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Sialylation is a glycosylation feature that occurs in different linkages at the non-reducing end of a
glycan moiety, the linkage isomers are often differentially associated with various biological processes.
Due to very similar physico-chemical properties, the separation of isomeric sialylated glycopeptides
remains challenging but of utmost importance in the biomedicine and biotechnology, including

. biomarker discovery, glyco-engineering and biopharmaceutical characterization. This study presents

. the implementation of a high-resolution separation platform based on capillary electrophoresis — mass

. spectrometry (CE-MS) allowing for the selective analysis of «2,3- and a2, 6-sialylated glycopeptides.

© These differentially linked glycopeptides showed an identical fragmentation pattern (collision

. induced dissociation) but different electrophoretic mobilities, allowing for baseline separation of

. the different linkages without the need for an extensive sample preparation. The different migration

. behavior between the two moieties was found to correlate with differences in pK, values. Using a
novel methodology adapted from the so-called internal standard CE approach, a relative difference of
3.4:10~%in pK, unit was determined. This approach was applied for the analysis of tryptic glycopeptides
of prostate specific antigen, which shows highly complex and heterogeneous glycosylation. The

. developed platform therefore appears attractive for the identification of differentially linked sialic acids

. that may be related to pathological conditions.

Glycosylation is one of the most complex post-translational modifications of proteins that affects protein folding,
. stability, half-life, protein-protein interactions, signaling and trafficking'->. Carbohydrate moieties are attached
: to the peptide backbone either via the nitrogen atom of the side-chain of asparagine (N-linked) with the sequence
© N-X-S/T (X =P) or via an oxygen atom (O-linked) of serine or threonine. Next to the diversity in site occu-
. pancy (macroheterogeneity), a large variety in glycan structures may also be observed at a given glycosylation site
. (microheterogeneity).

Changes in glycosylation may be associated with various factors, including age and pathophysiological con-
ditions*~”. In certain disease settings, specific glycan features such as fucosylation, bisection, galactosylation or
sialylation are known to be affected®®. Sialylation, i.e., a process by which sialic acids are attached to glycans,
occurs on different monosaccharides and in different linkage positions, namely 2,3, a.2,6 or .2,8. The motifs

: are located at the non-reducing end of the glycans, creating binding sites for multiple human lectins, toxins and
© pathogens'®. Sialic acids are involved in numerous pathophysiological processes. For instance, a:2,3-linked sialic
- acids have shown to be associated with malignancy in several types of cancers via formation of sialyl-Lewis* struc-
. tures (attachment of an a1-3 linked-fucose to an antennary N-acetylglucosamine) which are linked to metastasis
: progression''"!3. Furthermore, 0:2,6-linked sialic acids are presumed to be involved in blocking galectin binding
: and enhancing the tumor cell survival-'.
: Glycosylation, and especially changes thereof, has become of great importance due to the potential use of
glycopeptides as clinical biomarkers!’-"°. Similarly, the structural characterization of protein-linked glycans is
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essential in the biopharmaceutical industry to ensure the safety and efficacy of novel therapeutics>2*21. In
recent years, molecular engineering of carbohydrates, referred to as glyco-engineering, has emerged in this field
to enhance efficacy and design functional properties of monoclonal antibodies (mAbs)?2-?*. Notably, terminal
carbohydrate moieties on glycan chains are often affected by subtle changes in the cell culture environment®® 212,

The characterization of protein glycosylation often requires information about site occupancy as well as the
glycan structures. This information is often obtained via proteolytic cleavage and subsequent glycopeptide anal-
ysis by mass spectrometry (MS)**?”. However, an exhaustive characterization of sialic acid linkages of glycopep-
tides using MS remains rather challenging. Only recently, ion mobility mass spectrometry has demonstrated to
allow for the separation of glycopeptide sialic acid linkage isomers?®. Likewise, the differentiation between the
differently linked sialic acids of immunoglobulin G (IgG) Fragment crystallizable (Fc) glycopeptides has been
achieved using a linkage-specific derivatization method prior to MS analysis?. Nonetheless, such methods are
not broadly accessible and there is a clear need for the differentiation of sialic acid isomers in conjunction with
MS detection.

In this study, we present a novel approach based on capillary electrophoresis (CE) - electrospray ionization
(ESI)-MS for glycopeptides analysis, enabling baseline separation of the a.2,3- and a2,6-sialylated isomers with-
out the need for any sample pre-treatment. The CE-ESI-MS method was developed using IgG Fc glycopeptides
derived from recombinant IgG which contains only a2,3-sialylated glycopeptides®®*, as well as IgG Fc glyco-
peptides derived from human plasma IgG, which only contains «2,6-sialylated glycopeptides®!. The observed
difference in electrophoretic mobilities was further investigated by determining the difference in pK, values of
two representative compounds, namely, a.2,3-sialyllactose and a2,6-sialyllactose. The relative difference in acidity
constant was assessed using a novel methodology based on the internal standard CE approach first proposed by
Fuguet et al.*, identifying differences in acidity between sialic acid isomers as one of the plausible causes for sialic
acid isomer separation. Finally, the developed platform was applied to discriminate sialic acid linkage isomers of
tryptic glycopeptides of prostate specific antigen (PSA)*.

Results and Discussion

Analysis of IgG Fc glycopeptides using CE-ESI-MS. A sheathless CE-ESI-MS platform was used for
the analysis of Fc glycopeptides derived from pooled intravenous IgG (IVIgG) and IgG1 monoclonal antibody
(IgGmADb) produced in Chinese Hamster Ovary (CHO) cells. In order to correct for the significant differences
observed in migration times (t,,), a targeted alignment of the data was applied using an internal standard. Figure 1
illustrates the analysis of [gGmAD1 (Fig. 1A) and IVIgG (Fig. 1B) after alignment. For both samples, the extracted
ion electropherograms of the non-sialylated glycopeptides of subclass 1 (G1F and G2F) showed the same appar-
ent mobility while different t,, were obtained for the mono-sialylated species (G1FS and G2FS). IgG Fc glycopep-
tides derived from CHO cells are well-known to contain only «2,3-linked sialic acids while IgG Fc glycopeptides
derived from human plasma are expected to only contain a2,6-linkages**3* 3!, The co-injection of IgGmADb1
and IVIgG1 glycopeptides (Fig. 1C) emphasized this difference in apparent mobilities for a.2,3- versus a.2,6-
linked sialylated species, where .2,3-linked mono-sialylated and o2,6-linked mono-sialylated glycopeptides were
baseline resolved. The differentiation between both linkages is highly relevant since a2,3 and o.2,6 linkages may
have significantly different biological effects?”. CE is not the only separation platform that enables separation of
sialylated isomers: zwitterionic -HILIC and porous graphitized carbon (PGC)-LC have proven to be suitable
for separation of glycan species with isomeric sialic acid linkages®* *. Specific fragmentation features have been
reported for anionic glycans, enabling the distinction between isomers*®*. However, many other conventional
positive ionization mode MS(/MS) approaches do not provide sufficient differentiation between o.2,3- and «.2,6-
linked sialylated species due to an identical exact mass as well as similar fragmentation patterns using collision
induced dissociation’.

Our preliminary data obtained for the analysis of IgG Fc glycopeptides using CE-ESI-MS showed different
electrophoretic mobilities of sialic acid linkage isomers, implying a different charge-to-size ratio that may be
used to discriminate both a2,3- and a2,6-linked sialylated species. This difference may be either caused by dif-
ferences in the hydrodynamic radius of the analytes and/or by a difference in acidic constant between 2,3- and
a2,6-linked sialic acids. To the best of our knowledge, only a general pK, value for both linkages (pK, ca. 2.6-
2.9) has been described so far*-*!. Therefore, the potential difference in pK, values between the two differently
linked sialic acids was further investigated using two representative compounds, namely, a2,3-sialyllactose and
a2,6-sialyllactose.

pK, Differences between a2,3- and a.2,6- Sialylated Lactose. The in silico prediction as well as the
experimental determination of the pK, values are described in Supplementary Information, Section S-1%2. As
summarized in Table 1, both approaches were not sufficient to demonstrate a significant difference in the pK,
values of a.2,3- and «2,6-linked sialyllactose due to the relative close values and the associated error with the
measurements. In order to further explore the expected difference in pK, values and to enable a clear differentia-
tion between both pK, with minimized measurement errors, a novel methodology based on the so-called internal
standard (IS)-CE approach was implemented for the determination of the relative difference in pK, values. This
IS-CE approach, first proposed by Fuguet et al.?2, is based on the assessment of acidity constants using CE with
concomitant injection of the analyte of interest and an IS. The pK, values of the latter is known and its selection
is based on its close similarity in nature and pK, value to the analyte of interest. Here, this procedure was adapted
to assess the relative difference in pK, unit where one of the sialyllactose acted as the IS and the other one as the
analyte of interest. The relative difference was estimated by calculating the mean limiting mobilities (migration
under fully deprotonated form, namely, at pH 6.0, N=2) and mean effective mobilities (migration under partially
ionized form, namely, at pH 2.0, N=2) for both analytes («2,3- and o:2,6-linked sialyllactose) injected simulta-
neously therefore no alignment was needed (S-7 Supplementary Information, Fig. S-1). Mean limiting mobilities
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Figure 1. Extracted ion electropherograms (EIEs) of IgGmAb1 and IVIgG1 glycopeptides obtained with
CE-ESI-MS after targeted alignment. (A) EIEs of IgGmAb1 glycopeptides derived from CHO cells, (B) EIEs of
IVIgGI retrieved from human plasma and (C) EIEs of a co-injection of IgGmAb]1 and IVIgG1. The “PEP” label
illustrates the tryptic peptide sequence EEQYNSTYR to which the glycan is attached.

a2,3-sialyllactose 1.9 (£0.7)

a2,6-sialyllactose 2.0 (+0.7)

Conventional CE method Absolute pK, value

a2,3-sialyllactose 1.8 (£0.1)

a2,6-sialyllactose 1.8 (4+0.1)

IS-CE method (N=2) Relative pK, value
3.4-1072

Table 1. pK, values determined for analogs of sialyllactose.

for both compounds were found to be —6.0-10°cm? Vs (£3.4.10°cm? V- !s 1) and —6.5:10 °cm? V157!
(£3.4-107° cm? V! s71), while the mean effective mobilities were estimated at —4.2-107> cm? V~!s71 (49.7.10~7
cm? Vs and —4.6-10°cm? Vs (+8.6-1077 cm? V! s7!). Using the measured mobilities and Eqs S-7, S-8
and S-9 in section S-2 of the Supplementary Information, a ApK, of 3.4-1072 unit was assessed (Table 1).

This relative ApK, therefore reflects a difference in the acidity constants of the two sialylated glycan isomers.
Consequently, this led to different electrophoretic mobilities in the working background electrolyte (BGE) (i.e.,
10% AA at pH 2.3) for a2,3- and o2,6-linked sialylated glycopeptides of IgGmADb1 and IVIgG. Considering
that other experimental conditions are used in the CE-ESI-MS approach compared to the IS-CE approach (i.e.,
longer capillary (90 cm vs 32.5 cm), long-end injection vs short-end injection (89 cm vs 8.5 cm effective length
of the capillary) and a higher voltage (5/8kV vs 20kV)), a migration time difference of 1 min with MS detection
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Figure 2. MALDI-TOF-MS spectrum of PNGase F released PSA N-glycans treated with ethyl esterification. A
total of 37 different glycans were identified (not all data shown, a complete overview can be found in Table S-3,
Supplementary Information).

was estimated between the a.2,3- and a2,6-linked sialyllactose on the basis of the deduced pK, difference (see
Eq. S-7 in section S-2 of the Supplementary Information). These findings supports the result obtained with the
co-injection of IgGmADbI and IVIgG1 illustrated in Fig. 1. The different linkage affects the charge of the sialyllac-
toses, which may also present a different size, overall impacting the charge-to-size ratio and, thus, the migration
behavior. Therefore, the CE-ESI-MS technique appears to be a promising tool for separating sialic acid linkage
isomers.

2.3 Analysis of prostate specific antigen glycopeptides using CE-ESI-MS.  Due to the heterogene-
ous glycosylation character of PSA, including differentially linked sialic acids, this glycoprotein was selected to
investigate the potential of using of CE-ESI-MS for sialic acid linkage isomer differentiation®>. A state-of-the-art
MALDI-TOEF-MS platform was also used as orthogonal technique after enzymatic release of the glycans from
PSA and an ethyl esterification to distinguish a2,3- from a2,6-linked sialic acids of released glycans, the results
were compared to the CE-ESI-MS platform*%. Moreover, in order to evaluate the migration behavior of the
sialylated isomers of PSA, an exosialidase step was performed to allow for the release of a2,3-linked sialic acids
from complex glycopeptides.

Ethyl esterification. 'The enzymatically released N-glycans from PSA were derivatized using a procedure devel-
oped by Reiding et al., converting a2,3-linked sialic acids into a lactone (—18 Da) while «2,6-linked sialic
acids formed an ethyl ester (+28 Da)*. The MALDI-TOF-MS profiling confirmed that the acquired PSA con-
sisted of differentially linked sialic acids (Fig. 2), enabling the identification of 37 glycans (S-6 Supplementary
Information, Table S-1). It is worth mentioning that sialic acid attached to a N-acetylgalactosamine only revealed
an a2,6-linkage, which is supported by literature!?.

CE-ESI-MS(/MS) analysis of a PSA tryptic digest. Figure 3 displays the base peak electropherogram and the
extracted ion electropherograms (EIEs) obtained for the analysis of a PSA tryptic digest. A relatively high num-
ber of glycopeptides (i.e., 75 glycopeptides, S/N > 9, error < 10 ppm) were identified with the CE-ESI-MS set-up.
All glycans were attached to the peptide “NgK” and are listed in Section S-6 of the Supplementary Information,
Table S-1. Notably, a relatively low amount of PSA (ca. 1 ng protein weight injected) was necessary to detect these
75 glycopeptides. The base peak electropherogram of a PSA tryptic digest analysis is shown in Fig. 3A while the
EIEs of non-sialylated, mono-sialylated, and di-sialylated glycoforms are shown in Fig. 3B-D. Figure 3C and D
clearly emphasize that o2,3- and .2,6-linked isomers are baseline resolved, confirming the ability of CE-ESI-MS
to discriminate between the different linkages, independently of the glycopeptide structure. The identified com-
pounds are represented in terms of number of hexoses (H), N-acetylhexosamines (N), fucoses (F) and sialic acids
(S). As illustrated in Fig. S-2 and S-3 of the Supplementary Information, isomer separation was observed for the
a2,3- and o2,6-linked sialylated species (H5N4S2, H5N4F1S2, H4N5S2 and H4N5F1S2). Interestingly, a peak
with a higher apparent mobility compared to the fully a.2,6-di-sialylated species was detected, with a similar
isotopic distribution. This peak could not be assigned with MS/MS due to the relatively poor signal intensity.
Given the migration in the di-sialylated region of the electropherogram, this unidentified analyte may also be
a glycopeptide containing two sialic acids, from which one is an «2,8-linked sialic acid on top of the second
sialic acid. However, the presence of a di-sialic acid motif with an 2,8-linkage could not be confirmed with the
MALDI-TOF experiments as this a.2,8-linked sialic acid is expected to readily form lactones under ethyl esterifi-
cation conditions, leading to the same m/z value as for a glycan with an o2,3-linked sialic acid even though there
is a difference in linkage position*’. Next to that, there are hitherto no internal standards available that would con-
tain this specific linkage. Therefore, similar experiments as performed with the a.2,3- and a2,6-linked sialyllac-
tose with IS-CE could not be performed. As a result, further investigations are needed to confirm this hypothesis.

Next to the isomer separation of the differentially linked sialic acids, Fig. 3 also highlights that the glyco-
peptide separation is highly influenced by the degree of sialylation. This is expected as the migration of the gly-
copeptide is dependent on the charge-to-size ratio of the analyte in the capillary. Figure 3B illustrates that the
non-sialylated glycopeptides migrate first followed by the mono- and di-sialylated species. The sialic acids are
expected to carry a negative charge when 10% AA is used as BGE (pH 2.3), resulting in a slower migration in the
capillary. More sialic acids on the analyte will therefore increase the migration time. Figure 3B illustrates the EIEs
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Figure 3. CE-ESI-MS analysis of PSA tryptic (glyco)peptides. (A) Representative base peak electropherogram
observed for a tryptic digest of PSA. Based on the electrophoretic separation, three distinct clusters were
defined. (B) Cluster with only non-sialylated glycopeptides of PSA. (C) Cluster containing mono-sialylated
glycopeptides of PSA. (D) Cluster with di-sialylated glycopeptides of PSA. A total of 75 different glycopeptides
were identified (not all data shown, a complete overview can be found in Table S-3, Supplementary
Information). Peaks with a star (*) were not assigned. The “PEP” label illustrates the tryptic peptide sequence
NgoK to which the glycan is attached.

observed for non-sialylated glycopeptides and revealed no isomer separation (co-migration of isomers), indicat-
ing that the separation mostly relies on the number of sialic acids attached to the analyte as well as the ApK, of the
differentially linked sialic acids. Differences in hydrodynamic radii of the analytes appeared to have only a minor
influence, as illustrated for glycopeptides with neutral glycans containing 0, 1 or 2 galactose residues which only
showed minor differences in migration without differentiation between isomers.

CE-ESI-MS analysis after exosialidase treatment. ~ Figure 4 shows the EIEs observed for the di-sialylated gly-
copeptides H5N4F1S2 (blue trace) and H4N5F1S2 (green trace) prior (Fig. 4A) and after (Fig. 4B) treatment
with a2,3-sialidase. Both analyses were aligned using the targeted alignment program to ensure that a proper
identification could be made of the different isomeric species between the two analyses. The electropherograms
obtained for a2,6- and a2,3-sialylated species indicated a significant decrease of the relative abundance of
a2,3-sialylated variants. The intensities observed for a.2,6-linked mono-sialylated glycopeptide (H5N4F1S1, )
and the non-sialylated glycopeptide (H5N4F1) increased compared to the most abundant peak (2,6-linked
di-sialylated glycopeptide, H5N4F1S2, ;) while all a.2,3-linked sialylated species (H5N4F1S1, ;, HSN4F1S1,5S,¢
and H5N4F1S2, ;) showed a decreased signal. However, an incomplete reaction was observed for the exogly-
cosidase treatment which may most likely be attributed to experimental conditions such as (too short) incuba-
tion time and (low) amount of enzyme added. Nonetheless, these results confirmed that the CE-ESI-MS set-up
enabled a baseline separation of a2,3- and a2,6-sialylated glycopeptides, with a2,3-variants showing a slower
migration.

Synopsis. Little attention has been devoted to the analysis of glycopeptides with CE-ESI-MS so far. This is
unfortunate since this technique has shown high separation efficiency and sensitivity in the context of large bio-
molecules analysis, especially in combination with a sheathless ESI interface*®~*. For instance, Heemskerk et al.>
showed that a 40-fold increase in sensitivity with CE-ESI-MS compared to nano-LC-ESI-MS was observed for
the analysis of plasma derived IgG1 Fc glycopeptides.
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Figure 4. CE-ESI-MS analysis of PSA with and without a:2,3-sialidase treatment using CE-ESI-MS after
targeted alignment. (A) EIEs of the non-sialylated glycopeptide (H5N4F1), the mono-sialylated glycopeptides
(H5N4F1S1) and the di-sialylated glycopeptides (H5N4F1S2) of PSA prior to exoglycosidase treatment and (B)
after exoglycosidase treatment.

This study presented a novel approach for in-depth and direct analysis of complex glycoproteins with differ-
ently linked sialic acids using a CE-ESI-MS platform, without the need for tedious and time-consuming sample
preparation®” ** 44, With the developed set-up, 75 different glycopeptides with one single N-linked glycosyla-
tion site, position R-NgK-S, were detected for the analysis of a PSA tryptic digest. This CE-ESI-MS platform
shows a great potential for PSA glycopeptide analysis with results comparable to an inter-laboratory study per-
formed on PSA and PSA high isoelectric point isoform (bulk-purified proteins based on isoelectric point)*!. The
latter reported that 61 N-glycan compositions could be detected using multiple analytical strategies including
bottom-up versus top-down analysis, released N-glycans analysis by PNGase F, polymeric reversed-phase versus
monolith and C8 chromatography, as well as CE.

Nowadays, the concentration of PSA in serum is widely used in clinics for the screening of prostate cancer
since elevated PSA serum levels can be indicative of malignancy®?. However, this screening method shows a poor
specificity as various other causes also lead to increased PSA levels in serum®®>*. Previous studies indicated that
alterations in the glycosylation profile of PSA could provide a more specific tool for diagnosis and prognosis of
prostate cancer*>>>-*. This study presents a compelling platform for the analysis of these alterations, offering a
very competitive tool to improve both specificity and sensitivity. Moreover, it allows to evaluate the PSA glyco-
sylation, a promising approach for early detection, for better prognosis or staging of prostate cancer. However,
while currently one ng of protein weight was injected and analyzed, such amounts will be difficult to retrieve from
serum of prostate cancer patients, who often have PSA concentrations lower than 10 ng/mL. On the opposite,
urine PSA concentrations of prostate cancer patients have been reported with a median value of 425ng/mL, a
sufficient concentration level for this CE-ESI-MS platform®. Therefore, the potential of PSA biomarkers derived
from urine should be investigated and could open new possibilities for establishing a less invasive but hopefully
more specific diagnostic marker than the current clinical PSA test. This has, to the best of our knowledge, not yet
been explored. Future perspectives include the analysis of glycoproteins with higher complexity and more glyco-
sylation sites, as well as highly sialylated glycopeptides which may show a negative apparent mobility, rendering
their detection critical with the current set-up. Further method development is therefore needed to achieve the
analysis of, for instance, tri- or tetra-sialylated glycopeptides.

Conclusions

This study presents the implementation of a CE-ESI-MS platform enabling the differentiation between «2,3-
and a2,6-sialylated glycopeptides without prior derivatization. Where conventional MS(/MS) approaches cannot
resolve these isomers due to identical molecular formulas and similar fragmentation patterns, CE enabled the
baseline separation of sialylated glycopeptides due to a difference in their electrophoretic mobilities, correlated by
a difference in acidity, as shown for the two representative compounds o2,3-sialyllactose and o.2,6-sialyllactose.
The developed platform was used for the analysis of tryptic PSA glycopeptides, enabling the identification of
75 PSA glycopeptides, a significantly higher amount compared to the 37 PNGase F released N-glycan signals
detected by MALDI-TOF-MS. This highlights the gain in sensitivity obtained with the developed platform and its
potential for biomarker discovery, enabling the possible differentiation between clinically relevant glycopeptides
revealing differentially-linked sialic acids.
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Methods

Materials. Ammonium bicarbonate (ABC), methanol (MeOH) of LC-MS grade and sodium dodecyl sulfate
(SDS) were obtained from Merck (Darmstadt, Germany). Glacial acetic acid (AA), DL-diothiotreitol (DTT),
iodoacetamide (IAA), 1-hydroxybenzotirazole (HOBt) hydrate and Nonidet P-40 (NP-40) were acquired from
Sigma-Aldrich (Steinheim, Germany). Ammonium acetate (AAC), formic acid (FA), trifluoroacetic acid (TFA)
and water of LC-MS grade were purchased from Fluka (Steinheim, Germany). Sequencing Grade Modified
Porcine Trypsin was obtained from Promega (Madison, WI). Phosphoric acid (H;PO,), MES (2-(N-morpholino)
ethanesulfonic acid), MOPS (3-morpholinopropanesulfonic acid), TRICINE (N-(tris(hydroxymethyl)-methyl)
glycine), and CHES (2-(cyclohexylamino)ethane sulfonic acid) were purchased from Fluka (Buchs, Switzerland).
Milli-Q water (MQ) was used for the matrix-assisted laser desorption ionization time-of-flight MS (MALDI-
TOF-MS) experiments and obtained using a Q-Gard 2 system (Millipore, Amsterdam, Netherlands). HPLC
supraGradient acetonitrile (MeCN) originated from Biosolve (Valkenswaard, Netherlands). 1-Ethyl-3-(3-
(dimethylamino)propyl)-carbodiimide (EDC) hydrochloride was purchased from Fluorochem (Hadfield, United
Kingdom). For the pK, determination, HPLC grade methanol was supplied by Romil (Kélliken, Switzerland),
analytical reagent grade acetone by Acros Organics (Basel, Switzerland), hydrochloric acid by Riedel-de-Haén
(Buchs, Switzerland), and 1 M Titrinorm sodium hydroxide by VWR (Dietikon, Switzerland). The CEofix® pH
2.5 solutions were obtained from Analis (Namur, Belgium). Recombinant peptide-N-glycosidase F (PNGase F)
was acquired from Roche Diagnostics (Mannheim, Germany) and 2.5-dihydroxybenzoic acid (2,5-DHB) from
Bruker Daltonics (Bremen, Germany). Lyophilized sialidase S (Streptococcus pneumoniae) was obtained from
PROzyme (Hayward, CA) and reconstituted in 20 uL MQ prior to use. Recombinant monoclonal IgG1 antibody
(IgGmADb]1) is derived from Chinese Hamster Ovary (CHO) cells. Human polyclonal IgG (intravenous immu-
noglobulin; IVIgG) was provided by Sanquin Research (Amsterdam, The Netherlands). Prostate specific antigen
(PSA) was acquired from Lee BioSolutions (St. Louis, MO). The two oligosaccharide standards 3'-sialyllactose
sodium salt and 6'-sialyllactose sodium salt were obtained from Carbosynth (Compton, United Kingdom).

Tryptic Digest. A PSA solution (1 ug/uL) was prepared in 25 mM ABC buffer. The reduction of disulphide
bridges was carried out at 60 °C for 30 min after addition of DTT (final concentration 2 mM) to the PSA solution.
After cooling at room temperature, the sulfide alkylation was performed using IAA (final concentration 6 mM)
and the sample was kept in the dark for 30 min. Sulfide alkylation reaction was stopped by addition of DTT (final
concentration 6 mM). Finally, porcine trypsin was added to the sample (1:30, w/w) followed by overnight diges-
tion at 37°C.

Tryptic digests of [gGmADb1 and IVIgG solutions were prepared in 25 mM ABC buffer (1 pg/uL) with the addi-
tion of porcine trypsin (Promega Madison, WI, enzyme:sample 1:30, w/w). Digestion was performed overnight
at 37°C.

N-glycanrelease. N-glycans were released from PSA as described previously®!. Briefly, 10 uL of 2% SDS was
added to 5uL of PSA (21.5ug) for denaturation and incubated for 10 min at 60 °C. A mixture (10 uL) consisting
out of 4% NP-40, 5x PBS and 1 mU PNGase F (10:10:1, v/v/v) was added for the release of the N-glycans and
incubated overnight at 37 °C.

Exoglycosidase Treatment. Ten microliters of the digested PSA sample (5.67 pg) was lyophilized and
reconstituted in a mixture of 1 uL enzyme Sialidase S, 1 uL of 50 mM sodium acetate (pH 5.5) and 8 uL of MQ,
followed by overnight incubation at 37°C.

Ethyl esterification.  Ethyl esterification was performed as described by Reiding et al.**. Briefly, the ethyl-
ation reagent was a mixture of EDC with HOBt dissolved in EtOH with a final concentration at 0.25 M for both
compounds. One microliter of the PNGase F treated PSA was added to 20 uL of ethylation reagent and incubated
for That37°C.

Glycan enrichment by Cotton HILICSPE.  Glycan enrichment was performed using cotton wool hydro-
philic interaction liquid chromatography (HILIC) solid phase extraction (SPE) microtips, with a protocol mod-
ified from Selman et al.®%. Pipette tips with a volume of 20 uL (Rainin Instrument, Oakland) were filled with
approximately 3-mm long cotton thread (Pipoos, Netherlands). This HILIC-SPE sorbent was activated with
20 uL MQ water prior to conditioning with a solution of 85% MeCN (v/v), each step being repeated three times.
Approximately 0.9 ug of the ethylated PSA glycans was dissolved in 85% MeCN and loaded onto the cotton
thread. The ethylated glycans were washed, first with a 20 pL solution of MeCN-MQ-TFA, 85:14:1 (v/v/v) followed
by 20 uL with a solution of 85% MeCN, both steps were repeated three times. Analytes were eluted with 20 uL of
MQ water.

Determination of pK, values. Details about the theory and comprehensive explanations on the experi-
mental procedure are available in Section S-2 and S-3 of the Supplementary Information.

In order to investigate the possible difference in pK, values for a2,3- and a.2,6-sialyllactose, an in silico pre-
diction was initially performed as described in S-3.2, Supplementary Information. pK, values were then exper-
imentally determined using CE with ultraviolet (UV) detection. CE-UV experiments were performed with an
HP3PCE system (Agilent Technologies, Waldbronn, Germany) equipped with an on-capillary diode array detec-
tor (8.5 cm from the anode), an autosampler, and a power supply able to deliver up to 30kV. UV detection was
carried out at 195 nm for target compounds and 260 nm for acetone (neutral marker of electro osmotic flow,
EOF). CE ChemStation (Agilent Technologies) was used for CE and UV control, data acquisition, and data han-
dling. Analyses were performed with fused silica capillaries (BGB Analytik AG, Bockten, Switzerland) with 50 pm
i.d.,, 32.5cm total length, and 8.5 cm effective length. The capillaries were coated with a dynamic coating (CEofix®,
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Analis, Namur, Belgium) to generate a large EOF (ca.>2.2:107*cm?V~'s7!) regardless of the buffer pH. Samples
were kept at room temperature in the autosampler and introduced by short-end injection, namely, the polarity
was reversed and samples were injected at the detector side. An injection equivalent to 0.4% of the capillary total
length was performed by applying a pressure of 12 mbar for 4s. The capillary was thermostated at 25 °C by a high
velocity air stream. Before its first use, the capillary was sequentially rinsed (1 bar) with MeOH, 1 M HCI, water,
1M NaOH, 0.1 M NaOH, and water (5min each) prior to the coating procedure. The latter involved capillary
rinses with aqueous polymer solutions (CEofix® initiator and accelerator). Between different pH buffers, sev-
eral washing steps (1 bar) were employed, namely water (1 min), CEofix® initiator (0.5 min), CEofix® accelerator
(I min), and BGE (5min), followed by pre-electrophoresis (3.5-8kV, 5 min). Between analyses, the capillary was
rinsed (1 bar) with buffer for 1 min. When not in use, the capillary was rinsed with water and stored dry.

For the determination of absolute pK, values, a voltage of 3.5 to 8kV (depending on the running buffer, see S-6
Supplementary Information, Table S-2) was applied to avoid detrimental effect of Joule heating. Other experi-
mental conditions for the absolute pK, values are described in S-3.3, Supplementary information.

For the relative pK, determination, two phosphate buffers at pH 2.0 and 6.0 were prepared. They were set ata
constant ionic strength of 50 mM to avoid variations in effective mobility and keep activity coefficients constant
(S-6 Supplementary Information, Table S-3). The buffer pH values were selected to ensure that both forms coexist
(i.e., at pH 2.0) and only the fully deprotonated form exists (i.e., at pH 6.0). The pH values were measured with a
Mettler-Toledo SevenMulti pH meter that was calibrated on a daily basis. The injected sample was a mixture of
both investigated compounds at a concentration of 0.1 mg/mL in MQ water and acetone 95:5 (v/v). They were
injected twice (N=2) at each pH. Voltages of 8kV and 5kV were applied when using the BGEs at pH 6.0 and 2.0,
respectively.

MALDI-TOF-MS. MS experiments of ethylated PNGase F released N-glycans were performed with
MALDI-TOF-MS (UltrafleXtreme, Bruker Daltonics, Bremen, Germany) using FlexControl 3.3 software
(Bruker Daltonics) in positive ionization mode. The ethylated PNGase F released N-glycans were spotted on an
800-um AnchorChip plate (Bruker Daltonics) together with 1 uL of 2,5-DHB matrix (5 mg/mL, I mM NaOH
in MeCN-MQ, 50:50, v/v). A peptide calibration standard (Bruker Daltonics) was used for external calibration.
FlexAnalysis (Bruker Daltonics) was used for the analysis of the acquired MALDI-TOF-MS data. Modifications
of the sialic acids were taken into account (lactonization or ethylation) and all glycan masses were recorded using
[M+ Nal* ions.

Capillary electrophoresis — Electrospray ionization — mass spectrometry. All CE experiments
were carried out on a CESI 8000 system (SCIEX Separations, Framingham, MA), and 90-cm long bare fused
capillaries (i.d. of 30 um, o.d. of 150 um) were used. Prior to analysis, the capillary was rinsed thoroughly with
0.1 M NaOH (2.5 min), 0.1 M HCI (2.5 min), water (4 min) and BGE which consisted of 10% AA (v/v, pH 2.3).
The sample was on-line pre-concentrated using transient isotachophoresis (t-ITP). Prior to injection, ammonium
acetate at pH 4.0 (final concentration 100 mM) was added to the sample, which acted as the leading electrolyte.
Samples were injected using hydrodynamic injection of 1 psi for 60s (9 nL, corresponding to 1.4% of the capillary
volume). For all experiments, a BGE post plug was added by applying 0.5 psi for 25 s (corresponding to 0.3% of
the capillary volume). Separation was carried out by applying a voltage of 20kV.

The CE system was hyphenated to a UHR-QqTOF maXis Impact HD MS (Bruker Daltonics) via a sheathless
CE-ESI-MS interface from SCIEX. A capillary voltage of —1300 V was applied to ensure a stable electrospray. All
experiments were performed in positive ionization mode. The drying gas (nitrogen) flow rate and temperature
were set at 1.5 L/min and 180 °C, respectively. MS data was acquired between m/z 200-2200 with a spectral acqui-
sition rate of 1 Hz.

CE-ESI-MS data was analyzed with DataAnalysis 4.2 (Build 387, Bruker Daltonics). Prior to data analysis, all
MS spectra were calibrated using sodium adducts detected at the beginning of the electropherogram. The data
was manually screened for glycopeptides and compositions were matched based on the exact mass, selectivity
and relative intensities (S-6 Supplementary Information, Table S-1). Fragmentation spectra were acquired for
27% of the identified compositional glycopeptide variants of PSA (S-7 Supplementary Information, Fig. S-4-S-7).
Extracted ion electropherograms (EIEs, smoothed with a Gaussian fit) were acquired with the first three isotopes
of the doubly, triply and quaternary charged analytes using a width of £0.05 m/z unit.

For data alignment, to ensure comparable migration times and reveal the separation of sialic acid linkage
isomers, the analysis of IgGmAb1 and IVIgG glycopeptides used 2-aminobenzamide labeled dextran ladder as
an internal calibrant. For the alignment of PSA glycopeptides no internal standard was needed as the sample
was rich enough to ensure proper alignment without an internal standard. The alignment program is an in-house
and open source program, based on the LaCyTools alignment tool®. The alignment program is supplied with this
manuscript and can be found in S-4 of the Supplementary Information. Briefly, an alignment procedure referred
to as “targeted alignment” was achieved by supplying a list (.txt file) of the calibrants with their theoretical m/z
and expected migration time (t,,) values. After converting the data file to an mzML file, the algorithm examines
the t,, and m/z regions containing the calibrants. The local maximum within each region is isolated. The t,, match-
ing to the local maximum is then coupled to the specified t,, of the calibrant. All observed t,, and expected t,,
combinations are then taken as an input array for a second-degree polynomial fit. The function (f) returned by the
polynomial fit is used to transform the observed t,, of the whole spectrum by performing t,,(new) =f(t— (old)),
resulting in well-aligned spectra. This alignment strategy is opposed to an unbiased alignment®, which uses
random selection of features and is typically suited for unknown samples that contain a wide range of analytes.
Targeted alignment is more adequate for highly purified samples in which the analytes are well known and char-
acterized®. Afterwards, the aligned runs were plotted using an in-house developed and open source plotting
program, supplied with this manuscript (S-5 of the Supplementary Information).
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