) were upregulated, while 17 DEGs were downregu-
lated when compared to HPV-positive CRC tissues with
HPV-negative tissues. Combined with the database of the
Cancer Genome Atlas (TCGA), we screen four DEGs and
tested with the PCR method, and there was some overlap
between our data and TCGA data. Our data revealed that
HPV could take part in CRC carcinogenesis through gene
mutation. The further genomic and proteomic investigation
is necessary for obtaining a more comprehensive knowledge
of signaling pathways associated with CRC carcinogenesis.
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