RESEARCH ARTICLE

OPEN ACCESS Check for updates

Taylor & Francis

Taylor & Francis Group

Guanxin V attenuates myocardial ischaemia reperfusion injury through regulating iron homeostasis

Fuqiong Zhou^{a*}, Zhengguang Zhang^{b*}, Meiyuan Wang^b, Weina Zhu^a, Jie Ruan^a, Hongyan Long^a, Yajie Zhang^a (D) and Ning Gu^c

^aCentral Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China; ^bSchool of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; ^cDepartment of Cardiovascular Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China

ABSTRACT

Context: Guanxin V (GX), a traditional Chinese medicine formula, is safe and effective in the treatment of coronary artery disease. However, its protective effect on myocardial ischaemia reperfusion injury (MIRI) is unclear.

Objective: To investigate the cardioprotective effect of GX on MIRI and explore the potential mechanism. **Materials and methods:** Sprague-Dawley male rats were divided into Sham, MIRI and MIRI + GX groups. GX (6 g/kg) was administered to rats via intragastric administration for seven days before ischaemia reperfusion (IR) surgery. The infarct size, histopathology, serum enzyme activities, ultrastructure of the cardiac mitochondria were assessed. H9c2 cells were pre-treated with GX (0.5 mg/mL), and then exposed to hypoxia/reoxygenation (HR). The cell viability and LDH levels were measured. Network pharmacology was conducted to predict the potential mechanism. The related targets of GX were predicted using the TCMSP database, DrugBank database, etc. Finally, pharmacological experiments were used to validate the predicted results.

Results: In vivo, GX significantly reduced the myocardial infarct size from 56.33% to 17.18%, decreased the levels of AST (239.32 vs. 369.18 U/L), CK-MB (1324.61 vs. 2066.47 U/L) and LDH (1245.26 vs. 1969.62 U/L), and reduced mitochondrial damage. In vitro, GX significantly increased H9c2 cell viability ($IC_{50} = 3.913 \text{ mg/mL}$) and inhibited the release of LDH (207.35 vs. 314.33). In addition, GX could maintain iron homeostasis and reduce oxidative stress level by regulating iron metabolism-associated proteins. **Conclusions:** GX can attenuate MIRI via regulating iron homeostasis, indicating that GX may act as a potential candidate for the treatment of MIRI.

ARTICLE HISTORY

Received 31 March 2022 Revised 29 August 2022 Accepted 5 September 2022

KEYWORDS

Cardioprotective effect; iron metabolism; iron accumulation; oxidative stress; network pharmacology

Introduction

Cardiovascular diseases have become a prominent threat to human life and health today. The latest epidemiological data show that cardiovascular diseases cause approximately 17.9 million deaths annually, and this number is estimated to increase to more than 23.6 million by 2030 (D'Souza 2019). Acute myocardial infarction (AMI), as one of the most common cardiovascular diseases, remains a major cause of global morbidity and mortality worldwide, and imposes immense health and economic burden (Domienik-Karłowicz et al. 2021). Clinically, the most effective treatments to reduce the infarct size and improve the clinical outcome are timely myocardial reperfusion using thrombolytic therapy and percutaneous coronary intervention. However, restoration of blood flow in the infracted coronary artery may also induce further cardiomyocyte death and trigger myocardial ischaemia reperfusion injury (MIRI) (Ibanez et al. 2015). MIRI is the leading cause of poor prognosis of AMI and causes multiple cardiac complications. Currently, there remains no effective clinical therapy for preventing myocardial reperfusion injury. Therefore, new approaches to reduce MIRI are urgently required.

Iron is an indispensable trace metal element in wide range of biological processes, including oxygen transfer, cellular respiration, DNA synthesis, lipid peroxidation, overall metabolism and programmed cell death (Hirst 2013; Abbaspour et al. 2014; Vela 2020). However, iron metabolism imbalance, especially iron overload, exerts potentially deleterious effects due to its involvement in reactive oxygen species (ROS) production (Nakamura et al. 2019). Emerging evidence have demonstrated that iron deposition in cardiac cells, resulting to oxidative stress, participates in the pathophysiological process of MIRI (Ravingerova et al. 2020). Due to the accumulation of excess intracellular iron and iron-dependent overproduction of free radicals in the occurrence, a growing number of clinical studies have suggested that the level of cardiomyocyte iron is an important prognostic factor of MIRI (Paterek et al. 2019; Li et al. 2021). Iron metabolism in MIRI associated diseases involves several mediators, such as hypoxia-inducible factor 1 α (HIF-1 α), ferritin heavy chain (FTH) and ferroportin (FPN) (Li et al. 2021). HIF-1 α can regulate the transcription of genes involved in iron utilization. HIF-1a,

CONTACT Yajie Zhang Zhangyajie@njucm.edu.cn; Ning Gu gunning@njucm.edu.cn *These authors contributed equally to this work.

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

presents with visible hyperactivation during MIRI, can enhance transferrin receptor 1 (TFR1) expression and exasperate iron overload, and then ultimately aggravates ROS-induced peroxidative damage (Lok and Ponka 1999; Duarte et al. 2021). In addition, HIF-1 α also can regulate ceruloplasmin, which can catalyse the oxidation of ferrous iron (Fe^{2+}) to ferric iron (Fe^{3+}) (Mukhopadhyay et al. 2000), haem oxygenase 1 (HMOX1), which is involved in iron recycling in erythrophagocytosis (Dunn et al. 2021) and divalent metal transporter 1 (DMT1), a protein that promotes iron indraft and inputs iron (Qian et al. 2011). FTH, a major intracellular in storage protein, downregulated in the mouse model of MIRI, resulted in oxidative stress and cardiomyocytes death (Omiya et al. 2009). FPN, the only known cellular iron efflux pump, has also been reported to play a critical role in systemic iron homeostasis (Lakhal-Littleton 2019; Paterek et al. 2019).

At present, as the pathogenesis of cardiovascular diseases (CVD) is rather multifactorial than a single cause, traditional Chinese medicine (TCM) is attracting wide attention in the prevention and treatment of CVD due to its attributes of multi-component, multi-target and multi-path regulation of the body, and fewer side effects.

According to the theory of traditional Chinese medicine, the pathogenesis of MIRI was mainly due to Qi and Yin deficiency and blood stasis (Du and Zhang 2022). Guanxin V (GX) is a traditional Chinese medicine formula modified from a wellknown TCM complex prescription named Shengmai San, which has been clinically utilized for the treatment of ischaemic heart disease. GX consists of Codonopsis pilosula (Franch.) Nannf. (Campanulaceae) (Chinese name Dang-Shen), Ophiopogon japonicas (L. f) Ker-Gawl. (Liliaceae) (Chinese name Mai-Dong), Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) (Chinese name Wu-Wei-Zi), Salvia miltiorrhiza Bge. (Lamiaceae) (Chinese name Dan-Shen), Paeonia lactiflora Pall. (Ranunculaceae) (Chinese name Chi-Shao) and Rehmannia glutinosa Libosch. (Scrophulariaceae) (Chinese name Di-Huang). Among these six TCMs included in GX, Dang-Shen, Mai-Dong and Wu-Wei-Zi are good at enriching Qi, nourishing Yin and promoting the generation of body fluid, Dan-Shen, Chi-Shao and Di-Huang can activate blood, dissipating blood stasis and promote the generation of body fluid (Zuo et al. 2015). Therefore, GX can be used to tonify Qi, nourish Yin and promote blood circulation, which implies its huge potential in MIRI treatment. Actually, GX has been approved to be used in Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine since 2004, and its efficacy and safety in the treatment of coronary artery disease have been confirmed in our clinical studies (Liang et al. 2020). Moreover, our previous studies found that GX could obviously improve the cardiac function, limit infarct size, suppress the inflammatory response and protect against ventricular remodelling in AMI animal models (Liang et al. 2020, 2021, 2022; Zhang et al. 2021). Consistent with AMI, multiple factors, including oxidative stress, systemic inflammation, calcium metabolic disorders, mitochondrial damage and iron overload, have also been demonstrated to be implicated in the pathogenesis and development of MIRI (Bugger and Pfeil 2020; Mahtta et al. 2020; Ramachandra et al. 2020; Vela 2020; Li et al. 2021). Pharmacological studies showed that the TCMs and their components included in GX have the definite protection effects on MIRI. For example, ruscogenin and schisandrin, the main ingredients of Mai-Dong and Wu-Wei-Zi, respectively, exhibit the prominent cardioprotective effects against MIRI through modulating energy metabolism, suppressing inflammation and oxidative stress (Yang et al. 2021). Dan-Shen and its main components have protective effects against MIRI mainly through ameliorating oxidative stress, inhibiting apoptosis and alleviating inflammation (Song et al. 2013; Huang et al. 2016; Wei et al. 2016; Zeng et al. 2021). Paeonol and paeoniflorin, the main active principles of Chi-Shao, can significantly reduce the myocardial infarct size and reperfusion arrhythmias by activation of the Akt and ERK 1/2 arm of RISK pathway in MIRI rats (Wu et al. 2020; Ma et al. 2022). Catalpol, a kind of iridoid glucoside derived from the roots of Di-Huang, can significantly suppress the process of MIRI and protect oxygen-glucose deprivation/ reoxygenation-treated cardiomyocytes through modulating Nrf2/ HO-1 signalling axis (Ge et al. 2022). All these findings suggested an extensive clinical value of GX in the treatment of MIRI, which has not been investigated elsewhere.

In this study, the protective effect of GX on MIRI was evaluated, and the potential engaged mechanism predicted via network pharmacology analysis was examined *in vivo* and *in vitro*.

Materials and methods

Reagents

Danshensu, paeoniflorin, rosmarinic acid, salvianolic acid B, salvianic acid A and paeonol (purity > 98%) were all purchased from National Institute for Food and Drug Control (Beijing, China). The kits for determination of aspartate aminotransferase (AST), Creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). 2,3,5-triphenyltetrazolium chloride (TTC) was purchased from Sigma-Aldrich (St. Louis, MO, USA). AnaeroPack was obtained from MGC (Japan). Dulbecco's modified Eagle medium (DMEM) was obtained from GIBCO (Life Technologies, CA, USA). Foetal bovine serum (FBS) was from AusgeneX (Australia). The serum-free, glucose-free and sodium pyruvate-free DMEM was acquired from Solarbio (Beijing, China). H₂DCFDA kit was obtained from MedChemExpress (Shanghai, China). Iron assay kit, antibody against HIF-1a and FTH were acquired from Abcam (Cambridge, MA, USA). Antibody against FPN was purchased from Novus Biologicals (Littleton, CO, USA). The cell counting kit-8 (CCK-8) and FerroOrange were obtained from Dojindo (Kumamoto, Japan).

The preparation of GX

Codonopsis pilosula, Ophiopogon japonicas, Schisandra chinensis, Salvia miltiorrhiza, Paeonia lactiflora and Rehmannia glutinosa (the ratio of weight is 20:10:5:20:20:4) were obtained from and deposited at the Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine. All these herbal medicines were identified by Li Wen, a Chief Pharmacist of Chinese medicine. According to the preparation procedure provided by the Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, all of the herbs were soaked in 8 L water for 30 min and then decocted for 90 min. Subsequently, the filter residues were decocted in 6 L of water for 60 min and filtered. The combined aqueous extract was concentrated and further freeze-dried to obtain the powdery extract with a yield of 25.3%.

Animals and treatments

Male adult Sprague-Dawley rats (body weight 200 ± 20 g) were purchased from Shanghai Slaccas Experimental Animal Ltd (Shanghai, China). The animals were housed in environmentally controlled room temperature (22 ± 2 °C) and humidity ($65\% \pm$ 5%) with standard rodent chow and water and 12-h on/off light cycle for a week. All procedures of animal experiments followed the guidelines of the Institutional Animal Ethical Committee of Nanjing University of Chinese Medicine and were approved by the Institutional Animal Care and Use Committee of Nanjing University of Chinese Medicine (Ethical number: 202005A127).

The rats were randomly divided into three experimental groups as follows (n = 12, each group): (i) Sham group (normal saline: 10 mL/kg/d), (ii) MIRI group (MIRI + normal saline: 10 mL/kg/d), (iii) MIRI + GX group (GX: 6 g/kg/d). Normal saline and GX were administered to rats via intragastric administration for seven consecutive days before IR surgery. The dosage of GX was converted according to the clinical equivalent dose and the exact dosage of GX on animals was applied according to our previous study (Zhang et al. 2021; Liang et al. 2022a, 2022b).

The rat MIRI model was established by left anterior descending coronary artery ligation. Briefly, after anaesthesia, the rats were fixed and plugged into a small animal ventilator. Then the intercostal space between third and fourth rib of the left chest was exposed, and the heart was exposed entirely after tearing the pericardium. Subsequently, the left anterior descending coronary artery was ligated with a 6-0 silk suture at approximately 2 mm below the left atrial appendage. The electrocardiogram was utilized to monitor the ST-segment elevation. After 30 min of ischaemia, the ligature loosened and followed by 2h of reperfusion. For the Sham group, the rats were subjected to the same surgical procedures without ligating the left anterior descending coronary artery. At the end of the reperfusion, the blood samples were collected from abdominal aorta of experimented rats to separate out serum by centrifugation at 3000 rpm for 10 min at 4 °C. Finally, after euthanized with an overdose of pentobarbital (200 mg/kg, i.p.), the hearts of the rats were harvested for further analysis.

Measurement of myocardial infarct size

The hearts of rats were flushed with saline and frozen in -20 °C for 30 min. Then the ventricles were sliced into 5 mm sections and incubated in 1% TTC solution at 37 °C for 15 min in the dark. After being washed three-times, these sections were photographed, the myocardial infarction area was white and non-infarction area was red. The infarct size was analysed and calculated by Image J.

Masson's trichrome staining

After the experiment, the myocardial tissues were harvested and fixed into 4% paraformaldehyde. The samples were dehydrated in a graded series of ethanol (50, 75, 85, 95 and 100%), and then paraffin-embedded and cut into 4 μ m thick sections. The sections were dewaxed with xylene and soaked in an alcohol gradient. Then sections were incubated with different solutions supplemented in Masson's Trichrome Stain Kit (Solarbio G1345). Finally, the sections were treated with the 1% acetic acid solution, dehydrated, mounted with mounting solution and observed using light microscopy (Olympus CKX41, Japan).

Measurement of biological parameters in the serum

The AST, CK-MB and LDH levels in the serum were measured using commercial ELISA kits (Nanjing Jiancheng Bioengineering Institute) following the manufacturer's protocols exactly.

Ultrastructural analysis by transmission electron microscope (TEM)

The heart tissues were fixed with 2.5% glutaraldehyde and cut into ultra-thin sections. After being fixed with 1% osmic acid for 1 h, the sections were dehydrated in a graded alcohol series and embedded. Subsequently, these sections were sliced and stained with uranyl acetate and lead citrate. The ultrastructure images of the cardiac mitochondria were observed and imaged under transmission electron microscope (Hitachi, Tokyo, Japan).

Cell culture and HR injury model in vitro

Rat H9c2 cardiomyocyte cell line was purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences (Shanghai, China). The cells were cultured with the supplemented DMEM solution containing 10% foetal bovine serum and double antibiotics (penicillin and streptomycin, 100 µg/ mL:100 µg/mL) at 37 °C in a humidified atmosphere of 5% CO₂. To establish the HR model, the cells were washed twice with PBS and cultured with the glucose-free DMEM base medium in an AnaeroPack System, in which oxygen was deprived (Wei et al. 2018; Li et al. 2019; Zhang et al. 2020; Wen et al. 2021). After 3 h, the plate was taken out and cultured with normal culture medium in a normoxic incubator at 37 °C for 2 h to mediate reoxygenation. The following groups were tested: (1) Control group: the cells were cultured under normal conditions; (2) GX group: the cells were pre-treated with GX for 12h before and during maintenance under normal conditions; (3) HR group: the cells were exposed to hypoxia for 3 h and reoxygenation for 2 h; (4) HR + GX group: the cells were pre-treated with GX for 12 h prior to and during HR treatment.

Cell viability assays

After cells were cultured and treated in 96-well plates, $10 \,\mu$ L of CCK-8 reagent (Dojindo, Japan) was added to each well and then incubated for 1 h in the dark. Absorbance was measured at 450 nm using a multifunction microplate reader (Bio-Tek, Winooski, VT, USA). The assays were repeated three times.

Measurement of LDH release in H9c2 cells

Cell supernatant was collected to measure LDH level using the LDH assay kit (Nanjing Jiancheng Bioengineering Institute). Using a microplate reader (490 nm wavelength), the absorbance was determined.

Network pharmacology analysis

Targets collection

The active targets of GX were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database and encyclopaedia of traditional Chinese medicine (ETCM) database. The effective compounds were screened using oral bioavailability (OB) \geq 30% and drug-likeness (DL) \geq 0.18.

The targets of MIRI were selected using GeneCards, OMIM, DrugBank, TTD databases. All sets of data were combined and the duplicates were removed.

A Venn diagram was drawn via Omicshare Tools (https:// www.omicshare.com) to show overlapping targets between the predicted targets of GX and the disease targets of MIRI.

Network construction and analysis

The active ingredients of GX and the overlapping targets were input into Cytoscape 3.8.0 software to construct and visualize the compound-target network. Then the overlapping targets were further analysed by STRING database to establish a protein–protein interaction (PPI) network. Finally, Gene Ontology (GO) function analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets were performed using DAVID, and the results were visualized by Omicshare Tools.

Measurement of the cardiac MDA and SOD

The cardiac MDA level and SOD activity were measured using a kit (Nanjing Jiancheng Bioengineering Institute) in accordance with the manufacturer's instructions.

Measurement of intracellular ROS production

The intracellular ROS generation was assessed using H_2DCFDA kit according to the manufacturer's instructions. Then the cells were washed twice with PBS and the DCF fluorescence intensity was observed under a fluorescence microscope (Olympus BX63, Japan). Image J software was used to analyse the data.

Moreover, trypsin-digested cells were washed with PBS and stained with probe, then analysed by a flow cytometer (CytomicsTM FC 500, Beckman Coulter, CA, USA) and FlowJo software.

Prussian blue staining

To confirm the free iron in heart tissue sections, a Prussian blue stain kit was carried out according to the manufacturer's instructions. The heart slices were dewaxed and dehydrated, and then incubated with Prussian blue and washed by PBS. Finally, a light microscope was used to observe the stained sections.

Iron assay

Total iron contents of tissues and cells were quantified using an iron assay kit (Abcam, ab83366). In short, samples were collected, washed with cold PBS, homogenized in iron assay buffer and homogenized in iron assay buffer, Next, iron-reducing agent was added to the samples for total iron (Fe³⁺ and Fe²⁺) analysis. Finally, the iron probe solution was added for incubation at 25 °C in dark conditions for 1 h. The content was immediately measured using the multifunction microplate reader under the wavelength of 593 nm.

Intracellular iron assay

The intracellular iron concentration was assessed using FerroOrange probe. Cells were seeded in 6-well plates and treated with the indicated treatment. FerroOrange $(1\,\mu M)$

dispersed in serum-free medium was added to the cells, and the cells were incubated for 30 min at $37 \,^{\circ}\text{C}$. Then the fluorescence intensity was observed under a fluorescence microscope.

Immunohistochemical detection

The myocardial sections were immersed with 3% methanol- H_2O_2 for 10 min and incubated with primary antibodies (1:1000) against HIF1 α , FPN and FTH for immunostaining at room temperature for 2 h and an appropriate anti-mouse secondary antibody for 1 h. Immunostaining was performed by 3,3'-diaminobenzidine solution for 5 min at room temperature. The samples were visualized under a light microscope.

Western blot analysis

H9c2 cells were lysed with RIPA lysis buffer before determining the protein concentrations using a BCA kit (Beyotime, Shanghai, China). Isolated protein ($30 \mu g$) was separated by 10% SDS-PAGE gels, then transferred onto polyvinylidene fluoride membranes (PVDF, Millipore, USA). After blocking with non-fat milk solution (5%) for 1 h, primary antibodies were incubated with the membranes overnight at 4°C. After washing, the samples were incubated with secondary antibodies for 1 h at room temperature. Finally, the protein bands were visualized with enhanced chemiluminescence.

Statistical analysis

All data are expressed as mean \pm standard deviation (SD). All statistical analyses were performed using GraphPad Prism 8.0 software. Statistical differences were accessed by one-way analysis of variance (ANOVA), and p < 0.05 was considered statistically significant.

Results

GX treatment attenuated myocardial ischaemia-reperfusion injury and HR-induced H9c2 cardiomyocytes damage

We first investigated whether GX could protect cardiomyocytes against MIRI in vivo. As shown in Figure 1(A), GX significantly reduced the infarct size in rats subjected to MIRI. The ST segment of the MIRI group was observably elevated, but when GX pre-treatment, this change was reversed (Figure 1(B)). Besides, the Masson's trichrome staining showed that the myocardial fibrosis degree in the MIRI group was higher than that in the Sham group, whereas GX treatment attenuated MIRI-induced cardiac fibrosis (Figure 1(C)). Furthermore, the myocardial enzymes in the serum such as AST, CK-MB and LDH were measured to assess myocardial injury (Figure 1(D)). The activities of AST, CK-MB and LDH enzymes increased remarkably in the MIRI group, indicating that a serious damage may occur in the heart. Interestingly, these increases of myocardial enzymes were significantly attenuated after GX treatment. Compared with the Sham group, the myocardial mitochondria of the MIRI group were severely distorted, the outer mitochondrial membranes were ruptured, the cristae were vague, melted and even vacuolization. However, GX treatment significantly reduced the mitochondrial damage compared with those of the MIRI group (Figure 1(E)).

Figure 1. GX treatment attenuated myocardial ischaemia-reperfusion injury and HR-induced H9c2 cardiomyocytes damage. (A) Representative images of heart sections stained by TTC. n = 4. N.D, no detectable. (B) The electrocardiographs of each group. (C) Representative images of Masson's trichrome staining in heart tissue. Scale bar, 2 mm (left) and 500 μ m (right). (D) The levels of AST, CK-MB and LDH in the serum. n = 6. (E) The representative TEM images of heart tissues. Scale bar, 1 μ m, n = 3. (F) Cell viability of H9c2 cells pre-treated with various concentrations of GX for 24 h. n = 6. (G) Effects of GX on HR-induced H9c2 cells. n = 6. (H) The release of LDH in the supernatant of HR-induced H9C2 cells. n = 6. Data were expressed as the means ± SD analysed by one-way ANOVA. *p < 0.05, **p < 0.01 vs. Sham or Control; *p < 0.05, **p < 0.01 vs. MIRI or HR.

To further explore the protective effects of GX on cardiomyocytes, we established the HR (4-h hypoxia followed by 4-h reoxygenation) model in H9c2 cells. According to Figure 1(F), the increase concentration of GX from 0.125 to 2 mg/mL for 24 h did not cause apparent cytotoxicity in H9c2 cells under normal conditions. The calculated IC₅₀ value was 3.913 mg/mL. As shown in the Figure 1(G), the cell viability of the HR group decreased remarkably compared with the control group, whereas GX treatment increased the cell viability after HR injury in a dose-dependent manner. At the concentration of 0.5 mg/mL, GX provided maximal protection on cardiomyocytes, so 0.5 mg/mL GX was selected to conduct the following experiments. The release of LDH was significantly increased in the HR-induced H9c2 cells, whereas 0.5 mg/mL GX alleviated the increased LDH release (Figure 1(H)). All these findings indicated that GX had an excellent protective effect on MIRI.

Network pharmacology analysis

After integrating information from TCMSP and ETCM databases, a total of 100 active compounds in GX and 213

Table 1. Ninety-one overlapping targets between GX and MIRI.

No.	Gene names	Protein names
1	ACHE	Acetylcholinesterase
2	ADRA1A	Alpha-1A adrenergic receptor
3	ADRA1B	Alpha-1B adrenergic receptor
4	ADRA1D	Alpha-1D adrenergic receptor
5	ADRA2A	Alpha-2A adrenergic receptor
6	ADRA2B	Alpha-2B adrenergic receptor
/		Alpha-2C adrenergic receptor Poto 1 adronorgic receptor
0 9	ADRB2	Beta-2 adrenergic receptor
10	AHR	Aryl hydrocarbon receptor
11	AKR1C3	Aldo-keto reductase family 1 member C3
12	AKT1	Threonine-protein kinase
13	APP	Amyloid beta A4 protein
14	AR	Androgen receptor
15	BCL2	Apoptosis regulator Bcl-2
16	CALMI	
1/ 10		Caspase-3
10	CHRM1	Muscarinic acetylcholine recentor M1
20	CHRM2	Muscarinic acetylcholine receptor M1
21	CHRM3	Muscarinic acetylcholine receptor M3
22	CHRM4	Muscarinic acetylcholine receptor M4
23	CHRM5	Muscarinic acetylcholine receptor M5
24	CHRNA2	Neuronal acetylcholine receptor subunit alpha-2
25	CHRNA7	Neuronal acetylcholine receptor subunit alpha-7
26	DPP4	Dipeptidyl peptidase IV
27	DRD1	Dopamine D1 receptor
28	DRD2	Dopamine D2 receptor
29	DRD5	Dopamine D5 receptor
30	EDNRA	Endothelin-I receptor
31 22		Epidermal growth factor receptor
32 33	ESR1 ESR2	Estrogen receptor beta
34	F10	Coagulation factor Xa
35	F2	Kinetochore protein Nuf2
36	F7	Coagulation factor VII
37	FOS	Proto-oncogene c-Fos
38	GABRA1	Gamma-aminobutyric acid receptor subunit alpha-1
39	GABRA2	Gamma-aminobutyric acid receptor subunit alpha-2
40	GABRA3	Gamma-aminobutyric acid receptor subunit alpha-3
41	GABRA5	Gamma-aminobutyric acid receptor subunit alpha-5
42	GABRA6	Gamma-aminobutyric acid receptor subunit alpha-6
43	GABRE	Gamma-aminoputyric acid receptor subunit epsilon
44 45	GSK3B	Glycogen synthese kinase-3 beta
45 46	HIF1A	Hypoxia-inducible factor 1-alpha
47	HTR1A	5-Hydroxytryptamine 1A receptor
48	HTR1B	5-Hydroxytryptamine 1B receptor
49	HTR2A	5-Hydroxytryptamine 2A receptor
50	HTR2C	5-Hydroxytryptamine 2C receptor
51	HTR3A	5-Hydroxytryptamine receptor 3A
52	IL10	Interleukin-10
53	IL6	Interleukin-6
54	ITGB3	Integrin beta-3
55	KCNH2	Potassium voltage-gated channel subfamily H member 2
56	LIA4H	Leukotriene A-4 hydrolase
5/ 50	MAOA	Amine oxidase [flavin-containing] A
50	MAOD MAPK14	Mitogen-activated protein kinase 14
60	MARK14 MDM2	F3 ubiquitin-protein ligase Mdm2
61	MIF	Macrophage migration inhibitory factor
62	MMP2	Matrix metalloproteinase-2
63	MMP9	Matrix metalloproteinase-9
64	MYC	Myc proto-oncogene protein
65	NFKBIA	NF-kappa-B inhibitor alpha
66	NOS2	Nitric oxide synthase, inducible
67	NOS3	Nitric oxide synthase, endothelial
68	NR112	Nuclear receptor subfamily 1 group 1 member 2
69 70	NRTI3	Nuclear receptor subfamily 1 group I member 3
/U 71		wineralocorticola receptor
71 72		Proliferating cell nuclear antigen
73	PDF3A	CGMP-inhibited 3' 5'-cyclic phosphodiesterase A
, ,		com infinited 575 Cyclic phosphodicsterase A

⁽continued)

Table 1. Continued.					
No.	Gene names	Protein names			
74	PON1	Serum paraoxonase/arylesterase 1			
75	PPARG	Peroxisome proliferator activated receptor gamma			
76	PRKCA	Protein kinase C alpha type			
77	PRKCB	Protein kinase C beta type			
78	PTGS1	Prostaglandin G/H synthase 1			
79	PTGS2	Prostaglandin G/H synthase 2			
80	RXRA	Retinoic acid receptor RXR-alpha			
81	SCN5A	Sodium channel protein type 5 subunit alpha			
82	SHBG	Sex hormone-binding globulin			
83	SLC6A2	Sodium-dependent noradrenaline transporter			
84	SLC6A3	Sodium-dependent dopamine transporter			
85	SLC6A4	Sodium-dependent serotonin transporter			
86	STAT3	Signal transducer and activator of transcription 3			
87	TNF	Tumor necrosis factor			
88	TOP2A	DNA topoisomerase 2-alpha			
89	TOP2B	DNA topoisomerase 2-beta			
90	TUBB	Tubulin beta chain			
91	VEGFA	Vascular endothelial growth factor A			

compound-related targets were acquired. Besides, the 512 MIRIrelated targets were searched from GeneCards, OMIM, DrugBank, TTD databases. A Venn diagram was constructed and 91 overlapping targets between GX and MIRI were obtained (Table 1). These overlapping targets were considered as potential targets of GX in the prevention and treatment of MIRI. Next, the 72 compounds and 91 overlapping targets were input into Cytoscape software to build the active compound-target network (Figure 2). The main active compounds of GX (top 20) are shown in Table 2. In the network, the orange rhombuses represented active compounds, and the light blue ovals represented overlapping targets. Then, the above 91 overlapping targets were submitted to the STRING database to construct a PPI network, which involved 91 nodes and 738 edges (Figure 3(A)). Subsequently, the relevant information of PPI network was imported into Cytoscape software to perform topological analysis. After screening according to Degree value \geq 20 (Yong et al. 2021), a total of 31 core targets in the PPI network were extracted (Figure 3(B)). The size and colour of the nodes reflected the values of degree, and the top 15 targets were AKT1, TNF, IL6, EGFR, FOS, VEGFA, ESR1, PTGS2, MYC, CASP3, MMP9, HIFIA, NOS3, PPARG and STAT3.

To further explore functions of the overlapping targets, GO and KEGG pathway enrichment analyses were performed using the DAVID online analysis platform. With *P* value < 0.05 as the screening criterion, a total of 216 biological process (BP)-related items and 91 KEGG pathways were screened out. The GO enrichment analysis results (Figure 4(A)) and the top 20 KEGG pathways (Figure 4(B)) were visualized by the Omicshare Tools. As shown in Figure 4(A), response to iron ion was the key biological process involved in the prevention and treatment of MIRI with GX. In addition, the KEGG pathways mainly included HIF-1 signalling pathway, Calcium signalling pathway and TNF signalling pathway. These results indicated that GX might play a protective role against MIRI by regulating the above multiple pathways. Studies have reported that HIF-1, a heterodimer consisting of an oxygen-regulated α subunit and a constitutively expressed β subunit, can regulate a series of genes that participate in iron metabolism (Romney et al. 2011; Zhang et al. 2011; Hirota 2019), so we further investigated whether iron metabolism was involved in the protection of GX against MIRI.

Figure 2. Active compound-target network. The orange rhombus nodes represent the molecular identification (MOL ID) number of active components in GX, and the blue oval nodes represent the overlapping targets.

GX treatment improved oxidative stress in vivo and in vitro

We further investigated the effects of GX on oxidative stress after myocardial ischaemia-reperfusion in rats. As shown in Figure 5(A,B), the activity of SOD was significantly suppressed and the level of MDA dramatically increased after ischaemia reperfusion. Intriguingly, these changes were effectively rescued by GX treatment.

To assess the intracellular ROS levels, the ROS-sensitive probe H_2DCFDA was used. The intracellular ROS production was monitored by fluorescence microscopy and flow cytometry assay. After HR treatment, the DCF fluorescence intensity was significantly increased compared with the control group. Although GX pre-treatment alone showed no effect on ROS production, it remarkably reduced the level of ROS in the HR + GX group (Figure 5(C)). This was accompanied by the results of flow

cytometry assay (Figure 5(D)). To sum up, these results revealed that GX could mitigate HR-induced ROS generation in H9c2 cells.

GX suppressed iron accumulation in vivo and in vitro

To determine the effect of GX treatment on MIRI-induced iron deposition in rats, Prussian blue staining was applied as shown in Figure 6(A). Little dark blue staining was observed in the Sham group, whereas the distinct iron accumulation in the heart tissue of the MIRI group was displayed. By contrast, GX treatment reduced the number of dark blue staining. Furthermore, the total iron content in the heart tissues was tested with iron assay kit. We found the increased total iron content in the MIRI

Table 2. The main active components of GX in the prevention and treatment of MIRI (top 20).

MOL01 C+Catechin 4 MOL02 C+Grospie-methylphenanthrens-A-dance 4 MOL04 B test-hydroxynethylloenanthrens-A-dance 1 MOL05 B x-Hydroxynethylloenanthrens-A-dance 2 MOL05 B x-Hydroxynethylloenanthloquinone 2 MOL07 5, 6-Dinydroxy-Fagregoryl-1, 1-dinnethyl-2,3-dinydrophenanthren-4-one 3 MOL08 S-X-Dinydroxy-Fagregoryl-1, 1-dinnethyl-2,3-dinydrophenanthren-4-one 3 MOL01 Admoxy 5-6 dinethyl-1-dinnethyl-2,3-dinydrophenanthren-4-one 3 MOL011 Admoxy 5-6 dinethyl-1-dinnethyl-2,3-dinydrophenanthren-4-one 3 MOL12 Camphor fallactore 3 MOL13 Darshenanthren 1 MOL14 Darshenanthren 1 MOL15 Danshenanthren 1 </th <th>MOL ID</th> <th>Compound name</th> <th>Degree</th>	MOL ID	Compound name	Degree
MOL02 2 Hydroxymethylophopogonore A 2 MOL03 2 Hydroxymethylometanshiquinore 1 MOL05 3 2-Hydroxymethylometanshiquinore 1 MOL06 4 Abethylorenmittrone 21 MOL06 4 Abethylorenmittrone 21 MOL06 4 Abethylorenmittrone 21 MOL07 5 S-Philphylory Ac Schinterhyl 4-Phylory 3-methbylophynthren 4-One 29 MOL11 Adenosine 44 MOL12 Angelogylory 5-Methyl Foldorone 29 MOL11 Adenosine 20 MOL12 Angelogylormin O 38 MOL13 Beta-sitosterol 20 MOL14 Carpote Acid 21 MOL15 Carpote Acid 22 MOL16 Darshenoine 15 MOL17 Descharbinone 15 MOL18 Darshenoinkum 15 MOL20 Darshenoinkum 15 MOL21 Descharbinone 16 MOL22 Descharbinone 17 MOL23 D	MOL01	(+)-Catechin	4
MOL03 2-lograpy-8-methylphenanthrene 3-4-dione 4 MOL04 3-8-thydroxynashinonella 7 MOL05 3-z-thydroxynashinonella 7 MOL06 4-Methylphennthinone 21 MOL08 5-7.Dihydroxy-6-sidenterhyl-3-t4"-phydroxy-5"-methorybenzyl/Chroman-4-One 6 MOL09 6-Aldentyl-is-taghinogene 8 7 MOL10 7-Methoxy-2-methyl isoftavone 8 MOL11 Angeloydjonnish 0 3 MOL12 Angeloydjonnish 0 2 MOL13 Beta sitosterol 8 MOL14 Camphor 2 MOL15 Caprici Add 2 MOL16 Cryptotanshinone 3 MOL17 Danshenol B 3 MOL18 Danshenol B 3 MOL20 Danshenol B 3 MOL21 Danshenol B 3 MOL22 Deocyntorashinone 3 MOL23 Deorytorashinone 3 MOL24 Deorytorashinone 3 MOL25 Dilydr	MOL02	2'-Hydroxymethylophiopogonone A	2
MOLD4 3-beta-kyptosynethionefatasingunone 1 MOLD5 3-bitykrasmitinone 2 MOLD5 3-bitykrasmitinone 3 MOLD5 3-bitykrasmitinone 3 MOLD5 3-bitykrasmitinone 2 MOLD5 3-bitykrasmitinone 2 MOLD5 3-bitykrasmitinone 2 MOLD6 7-mothosyne 4 MOLD7 7-mothosyne 4 MOLD1 Adenosine 4 MOLD1 Adenosine 2 MOLD1 Caproic Acid 2 MOLD1 Caproic Acid 2 MOLD1 Caproic Acid 2 MOLD1 Darshengriorkeallactone 3 MOLD2 Darshengriorkeallactone 2 MOLD2 Dehydrotanshinone 5 MOLD2 Dehydrotanshinone 2 MOLD2 Dehydrotanshinone 2 MOLD2 Dehydrotanshinone 2 MOLD2 Dehydrotanshinone 1 MOLD2	MOL03	2-Isopropyl-8-methylphenanthrene-3,4-dione	4
MOLGS	MOL04 MOL05	3-Beta-hydroxymetnyllenetansniquinone 3x-Hydroxytanshinopella	1
NOD27 5.6 ⁻ Dihydroxy-6.3 ⁻ dinetyl-2.3 ⁻ dihydroxy-nethoxyber.nethoxyber.nylChroman-4-One 3 MOL08 5.7-Dihydroxy-6.3 ⁻ dinetyl-2.4 ⁻ dydroxy-3 ⁻ methoxyber.nylChroman-4-One 7 MOL10 7-Methoxy-2-methyl is/Bivone 7 MOL11 Adenosine 7 MOL12 Angeloydponish O 3 MOL13 Beta-sitosterol 2 MOL16 Captroic Acid 2 MOL17 Danshenol A 3 MOL18 Captroic Acid 2 MOL19 Danshenol A 5 MOL19 Danshenol A 5 MOL19 Danshenol A 5 MOL20 Danshenol Akatrallactore 3 MOL21 Devolydroanshinone 5 MOL22 Devolydroanshinone 7 MOL23 Deonydroanshinone 7 MOL24 Dihydrotanshinone 7 MOL25 Dihydrotanshinone 7 MOL26 Ellagic acid 7 MOL27 Epidanshenpiroketallactone 1 <td< td=""><td>MOL05 MOL06</td><td>4-Methylenemiltirone</td><td>22</td></td<>	MOL05 MOL06	4-Methylenemiltirone	22
MOLB8 5,7-Dihydraxy-6,3-dimethyl-3/4"-rydraxy-3"-methoxybenzyl/Chroman-4-One 6 MOL10 7-Methoxy-2-methyl isoflavone 7 MOL11 Angeloylgomisn 0 3 MOL13 Beta-sitosterol 81 MOL14 Campbor 21 MOL15 Caproic Aid 22 MOL16 Cryptotanshinone 16 MOL17 Danshenol B 5 MOL18 Danshenol B 3 MOL19 Danshenol B 3 MOL10 Danshenol B 3 MOL11 Danshenol B 3 MOL12 Deoxybrangtonine 13 MOL13 Danshenoi B 3 MOL24 Deoxybrangtonine 3 MOL25 Deoxybrangtonine 3 MOL26 Ellagic acid 7 MOL27 Epidanshengrindketallactone 3 MOL28 Fornytlanshinone 11 MOL29 Fornytlanshinone 3 MOL20 Elidaixacid 11 <	MOL07	5,6-Dihydroxy-7-iopropyl-1,1-dimethyl-2,3-dihydrophenanthren-4-one	3
MOL19 6 Aldehydo-isophiopogone B 7 MOL11 Adenosine 49 MOL12 Angelogiomisin O 3 MOL13 Beta-sitosterol 8 MOL14 Camphor 2 MOL15 Caproic Acid 2 MOL16 Cryptotanshinone 16 MOL17 Danshenol A 5 MOL18 Danshenol A 2 MOL19 Danshenol A 3 MOL20 Danshenol A 3 MOL21 Delaydroanshinone II A 13 MOL22 Deoxyntringtonine 2 MOL23 Deoxyntringtonine 5 MOL24 Deoxyntringtonine 7 MOL25 Dilyntroanshinone 1 MOL26 Ellingic acid 7 MOL27 Epidashenspiroketallactone 2 MOL28 Fortryltanshinone 1 MOL29 Futitrone A 1 MOL30 Glytchein 1 MOL31 Gomisin A	MOL08	5,7-Dihydroxy-6,8-dimethyl-3-(4'-hydroxy-3'-methoxybenzyl)Chroman-4-One	6
M0L10 / Amethody Interfryi Isoflavone 29 M0L112 Angelovjgonisin O 3 M0L13 Beta-situstratul 8 M0L14 Camptor 2 M0L15 Gerphor 2 M0L16 Camptor 2 M0L17 Darshenol A 2 M0L19 Darshenol A 3 M0L10 Darshenol A 3 M0L21 Darshenol A 3 M0L22 Darshenol A 3 M0L21 Darshenol R 3 M0L22 Deoxyneocryptotanshinone II A 3 M0L23 Deoxyneocryptotanshinone 7 M0L24 Dihydrotanshinone II 3 M0L25 Dihydrotanshinone 1 M0L26 Ellagic add 7 M0L27 Epidamshenspiroketallactone 2 M0L33 Gorisin A 1 M0L34 Isocryptotanshinone 1 M0L35 Longikaurin A 5 M0L34 Isocryptotanshino	MOL09	6-Aldehydo-Isoophiopogone B	7
MCI12 Angelogicanisin O 3 MCI13 Berjackatoria 8 MCI14 Camphor 2 MCI15 Caproite Acid 2 MCI16 Caproite Acid 2 MCI17 Danshenol A 5 MCI18 Danshenol A 3 MCI20 Danshenvinkum 15 MCI21 Dehydrotanshinone 2 MCI22 Deoxydranshinone 3 MCI22 Deoxydranshinone 2 MCI23 Deoxydranshinone 2 MCI24 Dihydrotanshinone 7 MCI25 Dihydrotanshinone 1 MCI26 Ellagic acid 7 MCI27 Epidanshenspiroketallactone 2 MCI28 Formytanshinone 1 MCI30 Glyctein 1 MCI31 Gornisin A 2 MCI32 Gornisin A 1 MCI33 Gornisin A 1 MCI34 Isocryptotanshinone 1 <td>MOLIU MOLII</td> <td>/-Methoxy-2-methyl isoflavone Adeposine</td> <td>29</td>	MOLIU MOLII	/-Methoxy-2-methyl isoflavone Adeposine	29
NOL13 Befastrateria 8 NOL14 Camphor 2 NOL15 Caproic Acid 2 NOL16 Cryptic Acid 2 NOL17 Danshenol A 5 NOL18 Danshenol B 2 NOL19 Danshenol B 3 NOL20 Danshenol R 3 NOL21 Dehydrotanshinone II A 3 NOL22 Deoxyneacryptotanshinone 3 NOL23 Deoxyneacryptotanshinone 5 NOL24 Dihydrotanshinone 6 NOL25 Dihydrotanshinone 1 NOL26 Eligic acid 7 NOL27 Epidanshenspiroketallactone 2 NOL28 Dihydrotanshinone 1 NOL29 Frutinone A 1 NOL29 Frutinone A 2 NOL31 Gorisin A 2 NOL32 Gorisin G 1 NOL33 Gorisin A 5 NOL34 Kortyotanshinone 1	MOL12	Angelovlaomisin O	3
M0L14 Camphor 2 M0L15 Caprota-Aid 2 M0L16 Cyptotanshinone 16 M0L17 Danshenol A 2 M0L18 Danshenol A 3 M0L20 Danshenpinoketallactone 3 M0L21 Dehydrotanshinone II A 13 M0L22 Deoxyharringtonine 2 M0L33 Deoxyharringtonine 7 M0L24 Dihydrotanshinone 7 M0L25 Dihydrotanshinone 7 M0L36 Ellagic acid 7 M0L37 Epidanshenspinoketallactone 2 M0L38 Formytlanshinone 11 M0L30 Gyntein 3 M0L31 Gomisin A 2 M0L33 Gomisin A 5 M0L34 Isorgytlatanshinone 15 M0L35 Longikaurin A 5 M0L34 Isorgytlatanshinone 15 M0L35 Longikaurin A 5 M0L34 Isorgytlatanshinone <td>MOL13</td> <td>Beta-sitosterol</td> <td>8</td>	MOL13	Beta-sitosterol	8
M0L15 Caproic Acid 2 M0L16 Cryptotanshinone 16 M0L17 Danshenol A 2 M0L19 Danshenol B 2 M0L10 Danshenol B 3 M0L20 Danshenspiroketallactone 3 M0L21 Dehydrotanshinone 13 M0L22 Deoxymeocryptotanshinone 5 M0L23 Deoxymeocryptotanshinone 7 M0L24 Dihydrotanshinonel 6 M0L25 Dihydrotanshinonel 7 M0L26 Ellagic acid 7 M0L27 Epidanshenspiroketallactone 2 M0L30 Glytelin 12 M0L31 Gomisin A 2 M0L32 Gomisin A 2 M0L33 Gomisin A 1 M0L34 Isocryptotanshinone 1 M0L35 Isotanshinone I 8 M0L36 Longikurin A 5 M0L37 Luteolin 1 M0L43 Methyl-3-13'/4'-dihydrok	MOL14	Camphor	2
MOLI 10 Cryptolanshinone 16 MOLI 12 Danshenol A 2 MOLI 13 Danshenol R 3 MOLI 20 Danshenspiroketallactone 3 MOLI 21 Dehydrotanshinone II A 13 MOLI 22 Deoxyharringtonine 2 MOLI 23 Deoxyharringtonine 7 MOLI 24 Dihydrotanshinone 7 MOLI 25 Dihydrotanshinone 7 MOLI 25 Dihydrotanshinone 7 MOLI 26 Ellagic acid 7 MOLI 27 Epidanshenspiroketallactone 7 MOLI 3 Gomisin A 1 MOLI 3 Gomisin A 2 MOLI 3 Gomisin A 1 MOLI 3 Gomisin A 5 MOLI 3 Gomisin A 5 MOLI 4 Socryptotanshinone 1 MOLI 5 Isotanshinone II 8 MOLI 4 Methyl ophiopogonanone B 9 MOLI 4 Methylophiopogonanone B 1	MOL15	Caproic Acid	2
Index Jambenoid B Jambonoid B <thjambenoid b<="" th=""> <thj< td=""><td>MOL16 MOL17</td><td>Cryptotansninone</td><td>16</td></thj<></thjambenoid>	MOL16 MOL17	Cryptotansninone	16
NOL19 Darshenspinketallactone 3 NOL20 Darshenspinketallactone 15 NOL21 Dekydrotanshinone II A 13 NOL22 Desoynescryptanshinone 2 NOL23 Desoynescryptanshinone 2 NOL24 Dihydrotanshinone 7 NOL25 Dihydrotanshinone 7 NOL26 Ellagic acid 7 NOL27 Epidanshenspirokatallactone 2 NOL28 Formyltanshinone 1 NOL30 Glyttein 1 NOL31 Gomisin A 2 NOL32 Gomisin G 1 NOL33 Gomisin R 1 NOL34 Isocryptotanshinone 5 NOL35 Isotanshinone II 8 NOL36 Longikaurin A 5 NOL37 Luteolin 1 NOL40 Methyl ophiopogonanone B 1 NOL41 Mittorone I 4 NOL42 Mittorne I 1 NOL43 No	MOL17 MOL18	Danshenol B	2
M0L20 Danshenxinkum 15 M0L21 Devxyharringtonine II A 13 M0L22 Dexxyharringtonine 2 M0L33 Deitydrotanshinne 5 M0L34 Ditydrotanshinne 7 M0L25 Ditydrotanshinne 7 M0L36 Ellagic acid 7 M0L37 Epidanshenspiroketallactone 2 M0L39 Frutinone A 11 M0L30 Glyttein 12 M0L31 Gornisin A 2 M0L32 Gornisin R 5 M0L33 Gornisin R 5 M0L34 Isortyptotanshinone 19 M0L35 Istanshinone I 5 M0L36 Longikaurin A 5 M0L37 Lutcolin 19 M0L38 Methyl ophiopogonanone B 5 M0L39 Methyl ophiopogonanone B 2 M0L40 Methyl-sci 24'- dithydroxybenzyl Chroma-4-One 1 M0L41 Mittonone I 1 M0L42 <td>MOL19</td> <td>Danshenspiroketallactone</td> <td>3</td>	MOL19	Danshenspiroketallactone	3
M01.21 Dehydrotanshinone II A 13 M01.22 Deoxynecryptotanshinone 5 M01.24 Dihydrotanshinone 7 M01.25 Dihydrotanshinone 7 M01.26 Eligic acid 7 M01.27 Epidanshenspiroketallactone 2 M01.28 Fromyltanshinone 11 M01.29 Frutinone A 11 M01.30 Glyttein 12 M01.31 Gomisin A 2 M01.32 Gomisin G 1 M01.33 Gomisin G 1 M01.33 Gomisin G 1 M01.33 Gomisin R 5 M01.34 Isocryptotanshinone 18 M01.35 Isotanshinone I 19 M01.38 Methyl ophiopogonanone B 5 M01.40 Methyl ophiopogonanone B 1 M01.41 Mitonone I 11 M01.42 Militrone 11 M01.43 Necryptotanshinone I 14 M01.44	MOL20	Danshenxinkum	15
M0L22 Dexyntarringtonine 2 M0L23 Dexyntarringtonine 5 M0L24 Dihydrotanshinonel 6 M0L25 Dihydrotanshinonel 7 M0L26 Ellagic acid 7 M0L27 Epidanshenspiroketallactone 2 M0L28 Formyltanshinone 11 M0L30 Glycitein 12 M0L31 Gomisin A 2 M0L32 Gomisin G 1 M0L33 Gomisin G 1 M0L34 Isocryptotanshinone 15 M0L35 Isotanshinone I 5 M0L36 Lorgikaurin A 5 M0L37 Luteolin 1 M0L38 Methyl -91/3/4'-dihydroxybenzyb' Chroman-4-One 1 M0L40 Methyl-8-1/3'-dihydroxybenzyb' Chroman-4-One 1 M0L41 Mittione I 1 M0L44 Neocryptotanshinone i 1 M0L44 Moltydrotanshinone i 1 M0L45 Ophiopogonanone B 2 <t< td=""><td>MOL21</td><td>Dehydrotanshinone II A</td><td>13</td></t<>	MOL21	Dehydrotanshinone II A	13
NOL23 Decontrol produstminute J NOL24 Dihydrotanshinonel 6 NOL25 Dihydrotanshinonel 7 NOL26 Eliagic acid 7 NOL27 Epidanshenspiroketallactone 2 NOL28 Fornyltanshinone 1 NOL29 Frutinone A 1 NOL31 Gomisin G 1 NOL32 Gomisin G 1 NOL33 Gomisin G 1 NOL34 Isocryptotanshinone 5 NOL35 Isotanshinone II 8 NOL36 Longikaurin A 5 NOL37 Litedoin 19 NOL38 Methyl -3/3/4/-4/indydroxyberzyl) Chroman-4-One 1 NOL41 Miltirone I 1 NOL42 Miltirone 1 NOL43 Neocryptotanshinone B 3 NOL44 Neocryptotanshinone B 2 NOL43 Neocryptotanshinone B 3 NOL44 Neocryptotanshinone B 2 NOL4	MOL22	Deoxyharringtonine	2
M0L25 Dihydrotanshinonel 6 M0L26 Ellagic acid 7 M0L27 Epidashenspiroketallactone 2 M0L28 Formytanshinone 1 M0L29 Fruttionen A 1 M0L30 Glycttein 12 M0L31 Gomisin A 2 M0L32 Gomisin G 1 M0L33 Gomisin R 5 M0L34 Iscoryptotanshinone 15 M0L35 Istotanshinone I 8 M0L36 Longikaurin A 5 M0L37 Luteolin 9 M0L38 Methyl -3/(3/-4'-dihydroxybenzyl) Chroman-4-One 1 M0L40 Methyl -3/(3/-4'-dihydroxybenzyl) Chroman-4-One 1 M0L41 Miltionone I 11 M0L42 Miltionone I 11 M0L43 Neocryptotanshinone ii 14 M0L44 Neocryptotanshinone ii 14 M0L45 Ophiopogonanone B 2 M0L46 Ophiopogonanone D 6	MOL23 MOL24	Dihydrotanshinlactone	7
NOL26 Elagic acid 7 NOL27 Epidanshengrivekallactone 2 NOL28 Formyltanshinone 11 NOL30 Givetein 12 NOL31 Gomisin A 2 NOL32 Gomisin G 1 NOL33 Gomisin G 1 NOL34 Isocryptotanshinone 5 NOL35 Isotanshinone II 8 NOL36 Longikaurin A 5 NOL37 Luteolin 9 NOL38 Methyl -3/3/4 -dihydroxybenzyl) Chroman-4-One 1 NOL41 Mittrone 1 NOL43 Neocryptotanshinone 1 NOL44 Neocryptotanshinone 1 NOL43 Neocryptotanshinone 1 NOL44 Neocryptotanshinone 1 NOL44 Neocryptotanshinone 1 NOL45 Ophiopogonanone D 6 NOL46 Ophiopogonanone D 2 NOL47 Ophiopogonanone F 1 NOL48 <	MOL25	Dihydrotanshinonel	6
M0127 Epidanshenspiroketallactone 2 M0128 Formytanshinone 1 M0130 Glyritein 12 M0131 Gomisin A 2 M0132 Gomisin G 1 M0133 Gomisin R 5 M0134 Isocryptotanshinone 15 M0135 Isotryptotanshinone 8 M0136 Longikaurin A 5 M0137 Luteolin 19 M0138 Methyl ophipogonanone B 5 M0139 Methyl-3 (3/-dillydroxybenzyl) Chroman-4-One 1 M0140 Methyl-3 (3/-dillydroxybenzyl) Chroman-4-One 1 M0141 Miltitone 1 M0143 Neocryptotanshinone i 1 M0143 Neocryptotanshinone i 1 M0144 Ophiopogonanone B 2 M0145 Ophiopogonanone B 2 M0144 Ophiopogonanone B 2 M0145 Ophiopogonanone B 2 M0146 Ophiopogonanone F 1 <td>MOL26</td> <td>Ellagic acid</td> <td>7</td>	MOL26	Ellagic acid	7
M0L28 Formyltanshinone 1 M0L29 Frutinone A 11 M0L30 Glyctein 12 M0L31 Gomisin A 2 M0L32 Gomisin R 1 M0L33 Gomisin R 5 M0L34 Isocryptotanshinone 15 M0L35 Isotanshinone II 8 M0L36 Longikaurin A 5 M0L37 Luteolin 9 M0L38 Methyl-3-(3, 4-dihydroxybenzyl) Chroman-4-One 1 M0L40 Methyl-3-(3, 4-dihydroxybenzyl) Chroman-4-One 1 M0L41 Miltirone 1 M0L42 Miltirone 1 M0L43 Neocryptotanshinone ii 4 M0L44 Neocryptotanshinone ii 1 M0L45 Ophiopogonanone B 2 M0L44 Neocryptotanshinone ii 1 M0L45 Ophiopogonanone B 2 M0L44 Neocryptotanshinone ii 1 M0L45 Ophiopogonanone B 2	MOL27	Epidanshenspiroketallactone	2
INUL22 FULLINIE A 11 MOL33 Gomisin A 2 MOL34 Gomisin G 1 MOL35 Gomisin R 5 MOL34 Borryptotanshinone 15 MOL35 Isotanshinone II 8 MOL36 Longikaurin A 5 MOL37 Luteolin 19 MOL38 Methyl ophiopogonanone B 5 MOL39 Methyl-3-(3/4'-dihydroxyberzyl) Chroman-4-One 1 MOL40 Methyl-backi/a'-dihydroxyberzyl) Chroman-4-One 1 MOL41 Miltirone 1 MOL42 Miltirone 1 MOL43 Neocryptotanshinone ii 14 MOL44 Neocryptotanshinone ii 14 MOL45 Ophiopogonanone B 2 MOL44 Neocryptotanshinone ii 1 MOL45 Ophiopogonanone B 2 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone E 1 MOL48 Ophiopogonanone E 1	MOL28	Formyltanshinone	1
M0131 Gomisin A 2 M0132 Gomisin G 1 M0133 Gomisin R 5 M0134 Iscryptanshinone 15 M0135 Iscrashinone II 8 M0136 Longikaurin A 5 M0137 Litteolin 19 M0138 Methyl optiopogonanone B 5 M0139 Methyl-3-(3',4'-dihydroxyberzyl) Chroman-4-One 1 M0140 Methyl-a-(3',4'-dihydroxyberzyl) Chroman-4-One 8 M0141 Miltirone I 1 M0142 Miltirone I 1 M0143 Neccryptotanshinone Ii 1 M0144 Neccryptotanshinone B 2 M0145 Ophiopogon A 3 M0146 Ophiopogonanone D 6 M0147 Ophiopogonanone D 6 M0148 Ophiopogonanone F 1 M0149 Ophiopogonanone F 3 M0150 Paeoniflorin 2 M0151 Paeoniflorin 2 <	MOL29 MOL30	Glycitein	11
M0132 Gomisin G 1 M0133 Gomisin R 5 M0134 Isocryptotanshinone 15 M0135 Isotanshinone II 8 M0136 Longikaurin A 5 M0137 Luteolin 19 M0138 Methyl ophiopogonanone B 5 M0139 Methyl-3/3 (3/- dihydroxybenzyl) Chroman-4-One 1 M0140 Methyl-3/3 (3/- dihydroxybenzyl) Chroman-4-One 1 M0141 Miltirone 11 M0142 Miltirone 1 M0143 Neocryptotanshinone 4 M0144 Neocryptotanshinone 4 M0144 Neocryptotanshinone 1 M0145 Ophiopogonanone B 2 M0146 Ophiopogonanone B 2 M0147 Ophiopogonanone B 2 M0148 Ophiopogonanone F 1 M0150 Paeoniflorin 2 M0151 Paeoniflorin 2 M0152 Perlolyrine 3	MOL31	Gomisin A	2
M0133 Gomisin R 5 M0134 Isocryptotanshinone 15 M0135 Isotanshinone II 8 M0136 Longikaurin A 5 M0137 Luteolin 19 M0138 Methyl ophiopogonanone B 5 M0140 Methyl-4-Gi/4-dihydroxybenzyl) Chroman-4-One 1 M0140 Methyl-estanshinquinone 8 M0141 Miltirone 1 M0143 Neocryptotanshinone ii 14 M0144 Neocryptotanshinone B 2 M0145 Ophiopogonanone B 2 M0146 Ophiopogonanone D 6 M0147 Ophiopogonanone E 1 M0148 Ophiopogonanone E 1 M0150 Paeoniflorin 2 M0151 Paeoniflorin 2 M0152 Periolyrine 3 M0153 Poriferasterol 1 M0154 Prolithospermic acid 4 M0155 Przewajkinn B 3 M01	MOL32	Gomisin G	1
M0L34 Isocryptotanshinone 15 M0L35 Isotanshinone II 8 M0L36 Longikaurin A 5 M0L37 Luteolin 19 M0L38 Methyl ophiopogonanone B 5 M0L39 Methyl-3-(3'.4'-dihydroxybenzyl) Chroman-4-One 1 M0L40 Methyl-3-(3'.4'-dihydroxybenzyl) Chroman-4-One 8 M0L41 Miltionone I 1 M0L42 Miltirone 1 M0L43 Neocryptotanshinone ii 4 M0L44 Neocryptotanshinone ii 1 M0L45 Ophiopogonanone B 2 M0L46 Ophiopogonanone B 2 M0L47 Ophiopogonanone F 1 M0L48 Ophiopogonanone F 1 M0L50 Paeoniflorin 2 M0L51 Paeoniflorin 2 M0L52 Perlolyrine 3 M0L53 Poriferasterol 1 M0L54 Polithospermic acid 3 M0L55 Przewalskin b 1 <td>MOL33</td> <td>Gomisin R</td> <td>5</td>	MOL33	Gomisin R	5
MOL33 Isourilishinule in 3 MOL34 Luteolin 19 MOL35 Luteolin 19 MOL38 Methyl ophiopogonanone B 1 MOL40 Methyl-si/3'.4'-dihydroxybenzyl) Chroman-4-One 1 MOL41 Miltionone I 1 MOL42 Miltionone I 1 MOL43 Neocryptotanshinone i 4 MOL44 Neocryptotanshinone i 3 MOL45 Ophiopogonanone B 2 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone D 6 MOL48 Ophiopogonanone F 1 MOL50 Paeoniflorigenone 2 MOL51 Paeoniflorigenone 2 MOL52 Perlolyrine 3 MOL53 Poriferasterol 1 MOL54 Proiltospermic acid 4 MOL55 Przewaljkin a 1 MOL56 Przewaljkin a 1 MOL51 Salvianolic acid a 3 MO	MOL34	Isocryptotanshinone	15
MOL37 Luteolin 19 MOL38 Methyl ophiopogonanone B 5 MOL39 Methyl-3/3 (*-dihydroxybenzyl) Chroman-4-One 1 MOL40 Methyl-3/3 (*-dihydroxybenzyl) Chroman-4-One 1 MOL40 Methyl-aretanshinquinone 8 MOL41 Miltirone I 1 MOL42 Miltirone 11 MOL43 Neocryptotanshinone ii 14 MOL44 Neocryptotanshinone B 2 MOL45 Ophiopogonanone B 2 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone F 1 MOL48 Ophiopogonanone F 1 MOL50 Paeoniflorin 2 MOL51 Paeoniflorin 2 MOL52 Perlolyrine 3 MOL53 Portferasterol 1 MOL54 Protivospermic acid 4 MOL55 Przewaquinone E 2 MOL56 Przewaquinone E 2 MOL57 Przewaquinone E 2	MOL35 MOL36	Iongikaurin A	0 5
M0138 Methyl ophiopogonanone B 5 M0139 Methyl-3-(3',4'-dihydroxybenzyl) Chroman-4-One 1 M0140 Methyl-a-tanshinquinone 8 M0141 Miltirone I 1 M0142 Miltirone I 1 M0143 Neccryptotanshinone ii 4 M0144 Neccryptotanshinone Ii 14 M0145 Ophiopogonanone B 2 M0147 Ophiopogonanone D 6 M0148 Ophiopogonanone F 1 M0149 Ophiopogonanone F 1 M0150 Paeoniflorgenone 2 M0151 Paeoniflorgenone 2 M0152 Perlolyrine 3 M0153 Porferasterol 1 M0154 Prolitnospermic acid 4 M0155 Przewajtinone E 2 M0154 Prolitnospermic acid 3 M0155 Przewajtinone C 3 M0156 Przewajtinone E 2 M0157 Przewajtinone C 3	MOL37	Luteolin	19
MOL39 Methyl-3-(3',4'-d'-dihydroxybenzyl) Chroman-4-One 1 MOL40 Methylenetanshinquinone 8 MOL41 Miltionone I 1 MOL42 Miltionone I 1 MOL43 Neocryptotanshinone 4 MOL44 Neocryptotanshinone ii 14 MOL45 Ophiopogon A 3 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone D 6 MOL48 Ophiopogonanone F 1 MOL50 Paeoniflorin 2 MOL51 Paeoniflorin 2 MOL52 Perlolyrine 3 MOL53 Portierasterol 1 MOL54 Prolithospermic acid 4 MOL55 Przewalskin b 1 MOL56 Przewalguinone C 13 MOL57 Przewalguinone C 13 MOL58 przewaquinone C 13 MOL51 Salvianolic acid a 3 MOL52 Salvianolic acid a 3	MOL38	Methyl ophiopogonanone B	5
MOL40 Methylenetanshinquinone 8 MOL41 Miltionone I 1 MOL42 Miltirone 11 MOL43 Neocryptotanshinone 4 MOL44 Neocryptotanshinone ii 14 MOL45 Ophiopogon A 3 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone E 1 MOL48 Ophiopogonanone F 1 MOL49 Ophiopogonanone F 1 MOL50 Paeoniflorin 2 MOL51 Paeoniflorin 2 MOL52 Perlolyrine 3 MOL53 Poriferasterol 1 MOL54 Prolithospermic acid 4 MOL55 Przewalskin a 1 MOL56 Przewalguinone C 13 MOL58 przewaquinone E 2 MOL50 przewaquinone C 13 MOL51 Salvianolic acid a 3 MOL52 Przewaquinone E 2 MOL64 Salvianolic	MOL39	Methyl-3-(3',4'-dihydroxybenzyl) Chroman-4-One	1
Indication Indication MOL42 Miltirone 11 MOL43 Neocryptotanshinone ii 14 MOL44 Neocryptotanshinone ii 14 MOL45 Ophiopogon A 3 MOL46 Ophiopogonanone B 2 MOL47 Ophiopogonanone D 6 MOL48 Ophiopogonanone F 1 MOL50 Paeoniflorgenone 2 MOL51 Paeoniflorgenone 2 MOL52 Perlolyrine 3 MOL53 Poriferasterol 1 MOL54 Prolithospermic acid 4 MOL55 Przewalskin a 1 MOL56 Przewalskin a 1 MOL57 Przewaquinone B 3 MOL58 przewaquinone C 13 MOL59 Przewaquinone F 2 MOL50 przewaquinone F 2 MOL53 Przewaquinone B 3 MOL54 Przewaquinone C 3 MOL55 Salvianolic acid a	MOL40	Methylenetanshinquinone Miltionono I	8
MOL43Neocryptotanshinone4MOL44Neocryptotanshinone ii14MOL45Ophiopogon A3MOL46Ophiopogonanone B2MOL47Ophiopogonanone D6MOL48Ophiopogonanone F1MOL49Ophiopogonanone F1MOL50Paeoniflorgenone2MOL51Paeoniflorgenone3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone E3MOL58przewaquinone F3MOL50Pacauquinone f2MOL51Paeoniflorin2MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewaquinone E2MOL60przewaquinone F3MOL53Salvianolic acid a3MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid a3MOL63Salvianole acid j1MOL64Salvianole acid j1MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol1MOL68Tanshindehyde6MOL69Tanshinden M4MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL41 MOL42	Miltirone	11
MOL44Necryptotanshinone ii14MOL45Ophiopogon A3MOL46Ophiopogonanone B2MOL47Ophiopogonanone D6MOL48Ophiopogonanone E1MOL49Ophiopogonanone F1MOL50Paconiflorgenone2MOL51Paconiflorin2MOL52Perlolyrine3MOL53Poriferasterol1MOL56Przewalskin a1MOL57Przewalskin b1MOL58przewaquinone E3MOL59Przewaquinone E3MOL59Przewaquinone E2MOL60przewaquinone E3MOL61Salvianolic acid j1MOL62Salvianolic acid j1MOL63Salvilenone2MOL64Salviolene26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol2MOL66Spinasterol1MOL67Stigmasterol2MOL66Spinasterol1MOL67Tanshinaldehyde6MOL68Tanshinaldehyde6MOL69Tanshinaldehyde4MOL70Tanshinone VI4MOL71Tanshinone R21MOL72Wuweizisu C2	MOL43	Neocryptotanshinone	4
MOL45Ophiopogon A3MOL46Ophiopogonanone B2MOL47Ophiopogonanone D6MOL48Ophiopogonanone F1MOL49Ophiopogonanone F1MOL50Paeoniflorgenone2MOL51Paeoniflorin2MOL52Perlolyrine3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewalskin b3MOL58przewaquinone E2MOL60przewaquinone E2MOL61Salvianolic acid a3MOL62Salvianolic acid a3MOL63Salvianolic acid a3MOL64Salvianolic acid a3MOL65Schizandrer B2MOL66Spinasterol1MOL66Spinasterol2MOL66Spinasterol2MOL68Tanshinaldehyde6MOL69Tanshinaldehyde6MOL69Tanshinaldehyde4MOL70Tanshinonella21MOL71Tanshinonella21MOL72Wuweizsu C2	MOL44	Neocryptotanshinone ii	14
MOL46 Opniopogonanone B 2 MOL47 Ophiopogonanone D 6 MOL48 Ophiopogonanone E 1 MOL49 Ophiopogonanone F 1 MOL50 Paeoniflorigenone 2 MOL51 Paeoniflorin 2 MOL52 Periolyrine 3 MOL53 Poriferasterol 1 MOL54 Prolithospermic acid 4 MOL55 Przewalskin a 1 MOL56 Przewalskin b 1 MOL57 Przewaquinone B 3 MOL58 przewaquinone C 1 MOL59 Przewaquinone F 2 MOL60 przewaquinone F 2 MOL61 Salvianolic acid a 3 MOL62 Salvianolic acid a 3 MOL63 Salvianolic acid a 2 MOL64 Salviolone 26 MOL65 Schizandrer B 2 MOL66 Spinasterol 2 MOL68 Tanshinaldehyde	MOL45	Ophiopogon A	3
MOL47Opiniopogonanone D0MOL48Ophiopogonanone E1MOL49Ophiopogonanone F2MOL50Paeoniflorgenone2MOL51Paeoniflorin2MOL52Perlolyrine3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone C13MOL59Przewaquinone F2MOL60przewaquinone f2MOL61Salvianolic acid j1MOL62Salvianolic acid j1MOL63Salvienone4MOL64Salviolone26MOL65Schizandere B2MOL66Spinasterol1MOL67Stigmasterol1MOL68Tanshindle JB2MOL69Tanshinone VI4MOL70Tanshinone VI21MOL72Wuweizisu C2	MOL46	Ophiopogonanone B	2
MOL19Ophiopogonanone F1MOL50Paeoniflorgenone2MOL51Paeoniflorgenone2MOL52Perlolyrine3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone f2MOL60przewaquinone f2MOL61Salvianolic acid j1MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salvilone2MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol1MOL68Tanshinaldehyde6MOL69Tanshinonella2MOL69Tanshinonella2MOL70Tanshinonella2MOL72Wuweiziu C2	MOL47 MOL48	Ophiopogonanone F	1
MOL50Paeoniflorgenone2MOL51Paeoniflorin2MOL52Perlolyrine3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone C13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salvilone2MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol2MOL68Tanshinaldehyde6MOL70Tanshinone VI4MOL71Tanshinone VI2MOL72Wuweizisu C2	MOL49	Ophiopogonanone F	1
MOL51Paeoniflorin2MOL52Perlolyrine3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone F2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salvilone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol2MOL68Tanshinaldehyde6MOL69Tanshinaldehyde4MOL71Tanshinone VI4MOL72Wuweizisu C2	MOL50	Paeoniflorgenone	2
MOL52Periolyme3MOL53Poriferasterol1MOL54Prolithospermic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvianolic acid j1MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol2MOL68Tanshinole B2MOL69Tanshinole VI4MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL51	Paeoniflorin	2
MOL53Prinkiscion1MOL54Prolithospernic acid4MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvianole acid j4MOL64Salviolone4MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL52 MOL53	Periolyrine Poriferasterol	3
MOL55Przewalskin a1MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salvilone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL54	Prolithospermic acid	4
MOL56Przewalskin b1MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B26MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL55	Przewalskin a	1
MOL57Przewaquinone B3MOL58przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL56	Przewalskin b	1
MOLS8przewaquinone c13MOL59Przewaquinone E2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL57	Przewaquinone B	3
MOL50przewaquinone f2MOL60przewaquinone f2MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshinone VI4MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL58 MOL59	przewaguinone c Przewaguinone F	13
MOL61Salvianolic acid a3MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshinone VI4MOL70Tanshinonella21MOL72Wuweizisu C2	MOL60	przewaguinone f	2
MOL62Salvianolic acid j1MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL61	Salvianolic acid a	3
MOL63Salvilenone4MOL64Salviolone26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshinone VI4MOL70Tanshinone IIa21MOL72Wuweizisu C2	MOL62	Salvianolic acid j	1
MOL64Salvioine26MOL65Schizandrer B2MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL63	Salvilenone	4
MOL66Spinasterol1MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL04	Schizandrer B	26 2
MOL67Stigmasterol22MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL66	Spinasterol	1
MOL68Tanshinaldehyde6MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL67	Stigmasterol	22
MOL69Tanshindiol B2MOL70Tanshinone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL68	Tanshinaldehyde	6
NOL/0Tansninone VI4MOL71Tanshinonella21MOL72Wuweizisu C2	MOL69	Tanshindiol B	2
MOL72 Wuweizisu C 2	MOL70	Tanshinonella	4 21
	MOL72	Wuweizisu C	2

Figure 3. Construction of the PPI network. (A) The PPI network model. (B) The PPI network of core targets extracted from degree centrality.

Figure 4. Enrichment analysis of biological process (BP) and KEGG pathway. (A) GO enrichment analysis of BP. The top 20 BPs were selected to draw the bubble diagram. (B) KEGG pathway enrichment analysis. The top 20 KEGG pathways were selected to draw the circle chart.

Figure 5. GX treatment improved oxidative stress *in vivo* and *in vitro*. (A) Myocardial MDA and (B) SOD activities. (C) Representative ROS levels of H9c2 cells measured by incubating with the H₂DCFDA probe. Scale bar, 100 μ m. (D) DCFH fluorescence measured by flow cytometry. Data were expressed as the means ± SD analysed by one-way ANOVA (*n* = 3). ***p* < 0.01 vs. Sham or Control; [#]*p* < 0.05, ^{##}*p* < 0.01 vs. MIRI or HR.

rats, whereas treatment with GX significantly inhibited the iron increase (Figure 6(C)).

Moreover, intracellular iron levels in H9c2 cells were measured using FerroOrange. The cells in the HR group emitted much stronger orange fluorescence compared with the control group. Treatment with GX did not affect iron accumulation in H9c2 cells but decreased the HR-induced increase in the orange fluorescence intensity (Figure 6(B)). The increased iron content was discovered in HR group. However, such an increase in iron content was remarkably eliminated by pretreating the H9c2 cells with 0.5 mg/mL GX (Figure 6(D)). These data demonstrated that GX could ameliorate the iron accumulation both in myocardial tissue and H9c2 cells.

GX inhibited HIF1 α , increased FPN and FTH expression in vivo and in vitro

The current researches have demonstrated that iron metabolism imbalance, especially iron overload, has been proved to be correlated with the pathology of MIRI, and multiple iron metabolism associated factors are implicated in the pathogenesis of MIRI (Ravingerova et al. 2020; Li et al. 2021). To validate whether the protective mechanism of GX on MIRI are associated with iron metabolism, immunohistochemical staining and Western blot analyses were conducted to examine the role of GX pre-treatment in the expression of HIF1 α , FPN and FTH *in vivo* and *in vitro*. As shown in Figure 7(A,B), immunohistochemical staining of the heart tissues revealed a higher level of the expression

of HIF1 α and a lower level of the expression of FPN and FTH in the MIRI group compared with that in the Sham group. After pre-treatment with GX reversed the above levels, the expression of HIF1 α was decreased and the expression of FPN and FTH was increased effectively. Consistent with *in vivo* experiments, the results of Western blot demonstrated that HR treatment upregulated the protein expression of HIF1 α , but also simultaneously downregulated the expression of FPN and FTH in HR injured H9c2 cells. Similarly, GX treatment prevented HRinduced upregulation of HIF1 α and downregulation of FPN and FTH (Figure 7(C)). Collectively, our research results revealed that GX could maintain iron homeostasis via regulating iron metabolism-associated factors both *in vivo* and *in vitro*.

Discussion

GX is an in-hospital preparation developed by Professor Ning Gu, a famous TCM physician of Jiangsu, according to his longterm clinical experience. GX has been applied for the clinical treatment of coronary heart disease for nearly 20 years. Meanwhile, our previous animal experiments have shown that GX could trigger ventricular remodelling via significantly improving the cardiac function, the blood flow dynamics and reducing serum levels of inflammatory factors in AMI rats. In this study, we confirmed the cardioprotective effects of GX against MIRI *in vivo* and HR injury *in vitro* via reduction of iron accumulation and oxidative stress. Mechanistically, GX

Figure 6. GX suppressed iron accumulation *in vivo* and *in vitro*. (A) Representative images of iron deposition stained by Prussian blue. Scale bar, 50 μ m. (B) The intracellular iron levels in H9c2 cells measured by FerroOrange. Scale bar, 100 μ m. (C) The total iron contents of the heart tissues detected by iron assay kit. (D) The total iron contents of H9c2 detected by iron assay kit. Data were expressed as the means ± SD analysed by one-way ANOVA (n=3). **p < 0.01 vs. Sham or Control; ${}^{\#}p < 0.05$ vs. MIRI or HR.

could regulate iron metabolism-related proteins to maintain heart iron homeostasis.

The multi-components and multi-targets of TCM formula make it difficult to elucidate the underlying therapeutic mechanisms. Recently, network pharmacology is widely used to predict the bioactive ingredients of TCM and clarify the mechanism across multiple components, targets and pathways (Cui et al. 2021). Here, we integrated network pharmacology prediction and experimental validation to explore the potential engaged mechanism of GX in alleviating MIRI. In our present study, a total of 100 active ingredients in GX and 213 compound-related targets were acquired from TCMSP and ETCM databases. Then we searched 512 MIRI-related targets from GeneCards, OMIM, DrugBank and TTD databases. Next, 91 overlapping targets between GX and MIRI were obtained via constructing a Venn diagram. The GO function analysis showed that the above 91 overlapping targets were enriched for various biological processes, and response to iron ion was the crucial biological process involved in GX-provided protection against MIRI. Furthermore, KEGG pathway analysis found that GX could affect multiple pathways, including HIF-1 signalling pathway, Calcium signalling pathway and TNF signalling pathway. There is increasing evidence that iron metabolic imbalances participate in the pathophysiological process of MIRI. Furthermore, a recent clinical study using cardiac magnetic resonance imaging showed that the presence of myocardial haemorrhage was followed by the residual myocardial iron in post-MI patients received reperfusion therapy (Bulluck et al. 2016). Iron homeostasis is achieved through the coordination of various iron metabolism-related proteins, and HIF-1 is a pivotal regulator of iron metabolism in MIRI. Taken together, the results of network pharmacology indicated that GX could attenuate MIRI by regulating iron metabolic balance and maintaining iron homeostasis. Next, we further validated these prediction results from network pharmacology in the next following experiments.

When ischaemia-reperfusion occurs, mitochondrial damage can induce ROS production. Oxidative stress triggered by excessive ROS is one of the most important initiators for MIRI, which can cause irreversible cardiomyocyte damage and cardiac dysfunction (Xiang et al. 2021). Moreover, uncontrolled accumulation of iron can induce oxidative stress, catalyse the redundant oxygen-free radicals and overproduction of ROS via the Fenton

Figure 7. GX inhibited HIF1 α , increased FPN and FTH expression *in vivo* and *in vitro*. (A,B) The expression of HIF1 α , FPN and FTH detected by immunohistochemical staining in heart tissues. Scale bar, 50 µm. (C) The protein levels of HIF1 α , FPN and FTH measured by Western blot in H9c2 cells. Data were expressed as the means ± SD analysed by one-way ANOVA (n = 3). *p < 0.05, **p < 0.01 vs. Sham or Control; *p < 0.05, **p < 0.01 vs. MIRI or HR.

reaction and Haber-Weiss reaction (Kobayashi et al. 2018). The increased ROS can further mediate membrane lipid peroxidation reaction and generate MDA, and the antioxidant enzyme system, such as the activities of antioxidant enzyme SOD is also severely weakened (Tian et al. 2021). To further study the underlying mechanism of GX in alleviating MIRI, the antioxidant activity was investigated. The results revealed that ischaemia/reperfusion significantly increased the levels of SOD and decreased the level of MDA in mice, and these changes were significantly alleviated by GX. In addition, GX could inhibit ROS production in HR-induced H9c2 cells. This evidence indicated that GX could alleviate IR-induced oxidative stress injury during IR/HR.

Imbalances in iron homeostasis have been reported to be involved in MIRI. Myocardial iron overload has been observed both in the post-MI patients received reperfusion therapy (Paterek et al. 2019) and the rats with myocardial ischaemiareperfusion (Shan et al. 2021). Our results were consistent with these studies. Results from *in vivo* and *in vitro* experiments showed that distinct iron accumulation was been showed in ischaemia-reperfusion induced cardiac tissues and HR-induced H9c2 cells. However, the iron deposition was significantly alleviated by GX treatment both *in vivo* and *in vitro*.

To further explore the mechanism of GX in reducing iron deposition, some iron metabolism-related proteins were investigated. As a key member of iron metabolism-associated factors, HIF-1 α can regulate the transcription of genes involved in iron utilization, such as TFR1, ceruloplasmin, HMOX1 and DMT1; FPN is responsible for ferrous iron efflux from the cell to the peripheral circulation; FTH is responsible for Ferrous iron storage. Some studies demonstrated that activation of HIF-1α expression induced ischaemic tolerance and conferred a cardioprotective effect to diminish cardiac IR injury (Kido et al. 2005; Xie et al. 2015; Deguchi et al. 2020). However, some other studies indicated that the excessive and prolonged activation of HIF-1α can lead to myocyte death and trigger cardiac rupture (Ikeda et al. 2021). Moreover, activation of HIF-1α induced the expression of TFR1, which in turn increased Fe uptake and iron accumulation and exacerbated heart damage during IR of the rat heart, whereas inhibition of HIF-1a attenuated cardiac IR injury (Tang et al. 2008; Lin et al. 2020; Ikeda et al. 2021). Cardiac FPN

regulated cellular iron homeostasis and was important for cardiac function, and the mRNA and protein expression levels of FPN were significantly reduced in rats' hearts under myocardial IR conditions (Lakhal-Littleton et al. 2015; Tian et al. 2021). Furthermore, FTH was downregulated in animal model of MIRI leading to intracellular iron aggregation, oxidative stress and cardiomyocytes death (Omiya et al. 2009). Consistent with previous reports, we found that the expression of HIF1a was upregulated, whereas the expression of FPN and FTH was downregulated both in ischaemia-reperfusion-induced cardiac tissues and HRinduced H9c2 cells. Interestingly, GX pre-treatment was able to antagonize ischaemia-reperfusion and HR-induced upregulation of HIF1a and downregulation of FPN and FTH. From these, we concluded that GX could regulate iron metabolism-associated factors to maintain the intracellular iron homeostasis both in vivo and in vitro.

Collectively, our study demonstrated that heart suffering ischaemia-reperfusion injury was exposed to iron accumulation and imbalance of oxidative and antioxidant systems, and GX could reduce oxidative stress levels and iron deposition by regulating iron metabolism-associated proteins, contributing to attenuation of MIRI. However, the specific mechanisms remain unclear. The accumulation of excess intracellular iron and redox efficacy of ferrous ions can trap cardiac cells into a vicious cycle of exacerbated ROS-induced impairment, contributing to membrane lipid peroxidation reaction along with MDA generation, which ultimately lead to ferroptosis (Li et al. 2021). Ferroptosis, characterized by iron-dependent accumulation of lipid hydroperoxides, is crucial for the pathogenic mechanism of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodelling (Zhao et al. 2021). Therefore, whether ferroptosis participates in the protective effect of GX on MIRI still needs further investigation.

Conclusions

Our research demonstrated that GX maintained iron homeostasis and reduced oxidative stress levels by regulating iron metabolism-associated proteins, eventually contributing to amelioration of MIRI. These findings provide new evidences that GX may act as a potential candidate for the treatment of MIRI.

Author contributions

Fuqiong Zhou: Conceptualization, Investigation, Writing-Original Draft, Data Curation. Zhengguang Zhang: Methodology, Validation, Data Curation, Writing-Original Draft. Meiyuan Wang: Methodology, Formal analysis. Weina Zhu: Methodology, Visualization. Jie Ruan: Software, Formal analysis. Hongyan Long: Resources, Project administration. Yajie Zhang: Investigation, Writing-Review & Editing, Supervision. Ning Gu: Conceptualization, Supervision, Writing-Review & Editing.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Youth Natural Science Foundation of Jiangsu Province [BK20210034], Outstanding Youth Fund Project of Nanjing Health Science and Technology Development [JQX21010], and Nanjing Traditional Chinese Medicine Youth Talent Training Program [NJSZYYQNRC-2020-ZFQ].

ORCID

Yajie Zhang D http://orcid.org/0000-0003-2510-6015

Data availability statement

The datasets generated and/or analysed during the current study are not publicly available since they are still under further study, but are available from the corresponding author on reasonable request.

References

- Abbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. J Res Med Sci. 19:164–174.
- Bugger H, Pfeil K. 2020. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 1866(7): 165768.
- Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA, Fontana M, Ramlall M, Hamarneh A, Sirker A, et al. 2016. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ Cardiovasc Imaging. 9(10): e004940.
- Cui Y, Wang Q, Chang R, Aboragah A, Loor JJ, Xu C. 2021. Network pharmacology-based analysis of *Pogostemon cablin* (Blanco) Benth beneficial effects to alleviate nonalcoholic fatty liver disease in mice. Front Pharmacol. 12:789430.
- D'Souza E. 2019. An overview and awareness of acute coronary syndrome based on risk factors, early clinical assessment tools, and improving clinical outcomes. J Dr Nurs Pract. 12(1):125–131.
- Deguchi H, Ikeda M, Ide T, Tadokoro T, Ikeda S, Okabe K, Ishikita A, Saku K, Matsushima S, Tsutsui H. 2020. Roxadustat markedly reduces myocardial ischemia reperfusion injury in mice. Circ J. 84(6):1028–1033.
- Domienik-Karłowicz J, Kupczyńska K, Michalski B, Kapłon-Cieślicka A, Darocha S, Dobrowolski P, Wybraniec M, Wańha W, Jaguszewski M. 2021. Fourth universal definition of myocardial infarction. Selected messages from the European Society of Cardiology document and lessons learned from the new guidelines on ST-segment elevation myocardial infarction and non-ST-segment elevation-acute coronary syndrome. Cardiol J. 28(2):195–201.
- Du T, Zhang Z. 2022. Discussion on correlation between autophagy and myocardial ischemia-reperfusion injury from the theory of qi, blood and fluid in Chinese medicine. China J Tradit Chin Med Pharm. 36: 7086–7088. Chinese.
- Duarte TL, Talbot NP, Drakesmith H. 2021. NRF2 and hypoxia-inducible factors: key players in the redox control of systemic iron homeostasis. Antioxid Redox Signal. 35(6):433–452.
- Dunn LL, Kong SMY, Tumanov S, Chen W, Cantley J, Ayer A, Maghzal GJ, Midwinter RG, Chan KH, Ng MKC, et al. 2021. Hmox1 (Heme oxygenase-1) protects against ischemia-mediated injury via stabilization of HIFlalpha (Hypoxia-inducible factor-1alpha). Arterioscler Thromb Vasc Biol. 41(1):317–330.
- Ge H, Lin W, Lou Z, Chen R, Shi H, Zhao Q, Lin Z. 2022. Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway. Microvasc Res. 140:104302.
- Hirota K. 2019. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic Biol Med. 133:118–129.
- Hirst J. 2013. Mitochondrial complex I. Annu Rev Biochem. 82:551-575.
- Huang W, Yang Y, Zeng Z, Su M, Gao Q, Zhu B. 2016. Effect of Salvia miltiorrhiza and ligustrazine injection on myocardial ischemia/reperfusion and hypoxia/reoxygenation injury. Mol Med Rep. 14(5):4537–4544.
- Ibanez B, Heusch G, Ovize M, Van de Werf F. 2015. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65(14): 1454–1471.
- Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Ikeda S, Okabe K, Ishikita A, Sato M, Abe K, Furusawa S, et al. 2021. Excessive hypoxia-inducible factor-1alpha expression induces cardiac rupture via p53-dependent apoptosis after myocardial infarction. J Am Heart Assoc. 10(17):e020895.

- Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA. 2005. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol. 46(11):2116–2124.
- Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. 2018. Pathological roles of iron in cardiovascular disease. Curr Drug Targets. 19(9):1068–1076.
- Lakhal-Littleton S. 2019. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med. 133:234–237.
- Lakhal-Littleton S, Wolna M, Carr CA, Miller JJ, Christian HC, Ball V, Santos A, Diaz R, Biggs D, Stillion R, et al. 2015. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci USA. 112(10):3164–3169.
- Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. 2021. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: from iron metabolism to ferroptosis. Front Cell Dev Biol. 9:799499.
- Li T, Tian H, Li J, Zuo A, Chen J, Xu D, Guo Y, Gao H. 2019. Overexpression of lncRNA Gm2691 attenuates apoptosis and inflammatory response after myocardial infarction through PI3K/Akt signaling pathway. IUBMB Life. 71(10):1561–1570.
- Liang B, Liang Y, Li R, Zhang H, Gu N. 2021. Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of Guanxin V in treating ventricular remodeling. Bioorg Chem. 115:105187.
- Liang B, Qu Y, Zhao QF, Gu N. 2020. Guanxin V for coronary artery disease: a retrospective study. Biomed Pharmacother. 128:110280.
- Liang B, Zhang XX, Li R, Gu N. 2022a. Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF-beta1 and Vimentin. Phytomedicine. 95:153866.
- Liang B, Zhang XX, Li R, Zhu YC, Tian XJ, Gu N. 2022b. Guanxin V alleviates acute myocardial infarction by restraining oxidative stress damage, apoptosis, and fibrosis through the TGF-beta1 signalling pathway. Phytomedicine. 100(154077):154077.
- Lin CF, Hsu KC, HuangFu WC, Lin TE, Huang HL, Pan SL. 2020. Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury. BMC Pharmacol Toxicol. 21(1):21.
- Lok CN, Ponka P. 1999. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 274(34):24147–24152.
- Ma H, Hao J, Liu H, Yin J, Qiang M, Liu M, He S, Zeng D, Liu X, Lian C, et al. 2022. Peoniflorin preconditioning protects against myocardial ischemia/reperfusion injury through inhibiting myocardial apoptosis: risk pathway involved. Appl Biochem Biotechnol. 194(3):1149–1165.
- Mahtta D, Sudhakar D, Koneru S, Silva GV, Alam M, Virani SS, Jneid H. 2020. Targeting inflammation after myocardial infarction. Curr Cardiol Rep. 22(10):110.
- Mukhopadhyay CK, Mazumder B, Fox PL. 2000. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 275(28):21048–21054.
- Nakamura T, Naguro I, Ichijo H. 2019. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj. 1863(9):1398–1409.
- Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, Mizote I, Oka T, Taneike M, Nakano Y, et al. 2009. Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol. 46(1):59–66.
- Paterek A, Mackiewicz U, Mączewski M. 2019. Iron and the heart: a paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol. 234(12):21613–21629.
- Qian ZM, Wu XM, Fan M, Yang L, Du F, Yung WH, Ke Y. 2011. Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol. 226(6): 1596–1603.
- Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. 2020. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 57:102884.
- Ravingerova T, Kindernay L, Bartekova M, Ferko M, Adameova A, Zohdi V, Bernatova I, Ferenczyova K, Lazou A. 2020. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int J Mol Sci. 21(21):7889.

- Romney SJ, Newman BS, Thacker C, Leibold EA. 2011. HIF-1 regulates iron homeostasis in *Caenorhabditis elegans* by activation and inhibition of genes involved in iron uptake and storage. PLoS Genet. 7(12):e1002394.
- Shan X, Lv ZY, Yin MJ, Chen J, Wang J, Wu QN. 2021. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021:8880141.
- Song M, Huang L, Zhao G, Song Y. 2013. Beneficial effects of a polysaccharide from *Salvia miltiorrhiza* on myocardial ischemia-reperfusion injury in rats. Carbohydr Polym. 98(2):1631–1636.
- Tang WH, Wu S, Wong TM, Chung SK, Chung SS. 2008. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med. 45(5):602–610.
- Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z. 2021. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones. 27(2):149–164.
- Vela D. 2020. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol (Oxf). 228(1):e13324.
- Wei R, Zhang R, Li H, Li H, Zhang S, Xie Y, Shen L, Chen F. 2018. MiR-29 targets PUMA to suppress oxygen and glucose deprivation/reperfusion (OGD/R)-induced cell death in hippocampal neurons. Curr Neurovasc Res. 15(1):47-54.
- Wei Y, Xu M, Ren Y, Lu G, Xu Y, Song Y, Ji H. 2016. The cardioprotection of dihydrotanshinone I against myocardial ischemia-reperfusion injury via inhibition of arachidonic acid omega-hydroxylase. Can J Physiol Pharmacol. 94(12):1267–1275.
- Wen J, Wang D, Cheng L, Wu D, Qiu L, Li M, Xie Y, Wu S, Jiang Y, Bai H, et al. 2021. The optimization conditions of establishing an H9c2 cardiomyocyte hypoxia/reoxygenation injury model based on an AnaeroPack System. Cell Biol Int. 45(4):757–765.,.
- Wu F, Ye B, Wu X, Lin X, Li Y, Wu Y, Tong L. 2020. Paeoniflorin on rat myocardial ischemia reperfusion injury of protection and mechanism research. Pharmacology. 105(5-6):281–288.
- Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al. 2021. Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021:6614009.
- Xie L, Pi X, Wang Z, He J, Willis MS, Patterson C. 2015. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol. 80:156–165.
- Yang W, Lai Q, Zhang L, Zhang Y, Zhang Y, Yu B, Li F, Kou J. 2021. Mechanisms dissection of the combination GRS derived from ShengMai preparations for the treatment of myocardial ischemia/reperfusion injury. J Ethnopharmacol. 264:113381.
- Yong C, Zhang Z, Huang G, Yang Y, Zhu Y, Qian L, Tian F, Liu L, Wu Q, Xu Z, et al. 2021. Exploring the critical components and therapeutic mechanisms of *Perilla frutescens* L. in the treatment of chronic kidney disease via network pharmacology. Front Pharmacol. 12:717744.
- Zeng H, Wang L, Zhang J, Pan T, Yu Y, Lu J, Zhou P, Yang H, Li P. 2021. Activated PKB/GSK-3beta synergizes with PKC-delta signaling in attenuating myocardial ischemia/reperfusion injury via potentiation of NRF2 activity: therapeutic efficacy of dihydrotanshinone-I. Acta Pharm Sin B. 11(1):71–88.
- Zhang Q, Shi J, Guo D, Wang Q, Yang X, Lu W, Sun X, He H, Li N, Wang Y, et al. 2020. Qishen Granule alleviates endoplasmic reticulum stressinduced myocardial apoptosis through IRE-1-CRYAB pathway in myocardial ischemia. J Ethnopharmacol. 252:112573.
- Zhang X, Shao C, Cheng S, Zhu Y, Liang B, Gu N. 2021. Effect of Guanxin V in animal model of acute myocardial infarction. BMC Complement Med Ther. 21(1):72.
- Zhang Z, Yan J, Chang Y, ShiDu Yan S, Shi H. 2011. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr Med Chem. 18(28): 4335–4343.
- Zhao WK, Zhou Y, Xu TT, Wu Q. 2021. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021:9929687.
- Zuo K, Ke F, Gu N. 2015. Effect and mechanism of Guanxin V mixture on ventricular remodeling after acute myocardial infarction. Chin J Exp Tradit Med Form. 21:147–150. Chinese.