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Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left
untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area
of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well
as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound

Hindawi
BioMed Research International
Volume 2022, Article ID 1659338, 43 pages
https://doi.org/10.1155/2022/1659338

https://orcid.org/0000-0002-3266-7649
https://orcid.org/0000-0002-3644-5162
https://orcid.org/0000-0001-8072-5172
https://orcid.org/0000-0002-1466-7186
https://orcid.org/0000-0002-3956-1898
https://orcid.org/0000-0001-6103-419X
https://orcid.org/0000-0003-1760-6618
https://orcid.org/0000-0001-6733-8311
https://orcid.org/0000-0002-7608-0081
https://orcid.org/0000-0002-1626-3513
https://orcid.org/0000-0002-3339-1816
https://orcid.org/0000-0003-1634-4206
https://orcid.org/0000-0001-5057-0421
https://orcid.org/0000-0001-9486-4069
https://orcid.org/0000-0002-3346-910X
https://orcid.org/0000-0001-5567-6663
https://orcid.org/0000-0001-7941-0229
https://orcid.org/0000-0002-7507-1159
https://orcid.org/0000-0001-5875-3003
https://orcid.org/0000-0002-4454-3408
https://orcid.org/0000-0003-3823-6572
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1659338


dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric
structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell
adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained
release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated
onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far
for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for
scaffold fabrication, and application of various polymer-based scaffolds for treating DW.

1. Introduction

Diabetic wound (DW) is one of the complications of dia-
betes that affects the quality of life of patients. Its cases are
continuously increasing at a rapid rate. The lack of glycae-
mic control, hypoxia, vasculopathy, immunopathy, and
damage to the cells due to the release of reactive oxygen
species (ROS) contribute towards DW [1, 2]. It affects
42.2 % of diabetics and imposes an economic burden on
the health sector that bears a cost of 3 billion dollars for
the treatment every year [3]. Moreover, in DW, sequences
of wound healing are compromised especially the inflam-
matory phase. The delay in wound healing is due to the
inability of platelets, macrophage growth factors (GFs),
cytokines, and chemokines to act normally upon the cellu-
lar receptors. This leads to abruption in signalling cas-
cades, which in turn results in impairment of
angiogenesis, collagen synthesis, collagen proliferation, dif-
ferentiation, and migration and impedes the wound heal-
ing cycle. This can further lead to amputation or death
of the patient. The global prevalence rate of amputation
due to DW is 7-20% [4, 5].

It has been observed that the wound of patients suffering
from DW looks like an ulcer, especially on the feet and lower
extremities. The presence of exudate and bacterial load at the
wound site makes the management of DW more compli-
cated and further leads to infection. To combat with this
complication an appropriate treatment strategy is required.
Till date, various wound dressings have been explored
which, include gauze, foams, films, hydrocolloids, iodine
dressings, silver dressings, polysaccharide dressings, natural
polymer, and synthetic polymer-based dressing. However,
these treatment strategies are unable to provide adequate
patient compliance and are associated with various limita-
tions. In recent years, scaffolds have gained attention as
new dressing and provide new dimension in the field of tis-
sue rejuvenation.

Scaffolds are three-dimensional polymeric structures
formed from polymers that help in tissue rejuvenation.
Moreover, scaffolds are versatile in use, offer controlled size,
tunable physicochemical properties, and offer a large surface
area to volume ratio to allow cell adhesion and exudate
absorbing capacity, antibacterial properties, and encapsula-
tion of drug for the desired period [6]. Their ability to encap-
sulate drugs for desired period helps in achieving their
controlled release. This release controlling property is nei-
ther provided by any of the dressings mentioned above nor
by existing novel drug delivery systems (e.g., liposomes,
nanostructured lipid carriers (NLCs), nanoparticles (NPs),
and dendrimers) used for topical application. Looking at

their enormous benefits, an attempt has been made to
explore and summarize various scaffolds to treat DW [7].

The present review provides a comprehensive overview
of global prevalence of diabetic wound, their etiopathogen-
esis, various conventional and smart dressings, and advan-
tages of scaffolds over other delivery system, role of
scaffolds as a topical drug delivery, their application in treat-
ing diabetic wound, modifications in the scaffolds for the
management of DW and market as well as clinical status
of scaffolds.

2. Pathogenesis of DW

In patients having long history of uncontrolled DM, the high
blood glucose level results in vasculopathy, immunopathy,
and neuropathy. These further caused by alteration in the
normal wound healing pathways. The pathways which are
affected in DW are aldose reductase sorbitol dehydrogenase
hexosamine pathway and nitric oxide synthase pathway. The
alteration in aldose reductase sorbitol dehydrogenase path-
way results in increase in sorbitol and fructose. This further
leads to decrease in the level of myoinositol that further
results in generation of neuropathy. Due to this, cell chemo-
taxis, GF production, and cell proliferation decrease, which
impedes the wound healing process. Higher blood sugar also
activates hexosamine pathway, which leads to decrease in
levels of glucose-6-phosphatase dehydrogenase and nicotin-
amide adenine dinucleotide phosphate (NADPH). These
cause decrease in levels of myoinositol and nitric oxide and
lead to generation of ROS. Thus, the wound healing process
gets delayed due to oxidative stress. The inhibition of nitric
oxide synthase enzymes results in decrease in the level of
nitric oxide that leads to oxidative stress. The overall patho-
genesis causes decrease in angiogenesis [8], platelet function,
and increase in inflammation as well as vasoconstriction at
the site of wound and impedes the normal wound healing
process [9–11].

Besides these, during hyperglycemia, the levels of
miRNA-146a and miR-132 get decreased, whereas the level
of miR-155 gets overexpressed. The suppression of
miRNA-146a increases the proinflammatory mediators such
as interleukin-1 receptor- (IL-1R-) associated kinase
(IRAK1) and tumour necrosis factor (TNF) receptor-
associated factor 6 (TRAF6). These extend the inflammatory
phase and impede the wound healing process [12]. The
reduction in the level of miR-132 expression also delays
the wound healing process by increasing the levels of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
κΒ), nucleotide-binding oligomerization domain- (NOD-)
like receptor, Toll-like receptors (TLR), and TNF signalling
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pathway. The increase in levels of these proteins results in a
prolonged inflammatory phase by releasing various inflam-
matory mediators from macrophages and monocytes and
delays the wound healing process. Furthermore, miR-132
also targets the heparin-binding EGF-like GF (Hb-EGF)
and facilitates the transition from the inflammatory phase
to the proliferative phase [13]. On the other side, the overex-
pression of miR-155 leads to an increase in myeloperoxidase
peroxidase- (MPO-) positive cells and decrease angiogenic
markers suggestive of ECM build-ups such as TGF-β1, col-
lagen 1, and alpha-smooth muscle actin (α-SMA) [13].
Overall, these cause the generation of DW. In another study,
it was found that an increase in levels of miR-191 and miR-
200b was positively associated with higher levels of
inflammation-associated markers such as C-reactive protein
(CRP) which results in reduced tube formation capacity,
migration, and zona occludens-1 expression in human der-
mal endothelial cell and impede wound healing process
[14]. The increase in levels of miR-26a also influences the
DW healing process by targeting small mothers against
decapentaplegic-1 (SMAD-1) and impairs wound edge
angiogenesis and granulation tissue thickness. The other
nucleic acids implicated in DW healing are miR-15b, miR-
200, and miR-205–5p. The increase in levels of these nucleic
acids results in the deactivation of vaso-endothelial growth
factor (VEGF) pathways and impairs the wound healing
process [15].

Activation of VEGF-AKT/enNOS (protein kinase B/
nitric oxide synthase) pathway involves in the angiogenesis
and helps in wound healing. But at the same time during
injury, the level of miR-615-5p gets increased which acts as
negative regulator of the angiogenesis and wound healing
by inhibiting the activation of VEGF-AKT/enNOS with the
help of other genes (IGF2 and RASSF2). Hence, by neutral-
izing the miR-615-5p, the process of angiogenesis and
wound healing can be promoted [8].

The hyperglycemia further results in idiopathic compli-
cations, viz., neuropathy, immunopathy, and vasculopathy.
Neuropathy is a common complication of different medical
conditions. It affects autonomic nerves, motor nerves, and
sensory nerves. In motor neuropathy, weakness and wasting
of intrinsic foot muscles take place that finally leads to ulcer-
ation. In sensory neuropathy, loss of pain occurs, leading to
unnoticed trauma, which in turn gives rise to ulcer forma-
tion. In autonomic neuropathy, sweating is decreased due
to which skin becomes dry and brittle. This leads to second-
ary infection and finally causes ulceration. Vasculopathy is a
general term used to describe any disease affecting blood
vessels. It is of two types, microangiopathy and macroangio-
pathy. Macroangiopathy occurs due to the deposition of
blood clots and fats in the blood vessels. Obstruction in the
blood flow leads to tissue necrosis and finally, ulceration
takes place. In the case of microangiopathy, more glycopro-
teins are formed on the surface of the basement membrane
due to which vessel walls grow abnormally thicker and
weaker leading to disruption of vessels. It causes the leakage
of blood and proteins and also slows down the flow of blood
to different parts of the body. This is another cause of ulcer
formation. In immunopathy, polymorpho-nuclear leukocyte

migration, phagocytosis, chemotaxis, and intracellular kill-
ing rate get decreased. Decreased chemotaxis of GFs and
cytokines, coupled with an excess of metalloproteinases,
impedes normal wound healing by creating a prolonged
inflammatory state [16–19]. The pictorial representation of
pathogenesis of DW is shown in Figure 1.

3. Current Wound Dressings for DW

The various wound dressings which have been explored to
treat DW include gauze, foams, films, hydrocolloids, iodine
dressings, silver dressings, polysaccharide dressings, and
natural polymer- and synthetic polymer-based dressing.
The alternatives of these dressings are smart dressings which
are discussed below.

Gauze-based dressings require continuous replacement,
and upon removal, particulates remain at the wound bed
that reinjure the wounds. Furthermore, the mechanical
removal of gauze-based dressings from the wound bed elim-
inates healthy as well as unhealthy tissues; thus, it is not con-
sidered as the safest dressing [20, 21]. Moreover, foam-based
dressings and adherent contact layer-based dressings need
secondary dressing because they can dry after a shorter
period and are not appropriate for dry wounds. Addition-
ally, these dressings are less stable, having an unpleasant
odour as well as cause pain during their removal. Further-
more, these impart easy invasion of bacteria and infection
at the wound site [22–24]. Film-based dressings overcome
the limitations of foam-based dressings such as odour, sta-
bility, and infections. However, these are not appropriate
for wounds with high exudate and neuropathic ulcers. Sim-
ilarly, hydrocolloid-based dressings are ineffective against
high exudate, need continuous changing, offer pain, macer-
ate the wound, and not safe for dry wounds [25].

Natural polymer-based dressings include alginate, chito-
san, collagen, and cellulose. Alginate-based dressings are
much better than hydrocolloid dressing due to pain control-
ling ability, ease to use, and exudate absorbing capacity [26].
The limitation associated with these types of dressings are
associated high cost and maceration of wound [27].
Iodine-based dressings are toxic for keratinocytes and fibro-
blasts. Additionally, they can impart discolouration of the
wound. Silver-based dressings are widely accepted in wound
healing due to their antimicrobial actions. Moreover, in one
of the studies, it has been found that silver-based dressing
provided 100% granulation tissue formation at the wound
site as compared to iodine-based dressing. This indicated
the advantage of silver dressing over the iodine-based dress-
ing [28]. The main disadvantage associated with silver-based
dressings is staining of silver to the wound. Hence, it is not
widely used in DW treatment. Natural polymer-based
dressings are much effective than the aforementioned
dressings. Firstly, cellulose dressings are cost-effective,
release GFs to provide a proliferation of fibroblasts at the
wound site, and provide a moist environment to the
wounds. The limitation of this type of dressing is lack of
antimicrobial activity and overabsorbed by the excess exu-
date present at the wound bed [29].
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Chitosan dressings are much effective than cellulose
dressings due to their antimicrobial and hemostatic proper-
ties. The limitation associated with these dressings is exten-
sive swelling in water and the inability to dissolve in the
organic solvents due to their rigid crystalline structure [30].
Collagen and gelatin combination-based dressings promote
angiogenesis and granulation at the site of injury. Moreover,
they can exhibit anti-inflammatory as well as antimicrobial
properties. Hyaluronic acid-based dressings provide lubrica-
tion and water absorptive properties. Furthermore, they can
help in collagen deposition, epithelial migration, and angio-
genesis at the wound site. In one of the studies, it has been
found that only low molecular weight hyaluronic acid helps
in tissue rejuvenation, whereas high molecular weight hyal-
uronic acid inhibits angiogenesis as well as restricts the sup-
ply of nutrients to the tissues which impede the wound
healing process [31].

The synthetic dressings used for wound healing include
poly (lactide-co-glycolide), polyurethanes, and polyethene
glycols. Synthetic polymer dressings are much considerable
than natural polymer dressing due to their consistency,
reproducible physical as well as chemical composition. Poly
(lactide-co-glycolide)-based dressings are approved by the
Food and Drug Administration (FDA) for suture as well as
drug delivery applications. The variation in lactide to glyco-
lide results in the release of GFs that stimulates wound heal-
ing. Furthermore, they are cytocompatible and promote
fibroblasts proliferation, spreading, and adhesion. The limi-
tation associated with this dressing is the need for external
antimicrobial agents, and its properties do not match with
extracellular matrix and collagen [31]. Polyurethane dress-
ings consist of a semipermeable membrane that restricts
the entry of pathogens towards the wound site as well as pro-
vides a moist environment and drainage properties to the
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wound that helps in reducing swelling. The drawback of this
type of dressing is requirement of additional composite
dressings in order to provide contact layer and waterproof
properties [29]. In contrast, poly (ethylene glycol) dressings
are flexible, biocompatible, and hydrophilic in nature. Addi-
tionally, they provide better grip in the contact layer and
have higher affinity for GFs. However, their major limitation
includes damage of granulation tissues due to the adhesive
used in the dressings. Polycaprolactone-based dressings are
having structure similar to the extracellular matrix architec-
ture. These absorb the exudate and provide controlled
release and slow degradation. The drawback of this type of
dressings is absence of antimicrobial properties [29–32].

These types of traditional dressings can protect the
wounds from the external environment but do not respond
to the wound healing process well. The advanced forms of
these dressings are smart wound dressings that can help in
tissue rejuvenation by showing interaction with the wound,
where they can sense and react with the wound environment
and promote wound healing. The presence of smart mate-
rials such as stimuli-responsive materials and self-healing
materials and in-built sensors makes them as an ideal tool
in the management of wounds. The various smart dressings
used till now to manage wounds include self-healing wound
dressing, stimuli-responsive wound dressing, biomechanical
wound dressing, monitoring wound dressing, and self-
removable wound dressing.

Self-healing wound dressing is generally used for
motional wounds where the chances of mechanical stress
are very much which leads to split of dressings from the
wound site. Researchers have developed self-healing wound
dressings which have the ability to tolerate the mechanical
stress and intact the wound dressings at the wound site for
a prolonged period of time. For instance, in one of the study,
researchers developed a self-healing hydrogel of curcumin-
quaternized chitosan crosslinked benzaldehyde-terminated
Pluronic F127. This type of wound dressing was suitable
for motional injuries due to their stretchability and adhesive
nature. Moreover, these dressings were not split from the
elbow site at 120°C. In addition, these dressings were biode-
gradable and did not require changing during the service
period. In another study, Li et al. prepared a self-
conductive hydrogel dressing of cationic guar slime (GS)
and poly (3, 4-ethylenedioxythiophene) : poly (styrene sulfo-
nate) (PEDOT : PSS) for motional wounds. This type of
wound dressing was applied to the neck of the rats where
lots of tension, twist, and stress occur within a minute. The
results showed that this type of wound dressing bear stretch-
ing upto 200% and promotes deposition of collagen and
granulation of tissue at the site of injury. Till date, many
self-healing dressings are developed but are not available
for the management of motional wounds. In addition to
the self-healing ability and good adhesive capacity of self-
dressings, researchers should emphasize on mechanical
properties of dressings to overcome stress associated with
motional wounds.

The removal of dressings from the wound site offers
extreme pain and reinjury at the wound upon its removal.
To overcome these challenges, self-removal dressings have

been developed. Numerous strategies have been used by
the researchers to develop these dressings. The first one is
the use of thermosensitive polymer that becomes liquid at
a particular temperature and offers ease of removal of dress-
ing. For instance, Wagner and coworker used polyisocyano-
peptide (PIC) as thermosensitive polymer for the
development of self-removal dressings. The polymer used
in this dressing becomes liquid below 16°C and underwent
gelation into hydrogel at room temperature. Despite being
effective, these dressings require a particular temperature
for easy removal of dressings from wound area. Therefore,
this is considered a major drawback of thermosensitive
polymer-based self-dressings and also cannot be used under
cold conditions. To address these challenges, self-removal
dressing was prepared by using PEG-thiols and oxidized
dextran which results in the formation of a hydrogel. To
break bonds present in between, this hydrogel glutathione
or cysteine can be added which results in easy removal of
dressing from the wound site. The other approach used by
the researchers for designing self-removal dressings is
light-triggered dissolution. In this approach, Wu et al. pre-
pared a UV-triggered on-demand dissolution self-healing
wound dressing by using glycol chitosan (GC) and polyeth-
ylene glycol (PEG)-4-(3-(1-(Nhydroxysuccinimidyl carbonic
ester)ethyl)-4-nitrophenoxy) butanoate (PNN). The cross-
linking between GC and PNN was due to reaction between
the amino group present in the glycol chitosan and the N-
hydroxysuccinimidyl carbonate in PNN. PNN is photoclea-
vable because of its ortho-Nitrobenzyl (o-NB) groups, which
are sensitive to UV light. Since light is a noninvasive stimu-
lus, this wound dressing can be removed from the wound
site in a noninvasive manner [33].

Wound healing is a normal physiological and biological
process that involves a series of physical as well as chemical
changes at the site of injury. During injury, there are numer-
ous factors such as temperature, pH of the wound site, glu-
cose level, and oxygen level which play a key role in
wound healing. Looking at these factors, researchers devel-
oped stimuli-responsive wound dressings that can respond
to these changes and can effectively manage the wound. A
summary of the stimuli-responsive wound dressings, their
advantages, and limitations can be found in Table 1.

4. Role of Scaffolds in Topical Delivery of Drug

Topical route is the most preferred route to target drugs at
the wound site. However, this route also faces some chal-
lenges in delivering drugs due to the enzymes present in epi-
dermal layer of skin and other layers of skin that
impediment permeation of drugs across them. This becomes
more cumbersome if they are unable to cross these barriers.
To overcome these challenges, various novel drug delivery
systems have been formulated such as NLCs, solid lipid
nanocarriers (SLNs), NPs, micelles, and liNot Availablepo-
somes etc. They have been reported to enhance the perme-
ability of drug across the skin via transcellular route,
paracellular route, and endocytosis owing to their nanome-
ter size and elasticity. Thus, they provide target specificity
and release the drug at the wound site. In transcellular route,
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drug directly passes from the lipid layers, whereas in paracel-
lular route, drug reaches at the target site by passing through
the tight junctions present in the skin that is usually not
observed with drugs present in conventional formulations.
In endocytosis, drugs reach the wound site by entering
through the pores present on skin [35, 36]. The aforemen-
tioned nanocarriers have been successfully utilized in treat-
ing DW; however, they retent at the wound site for small
time. The challenges related to poor retention of drugs by
the aforementioned nanocarriers can be overcome by load-
ing/implementing them into dressings/scaffolds [36]. This
further improves their drug delivery efficacy. Scaffolds are
biodegradable in nature and upon their application at the
wound site, they start degrading and releasing the drug in
a time-dependent manner from the nanocarriers. Thus, they
provide high retainability of drug at the wound site and tar-
get the pathways that are responsible for impeding wound
healing process [37]. In addition, they help in tissue regener-
ation that helps in faster wound healing. In recent years,
there are many studies that have been loaded into the dress-
ings/scaffolds for effective treatment of DW. Some of the lat-
est studies on nanocarriers implemented in dressings/
scaffolds are mentioned in Table 2.

The advantages of nanoformulation-loaded scaffolds
over conventional formulation and nanocarrier nonloaded
in scaffolds are shown in Figure 2.

5. Materials Used in Scaffold Fabrication

The materials used in scaffold fabrication are derived from
natural sources such as plants and animals as well as manu-
factured synthetically. These biomaterials must be biode-
gradable, biocompatible, and free from antigenicity and
inflammatory response after implantation. Various natural/
synthetic polymers (Table 3) that are used to fabricate scaf-
folds are discussed in the following sections.

5.1. Natural Polymers. The source of natural polymers are
plants and animals. They are more biocompatible than syn-
thetic counterparts due to the presence of tripeptide
arginine-glycine-aspartate (RGD) sequences. These
sequences help in cell attachment and acts as a receptor for
cell adhesion molecules. Natural polymers are also extracted

from tissues and utilized as a seminatural matrices by sepa-
rating cellular materials from them, e.g., decellularized
umbilical cords. The extraction of natural polymer is a
tedious process and having higher cost as compared to syn-
thetic polymers [69]. Various natural polymers used in scaf-
fold fabrication are discussed in the subsequent sections.

5.1.1. Polysaccharides. Polysaccharides are major class of
biomolecules with long chain carbohydrate subunits. They
are formed by combination of several monosaccharides. They
are mostly used as starting materials for the preparation of tis-
sue scaffolds. The unique feature of polysaccharide-based scaf-
folds is to form thermoreversible elastic hydrogel and having
lowmodulus that helps in soft tissue rejuvenation such as skin.
Some of the polysaccharides used in tailoring scaffolds include
alginate, chitosan, cellulose, iota-carrageenan, konjac gum,
xanthan gum, and kappa carrageenan. Besides these, other
polymers used to fabricate scaffolds are pullulan, starch, dex-
tran, and cellulose. Among these polysaccharides [70], chito-
san [71], alginate [72, 73], konjac gum [74, 75], cellulose
[76–78], Ganoderma lucidum [74, 75], and β-glucan [79–81]
based scaffolds have been utilized for DW. These have been
discussed in the subsequent sections.

The biological sources of alginates are brown seaweeds.
These are anionic in nature and consist of copolymers of
D-mannuronic acid (M monomer) and L-guluronic acid
(G monomer). Alginates are gaining remarkable attention
in tissue engineering due to their less toxicity, biocompatibil-
ity, relatively less cost, and ease of gelation. Furthermore,
alginate-based biomaterials are not only used in the drug
delivery system but also used as cell carrier. Additionally,
alginates are also utilized as a good therapeutic agent in
wound healing due to their anti-inflammatory, analgesic
action, and structural similarity with extracellular matrix
(ECM) [82].

Chitosan is a cationic linear polysaccharide with high
molecular weight. Commercially, it is manufactured by dea-
cytelyation of polyacetylglucosamine found in walls of fungi,
shrimps, and other crustacean shells. It mainly consists of D-
glucosamine and N-acetyl-D-glucosamine. Chitosan is
widely accepted as biomaterial for fabricating scaffolds due
to its biodegradability, antibacterial effect, nontoxicity, and
biocompatibility that arise due to the presence of primary

Table 1: Advantages and disadvantages of stimuli-responsive wound dressings.

Stimuli Advantages Disadvantages References

Temperature
(i) Antibacterial action
(ii) Quick response to temperature change

(i) Dressings should be intact with the wound

[34]

pH
(i) Ease of fabrication
(ii) Simple composition

(i) High pH is required for drug release

Glucose
(i) Control blood glucose level and heal the
wounds

(i) Release speed of insulin cannot be well
controlled

Reactive oxygen species
(ROS)

(i) Easy to apply
(ii) Simple composition
(iii) Regulate inflammatory process

(i) Enter the systemic circulation

Near-infrared light (NIR)
(i) Improve microcirculation
(ii) Promote angiogenesis

(i) Temperature increase needs to be controlled
carefully
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amines in them [83]. Furthermore, it helps in stimulation of
haemostasis and accelerates wound healing [84, 85]. In addi-
tion, chitosan has also structural resemblance with glycos-
aminoglycans that helps in formation of ECM. ECM helps
in the migration of keratinocytes and promotes collagen
deposition at the wound site that helps in wound healing.
Moreover, the unique biological properties of a chitosan-
based hydrogel enable it to serve as both a wound dressing
and as a drug delivery system (DDS) to deliver antibacterial
agents, GFs and stem cells which could further accelerate
wound healing [86].

Konjac gum is a reserve polysaccharide present in the
cell-wall of Amorphophallus konjac. It is a linear chain car-
bohydrate polymer consisting of 1,4-β-linked D-mannosyl
and D-glucosyl residues. It exhibits intrinsic biological activ-
ities and excellent thickening and water binding properties
[87]. It is used in the fabrication of scaffolds due to its bio-
compatibility, nonimmunogenicity, and nontoxicity. In
addition, konjac gum is used in tissue engineering because
of its structural similarity with ECM and provides moist
environment at the site of injury. Moreover, konjac gum also
helps in fibroblasts proliferation and attachment, migration

of keratinocyte, and collagen expression at the site of injury
and accelerates the wound healing process [88].

Cellulose is a natural complex carbohydrate found in
plants and algae. It mainly consists of D-glucose units linked
by β (1→4) linkage. It is gaining remarkable attention as a
biomaterial because of its flexibility, functionality, biode-
gradibility, and biocompatibility. Moreover, it exhibits tun-
able physico-chemical features such as porosity [89]. It is
used in tissue engineering due to its thermo-gelling ability,
high-water retention capacity, anti-inflammatory action,
high surface area to volume ratio, angiogenesis, collagen
deposition, and epithelization that accelerates the wound
healing process [90].

Ganoderma lucidum is a medicinal fungus belonging to
family Ganodermataceae. It has many therapeutic benefits
due to which it is known as “mushroom of immortality.” It
is a pyranoid glucan with beta-glycosidic bond. It is used
as a tissue rejuvenator due to its antimicrobial, immuno-
modulator, and antioxidant effects. Moreover, it is used in
DW healing by extracting various phytoconstituents from
it such as total polysaccharides (25.1%), ganoderic acid A
(0.45%), and adenosine (0.069%). These phytoconstituents

Table 2: Studies on nanocarriers implemented in dressings/scaffolds.

Drug Nanocarrier
Animal
model

Results Ref

Scaffolds

Simvastatin NLCs
Albino
Wistar
rats

Exhibited 1.2-folds and 2.7-folds decrease in wound area as compared
to placebo scaffolds and free simvastatin-treated groups

[38]

GF
Polylactic

glycolide acid
NPs

db/db
mice

Exhibited 1.05-folds, 1.53-folds, and 1.48-folds increase in wound
contraction as compared to PLGA-NPs, control, and VEGF alone-

treated groups, respectively
[39]

Silver NPs Rabbits
Accelerated wound healing by promoting antibacterial action, collagen

deposition, and fibroblast migration at the site of injury
[40,
41]

Konjac glucomannan, keratin
and Avena sativa extract

Hydrogel
Wistar
rats

Hydrogel scaffolds showed 2.08-folds increase in antioxidant activity as
compared to diabetic control group

[42]

Glucophage NPs SD rats
Exhibited about decreases in wound area by 3.5-folds within 14 days in

comparison to gauze sponge treated groups
[43]

Psyllium seed husk
polysaccharide, keratin, and
1% morin

Hydrogel
Wistar
diabetic

rat

Exhibited 2.4-folds, 1.07-folds, and 2.15-folds increase in wound
closure as compared to diabetic control, PSH, KER, and 0.5% MOR
coloaded scaffolds and combination of PSH and KER scaffold-treated

groups, respectively

[44]

Dressings

Chemokine
Gelatin
hydrogel

ICR mice
Exhibited 1.8-folds faster wound contraction as compared to gelatin

hydrogel alone
[45]

Polyvinyl alcohol Hydrogel
db/db
mice

Accelerated DW healing in 16 days by promoting angiogenesis,
granulation tissue formation, and releasing nitric oxide at the site of

injury
[46]

Polymerized ionic liquids Hydrogel
Male

Kunming
mice

Promoted DW healing in 14 days by showing migration and
proliferation of fibroblast cells at the site of injury

[47]

Fibroblast GF Hydrogel SD rats
Accelerated DW healing by showing increase in Ki67 expression,

neovascularization, and epithelialization at the site of injury
[48]

Combined reactive oxygen
species

Cerium oxide
NPs

SD rats
Showed DW healing in 14 days by promoting angiogenesis, collagen

deposition, and neovascularization at the site of injury
[49]

7BioMed Research International



play a vital role in DW healing by decreasing oxidative
stress, increase collagen deposition, immunomodulation,
and reepithelization at the site of injury [91, 92].

Various case studies where polysaccharides have been
utilized to fabricate scaffolds are discussed below. These
scaffolds have been utilized to deliver drugs, drug loaded in
nanocarriers as such as NPs, hydrogel, and NLCs.

Activity of chitosan-collagen-based scaffolds loaded with
thymosin β-4 (CCSS-eTβ4 scaffolds) was checked against
DW in streptozotocin- (STZ-) induced diabetic rats and
were compared with CCSS loaded with infiltrate Tβ4 scaf-
folds (CCSS-iTβ4 scaffolds). The prepared scaffolds were
also tested for in vitro drug release study in order to evaluate
the sustained release profile. The results of vitro drug release
study revealed that CCSS-eTβ4 scaffolds exhibited initial
rapid release of Tβ4 (67.7%) within 4 days followed by a lin-
ear and steady release of Tβ4 (92.6%) in 12 days indicating
better accumulation release of Tβ4, whereas about 45%
release of Tβ4 in first 4 days and 85.3% at the end of the
12th day. The authors reported controlled release of Tβ4
from CCSS-eTβ4 scaffolds was achieved due to drug diffu-
sion and interaction between the peptide and scaffolds. In
addition, topical application of prepared CCSS-eTβ4 scaf-

folds showed 1.2-folds and 10-folds decrease in wound area
and IL-6 levels as compared to CCSS-eTβ4 alone-treated
group [93].

Intini et al. studied the effect of 3D chitosan-based scaf-
folds against DW in STZ-induced female Wistar diabetic
rats. The study was conducted for 14 days and results of
wound closure were noted. Further, the results were com-
pared with diabetic control and commercial dressings (car-
boxymethyl cellulose-based dressings). It was found that
3D chitosan-based scaffolds showed 1.1-folds and 2.6-folds
decrease in wound area as compared to diabetic control
and commercial product [94].

Simvastatin- (SV-) mesenchymal stem cell (MSC) NLCs
in the form of scaffolds were evaluated against male albino
Wistar diabetic rats. SV-MSC NLCs showed 55% burst
release of SV within a period of 1 hour, and this value of
SV release reached to 61.4% at the plateau level. The incor-
poration of SV-MSC NLCs into the scaffold delayed the ini-
tial burst release of SV on 24h as compared to SV NLCs and
maintained a more controlled drug release profile for 24 h by
increasing the plateau level. Moreover, topical application of
SV NLC-based scaffolds exhibited 3.1-folds, 1.19-folds, 2.5-
folds, 1.02-folds, and 1.97-folds decrease in wound area as

Conventional 
formulations

• Poor permeation
• Poor drug retention
• Enzymatic degradation

Poor efficacy

Nanoformulation

• High permeation
• Protection of drug from enzymatic
degradation as drug is present in the 
cavity of nanocarrier
• Poor drug retention

Good efficacy but 
unable to provide 
longer duration of 
action

Nanoformulation
incorporated in scaffolds

• High permeation
• Protection of drug from enzymatic
degradation as drug is present in the 
cavity of nanocarrier
• High drug retention

Excellent 
therapeutic efficacy 
with longer 
duration of action

Figure 2: The limitations of conventional therapy in wound healing and advantages of nanoformulation-loaded scaffolds over conventional
formulation as well as nanoformulation without scaffolds.
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compared to diabetic control, placebo NLC scaffolds, free SV
scaffolds, SV NLC scaffolds, and MSC scaffold-treated
groups, respectively [71].

Alginate-based scaffolds have been also used successfully
in treating DW. For instance, Karri et al. studied the in vitro
drug release profile of alginate-collagen impregnated curcu-
min (ACIC) scaffolds and curcumin chitosan NPs
(CCSNPs) in phosphate buffer saline pH 7.4. In addition,
the wound healing potential of ACIC scaffolds and CCSNPs
were investigated against diabetic rats having wound. In
vitro drug release study demonstrated that in 3 h, CCSNPs
showed a curcumin release of 21:71 ± 2:90%, whereas ACIC
scaffolds exhibited curcumin release of 8:2 ± 3:43%. After
72 h 81:06 ± 3:32% of curcumin was released from CCSNPs
while 56:24 ± 4:05% of curcumin was released from ACIC
scaffolds. This indicated that ACIC scaffolds showed better
sustained release of curcumin as compared to CCSNPs. In
vivo wound healing study exhibited about 2.1-folds and
1.5-folds increase in wound contraction as compared to con-
trol (sterile gauze) and placebo scaffold-treated groups [95].

When the potential of graphene oxide-sodium alginate-
polyhydroxy butyrate-scaffolds loaded with curcumin and
Gymnema sylvestre (GS) (GO-PHB-SA-CUR&GS) was stud-
ied against DW in diabetic patients, it was found that topical
application of GO-PHB-SA-CUR&GS scaffolds accelerated
DW healing within 14 days by promoting collagen deposi-
tion, cell migration, and proliferation. In addition, GO-
PHB-SA-CUR&GS scaffold-treated groups exhibited 1.18-
folds, 1.01-folds, and 1.02-folds increase in cell viability as
compared to diabetic control, GO-PHB-SA, and PHB-SA-
treated groups. This indicated that GO-PHB-SA-CUR and
GS-based scaffolds are cytocompatible, safe for topical use,
and showed excellent effect against DW [96].

One of the studies on the effect of cellulose acetate-
gelatin-based nanofibrous dressings loaded with berberine
against DW in STZ-induced male Wistar diabetic rats was
evaluated. The results indicated that the topical application
of cellulose acetate-gelatin-based nanofibrous dressings
loaded with berberine exhibited 1.23-folds and 3.01-folds
increase in collagen density as compared to cellulose
acetate-gelatin alone and negative control groups. In addi-
tion, cellulose acetate-gelatin-based nanofibrous dressings
loaded with berberine-treated groups exhibited 2.12-folds
and 1.63-folds increase in angiogenesis as compared to neg-
ative control and cellulose acetate-gelatin alone-treated
groups [78]. Some of the studies wherein polysaccharide-
based scaffolds have been utilized to treat DW are enlisted
in Table 4.

5.1.2. Proteins. Proteins are large complex molecules formed
by the combination of several hundred to thousand units of
amino acids. They are obtained from animals, plants, and
marine source. They are essential for maintaining the struc-
ture, functions, and regulation of tissues and organs. More-
over, proteins are used in scaffold fabrication due to their
biodegradation, bioabsorption, and biocompatibility [113].
In addition, the primary components of fibrous proteins
are collagen, keratin, fibronectin, vitronectin, and elastin.
These components help in the cell proliferation, migration,

and provide cell to cell and cell to matrix interaction that
helps in healing the wound. Various proteins that have been
used to fabricate scaffolds for DW include collagen, hyal-
uronic acid, and fibrinogen. These are discussed below [114].

Collagen is abundantly found in bone, tendon, and liga-
ments. It is considered as a biological macromolecule that
helps in the formation of highly organized 3D architecture.
It can accommodate any component due to its network like
structure, hence, utilized in tissue engineering. Other fea-
tures such as mesh-like structure, spongy nature, porosity,
and surface adsorption properties make them unique carrier
for fabricating scaffolds. The porous nature of collagen
allows transport of oxygen at the site of injury, and
sponge-based structure is helpful in absorbing exudates of
wounds which are responsible for bacterial growth. The
mesh-like network present in collagen causes sustained
release of drugs for a prolonged period of time. Furthermore,
collagen has biological resemblance with the native collagen
which is already present in our body. So, it can act as a cell-
based scaffold for tissue rejuvenation applications. In addi-
tion to this, when collagen sponge is loaded with therapeutic
substances such as GFs and cytokines, then they accelerate
fibroblast formation, allow proliferation of keratinocytes,
and accelerate wound healing process [115].

Fibrinogen is a glycoprotein complex formed in the liver.
It consists of three pairs of polypeptide chains named as Aα,
Bβ, and γ, with molecular masses of 66.2, 54.5, and 48.4 kDa,
respectively. It is found in the blood and plays a crucial role
in platelets aggregation and blood clotting. It is used in scaf-
fold fabrication because it provides excellent surface for cell
proliferation and cell attachment. Moreover, it has high
affinity for GFs such as VEGF and fibroblast growth factor
(FGF) which are essential for wound healing. In addition,
it has nanometric fibrous structure and mimick ECM that
helps in stabilization of wound and allows support of local
cell migration [116, 117]. Furthermore, it also helps in
angiogenesis and repairs the wounds [118].

Hyaluronic acid (HA) is a negatively charged disaccha-
ride polymer that consists of repeating units of N-
acetylglucosamine and D-glucuronic acid. HA is most pre-
ferred biomaterial for scaffolds manufacturing due to its
massive potential in wound healing. It helps in maintaining
haemostasis by binding to the fibrinogen and commence
blood clotting pathway [119]. Moreover, it also helps in
inflammatory cell migration as well as promotes cell infiltra-
tion by creating oedema. Furthermore, it dampens inflam-
matory response by inhibiting migration of neutrophils
towards wound site. In addition, it allows migration of fibro-
blasts at the site of injury and also fills the gaps of the lately
formed ECM by providing cushioning and structural organi-
zation. Moreover, it helps in angiogenesis by stimulating
matrix metalloproteinase and allows migration or prolifera-
tion of keratinocytes which help in wound healing. It also
contributes in treating normal and pathological scarring by
acting on remodelling phase [120]. Various protein-based
scaffolds used so far to treat DW are discussed in the subse-
quent sections.

The activity of collagen binding domain-VEGF (CBD-
VEGF) scaffolds was checked against DW in STZ-induced
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male SD diabetic rats. The CBD-VEGF-loaded collagen scaf-
fold was found to exhibit 1.05-folds and 1.11-folds increase
in wound closure within 14 days as compared to native
VEGF- and PBS-treated groups. In addition, CBD-VEGF-
loaded collagen scaffolds exhibited 3.6-folds and 1.8-folds
increase in blood vessel density as compared to VEGF alone
and phosphate buffer saline- (PBS-) treated groups [121].

Jiang et al. studied the effect of adipose-derived stromal
vascular fraction cell- (ADSVF-) based collagen scaffolds
against DW in STZ-induced domestic diabetic female pigs.
In this study, percentage wound healing, blood vessel den-
sity, and VEGF levels of ADSVF-based collagen scaffold-
treated groups were evaluated. The results were compared
with diabetic control, SVFs, and collagen scaffolds alone-
treated groups. The results revealed that the ADSVF-based
collagen scaffold-treated groups exhibited 1.25-folds, 1.4-
folds, and 1.6-folds increase in percentage wound healing
as compared to collagen scaffolds alone, SVFs, and diabetic
control groups, respectively. Furthermore, ADSVF-based
collagen scaffolds exhibited 1.39-folds, 1.79-folds, and 2.04-
folds increase in blood vessel density as compared to colla-
gen scaffolds alone, SVFs, and diabetic control groups,
respectively. In addition, ADSVF-based collagen scaffolds
exhibited 1.32-folds, 1.65-folds, and 1.80-folds increase in
VEGF levels in comparison to collagen scaffolds alone, SVFs,
and diabetic control groups, respectively [122].

Elliott et al. investigated the effect of peritoin (PN) and
connective tissue GF (CCN2) collagen-based scaffolds
against DW in db/db diabetic mice. The scaffolds were fab-
ricated by electrospinning technique. The fabricated scaf-
folds were evaluated for wound healing, vascularization,
and blood vessel density studies. The results revealed that
on the 11th-day diabetic control, collagen, CCN2, and PN
scaffold-treated groups showed wound size of 5.8, 5, 3, and
4mm, respectively. Furthermore, it was observed from the
study that CCN2-treated groups showed maximum vascu-
larization as compared to other groups. The angiogenesis
study revealed that CCN2 scaffolds exhibited 1.75-folds,
3.5-folds, and 4.66-folds increase in vessel density as com-
pared to PN, collagen, and diabetic control groups, respec-
tively [123].

A study was carried order to evaluate the effect of B-cell
lymphoma-2- (Bcl-2-) modified adipose-derived stem cell
(ADSC) collagen-based scaffolds against DW in STZ-
induced db/db diabetic mice. It was found to exhibit 1-fold,
1.9-folds, and 1.72-folds increase in wound healing rate as
compared to ADSC scaffolds, diabetic control, and placebo
scaffolds, respectively. The angiogenesis study revealed that
the blood vessel density of Bcl-2-ADSC scaffolds was found
1.42-folds, 10.2-folds, and 6.8-folds higher than that of ADC
scaffolds, diabetic control, and placebo scaffolds, respec-
tively [124].

Karri et al. explored the potential of collagen-chitosan
scaffolds loaded with curcumin and chitosan NPs (Cur-
CSNPs) against DW in STZ-induced male Wistar diabetic
rats. In this study, percentage wound closure of collagen-
chitosan scaffolds loaded with Cur-CSNPs was evaluated.
The results were compared with diabetic control and placebo
scaffold-treated groups. The results revealed that the

collagen-chitosan scaffolds loaded with Cur-CSNPs exhib-
ited 2.19-folds and 1.59-folds increase in wound closure as
compared to diabetic control and placebo scaffold-treated
groups. In addition, collagen-chitosan scaffolds loaded with
Cur-CSNPs accelerated DW healing within 15 days by pro-
moting collagen deposition, granulation tissue formation,
epithelialization, anti-inflammatory, and antioxidant effect
at the wound site as compared to other groups [125].

Anti-inflammatory effect of VEGF-SDF-1α-loaded colla-
gen scaffolds was studied in STZ-induced male SD diabetic
rats. Topical application of VEGF-SDF-1α-loaded collagen
scaffolds accelerated DW healing by promoting collagen
deposition, reepithelization, and angiogenesis at the wound
site. In addition, VEGF-SDF-1α-loaded collagen scaffold-
treated groups showed 2-folds and 3.57-folds decrease in
IL-1β and TNF-α levels as compared to placebo scaffold-
treated groups [126].

The effect of osteopontin- (OPN-) treated autologous
circulating angiogenic cell-based collagen scaffolds (CACs-
OPN-col scaffolds) was tested against ulcer created in
alloxan-induced diabetic rabbits. The developed scaffolds
exhibit 1.12-folds, 1.31-folds, and 1.55-folds increase in per-
centage wound closure as compared to CACs-collagen scaf-
fold without OPN treatment, collagen scaffolds alone, and
diabetic control, respectively [127].

In one of the studies, Wan et al. examined the effect of
the combination of silver and platelet-derived GF-BB
(PDGF-BB) gelatin-based scaffolds against DW in STZ-
induced female C57BL/6JNju DIO type II diabetic mice.
The scaffolds were fabricated by a 3D bioprinter. The scaf-
folds were tested for biocompatibility and angiogenesis.
The angiogenesis study revealed that combination of silver
and PDGF-BB scaffolds exhibited 2-folds, 2.28-folds, and
1.23-folds increase in angiogenesis as compared to placebo
scaffolds, silver/scaffold, and PDGF-BB/scaffolds, respec-
tively. The biocompatibility study showed that the relative
growth rate of human leukemia (HL) 60 cells for silver/
PDGF-BB scaffolds (0.5mg/mL) and silver/PDGF-BB scaf-
folds (1mg/mL) was found to be 96:05 ± 5:21% and 95:12
± 4:28% on day 3 and 94:97 ± 3:33% and 93:01 ± 5:35% on
day 5, respectively, indicating biocompatibility of silver/
PDGF-BB scaffolds [128].

Yang et al. investigated the effect of coadministration of
gelatin (G), collagen (Co), Lithospermi radix (LR), and
curcumin (C) (G/Co/LR/C) scaffolds against STZ-induced
DW on male SD diabetic rats. The scaffolds were fabri-
cated by electrospinning technique. The fabricated scaf-
folds were tested for percentage wound recovery and
collagen deposition studies. The results of in vivo studies
revealed that G/Co/LR/C scaffolds exhibited 1.09-folds,
1.04-folds, 1.05-folds, 1.12-folds, and 1.07 folds increase
in wound healing rate as compared to G/Co, G/Co/LR,
marketed formulation (Comfeel®), and gauze (control)-
treated groups, respectively. The results of collagen pro-
duction studies showed that G/Co/LR/C scaffolds exhibited
1.4-folds, 1.2-folds, 1.1-folds, 1.3-folds, and 1.4-folds
increase in collagen content as compared to G/Co/C, G/
Co/LR, G/Co, Comfeel® (marketed scaffold) and gauze
(control)-treated groups, respectively [129].
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Fibrin-based scaffolds have been also used to treat DW;
for instance, Losi et al. investigated the wound healing effect
of fibrin-based scaffolds loaded with VEGF-bFGF in STZ-
induced male db/db diabetic mice. Topical application of
fibrin-based scaffolds loaded with VEGF-bFGF accelerated
DW healing by promoting reepithelization, angiogenesis,
collagen deposition, and granulation tissue formation at
the wound site. In vivo wound healing study revealed that
the fibrin-based scaffolds loaded with VEGF-bFGF-treated
groups exhibited 2-folds, 5-folds, and 8-folds increase in
wound as compared to scaffolds loaded with GFs/NPs, pla-
cebo scaffolds, and control scaffolds, respectively [130]. In
another study, Losi et al. examined the wound closure
potential of fibrin/poly(ether)urethane-based (FPU) scaffold
loaded with platelet lysate against DW in STZ-induced
male db/db diabetic mice. The results revealed that the
FPU scaffold loaded with platelet lysate-treated groups
exhibited 1.5-folds, 2.85-folds, and 3.87-folds increase in
percentage wound closure as compared to FB-GF scaffolds,
FB scaffolds, and polyurethane film (Mepore®)-treated
groups, respectively [131].

HA-based scaffolds have been also utilized to treat DW.
For instance, Shin et al. investigated the wound closure effect
of HA and PLGA scaffolds loaded with epigallocatechin-3-
O-gallate against DW in STZ-induced male Sprague Dawley
(SD) diabetic rats. The results revealed that HA- and PLGA-
based scaffold-loaded epigallocatechin-3-O-gallate-treated
groups exhibited 4.6-folds, 4.4-folds, 3.7-folds, and 2.2-folds
decrease in wound area as compared to control, PLGA, HA/
PLGA, and Rapiderm® (marketed formulation)-treated
groups, respectively [132].

In one of the studies, Angelis et al. explored the wound
closure and reepithelization potential of HA scaffold-
loaded platelet-rich plasma against (HA + PRP) DW in
DFU patients. The results revealed that HA + PR-loaded
scaffold-treated groups exhibited 2-folds and 1.1-folds
increase in wound closure and reepithelialization as com-
pared to HA alone-treated groups [133].

Besides, collagen, fibrin, and hyaluronic acid keratin-
based scaffolds are also explored to treat DW. In one of
the studies, Konop et al. explored the wound healing poten-
tial of casomorphin-keratin-based scaffolds (CKS) against
DW in STZ-induced C57BL/6J diabetic mice. Topical appli-
cation of CKS scaffolds accelerated DW healing by promot-
ing reepithelization, macrophage infiltration, and reducing
microhemorrhage at the wound site. The results also
revealed that the CKS-treated groups exhibited 1.15-folds
increase in wound healing rate as compared to control
groups (citrate buffer treatment) [134].

The protein-based scaffolds explored so far to treat DW
are discussed below in Table 5.

5.2. Synthetic Polymers. The first synthetic polymer used as a
suture was polyglycolide, which came under the trade name
Dexon. The other synthetic polymers which are utilized as
implantable materials include poly (tetrafluoroethylene),
polyethylene glycol, silicone, copolymers of PLA, polyure-
thanes, and poly (glycolic acid) (PGA). They are used in tis-
sue engineering because of their inertness and

biocompatibility. In addition, they are cheaper and easy to
fabricate [87]. Various synthetic polymers used to fabricate
scaffolds are discussed below.

5.2.1. Polyesters. Polyesters are synthetic polymers that con-
sist of chains of ester functional groups in their main chain.
They are generally prepared by the polycondensation of
2,3-bis(4-hydroxyphenyl)-5-azaquinoxaline with aromatic
and aliphatic dicarboxylic dichlorides [153]. They are used
in tissue engineering because of their biocompatibility and
biodegreadibility [154]. Various polyesters which have
been used in tissue engineering are poly (L-lactic acid)
(PLLA), poly (glycolic acid), poly (trimethylene carbonate)
(PTMC), polycaprolactone, polyvinyl alcohol, and poly
(propylene fumarate) (PPF) [154]. Among them, PLA,
PVA, and polycaprolactone are mostly used in tailoring
scaffolds for DW.

PLA and PGA are widely acceptable as polymers for
scaffold fabrication. They offer excellent tissue rejuvenation
because they are easy to process, and from many years, they
have been utilized as an implantable material in medicine.
Moreover, PLA and PLGA also promote lactate supply at
the wound site which further promotes angiogenesis and
recruit endothelial progenitor cells and accelerates wound
healing [155, 156]. In addition, they are considered as good
drug carrier due to their prolonged retention time at the
injury site and ability to release the drug for a desired period
that facilitates effective wound healing process [155, 156].

Polycaprolactone is a linear aliphatic semicrystalline and
hydrophobic polymer. It has been extensively utilized in
wound healing. Polycaprolactone deficits bioactivity and
has high degradation rate that can be modified by varying
crystallinity, molecular weight, or modification in the struc-
ture by using hydrophilic creamics and polyethylene glycol
or by making copolymers with PGA and PLA. Further,
coating of polycaprolactone with gelatin, collagen, and cal-
cium phosphate helps in cell migration, cell proliferation,
and endothelial cell adhesion [157]. In addition, it has
desirable properties such as stability, easy processing, and
has been approved from United States Food and Drug
Administration (USFDA) as materials for sutures and
wound dressings [158].

PPF is a biodegredable synthetic polymer and exten-
sively used in wound healing due to its immense biomedical
applications such as tunable degradation, nontoxicity, con-
trollable mechanical properties, and biocompatibility [159].
Moreover, it is used along with ceramic particles such as cal-
cium phosphate and calcium carbonate that help in the
replacement of cancellous bones [160]. In addition, PPF also
helps in wound healing by showing anti-inflammatory
action and promotes reepithelization at the wound site [161].

PEG is a hydrophilic polymer that is prepared by the
addition of ethylene oxide to the diethylene glycol. It is used
in tissue engineering due to its inherent advantages such as
flexibility, nonimmunogenicity, nontoxicity, and biocompat-
ibility. Moreover, it can be bonded along with epidermal
growth factor (EGF) for wound healing [162]. In addition,
it is bonded along with PLGA and chitosan for enhancing

20 BioMed Research International



Table 5: Applications of protein-based scaffolds for DW.

S.N.
Therapeutic

moiety
Method of
preparation

Diabetes-
inducing
agent
(dose)

Animal model Key findings References

Collagen-based scaffolds

1.
Adipose-

derived SVFs
Freeze drying

STZ
(125mg/

kg)

Female domestic
pigs

(i) Scaffolds containing adipose-derived SVFs
showed 2.04-folds and 1.79-folds increase in blood
vessel density in comparison to diabetic control and
SVFs alone-treated groups

[135]

2.
Bcl-2-

modified
ADSCs

Extraction and
purification

STZ
(165mg/

kg)

Female db/db
mice

(i) Scaffolds loaded with Bcl-2-modified ADSCs
exhibited 1.6-folds and 2-folds increase in wound
closure as compared to placebo scaffolds and PBS
alone-treated groups, respectively

[121]

3. bFGF Freeze drying -
Female BKS.Cg–

+ Leprdb/+
Leprdb/Jcl mice

(i) Scaffolds loaded with bFGF (14 μg/cm2) showed
7.8-folds, 3.5-folds, 5-folds, and 5.5-folds decrease in
wound area within 2 weeks in comparison to
collagen scaffolds loaded with normal saline
solution, collagen scaffolds loaded with bFGF (7 μg/
cm2), collagen scaffolds loaded with bFGF (28 μg/
cm2), and collagen scaffolds loaded with bFGF
(50 μg/cm2)

[136]

4. BM-MSCs Lyophilization
STZ

(65mg/kg)
Male Wistar rats

(i) Scaffolds loaded with BM-MSCs showed decrease
in wound area by 1.2-folds, 1.8-folds, and 2-folds
under hypoxic condition in comparison to collagen-
based scaffolds loaded with BM-MSCs under
norxomia, placebo scaffolds, and diabetic control
groups
(ii) This developed scaffold increased angiogenesis
and anti-inflammatory action at the wound site

[137]

5. Collagen Electrospinning
STZ

(65mg/kg)
Male SD rats

(i) Crossed collagen-polycaprolactone-based
scaffolds showed 1.1-folds, 1.2-folds, and 1.7-folds
increase in wound contraction as compared to
aligned collagen-polycaprolactone-based scaffolds,
random collagen-polycaprolactone-based scaffolds,
and diabetic control treat groups, respectively
(ii) The developed collagen-loaded crossed scaffolds
induced reepithelialization, angiogenesis, migration
of keratinocytes as well as fibroblasts at the site of
injury that promoted DW healing

[138]

6. Glucophage Electrospinning
STZ

(70mg/kg)
Male SD rats

(i) Collagen-PLGA scaffolds loaded with nanofibrous
glucophage exhibited 6.7-folds and 1.9-folds
decrease in wound closure as compared to collagen/
PLGA membranes and diabetic control group,
respectively

[139]

7.
Induced

pluripotent
stem cells

Homogenization
STZ

(50mg/kg)
Male athymic
nude mice

(i) Scaffolds loaded with induced pluripotent stem
cells exhibited 1.44-folds and 1.28-folds increase in
epidermal thickness and muscle thickness in
comparison to adipose-derived stem cells and
mesenchymal stem cell-treated groups

[140]

8.
Induced

pluripotent
stem cell

Freeze drying -
Human

fibroblasts

(i) Induced pluripotent stem-based scaffolds seeded
on DFU fibroblast cells showed higher content of
vascular endothelial GFs and glycosaminoglycan that
helped in production of extracellular matrix

[141]

9. MSCs Homogenization
STZ

(50mg/kg)
Male C57BL/6

mice

(i) Topical application of MSCs-based scaffolds
accelerated wound closure by 1.3-folds as compared
to MSCs alone-treated groups due to increased cell
proliferation, angiogenesis, and collagen deposition
at the wound site

[142]
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Table 5: Continued.

S.N.
Therapeutic

moiety
Method of
preparation

Diabetes-
inducing
agent
(dose)

Animal model Key findings References

10.
Mesenchymal
stromal cells

Lyophilization
Alloxan
(150mg/

kg)

Male New
Zealand white

rabbits

(i) The scaffolds loaded with allogenic mesenchymal
stromal cells exhibited 1.1-folds, 1,2-folds, 1.2-folds,
and 1.1-folds increase in volume of inflammatory
cells, surface density of blood vessels, surface area of
blood vessels, and vessel diameter as compared to
collagen alone treated, groups respectively

[143]

11.
N-

acetylcysteine
Lyophilization - Male SD rats

(i) Scaffolds loaded with polyamide and N-
acetylcysteine exhibited 1.5-folds and 1.4-folds
increase in drug release in a sustained manner as
compared to scaffolds composed of collagen and N-
acetylcysteine
(ii) Collagen-polyamide-based scaffolds coloaded
with N-acetylcysteine showed 1.5-folds increase in
wound closure as compared to polyamide treated
groups

[144]

12. Osteopontin Lyophilization
Alloxan
(150mg/

kg)

Male New
Zealand white

rabbits

(i) Circulating angiogenic cells-osteopontin collagen-
based scaffolds exhibited 1.2- and 1.3-folds increase
in wound closure as compared to collagen scaffolds
loaded with circulating angiogenic cells and collagen
alone-treated groups

[145]

13.
PHB and
gelatin

Electrospinning
STZ

(60mg/kg)
Male Wistar rats

(i) PHB- and gelatin-based scaffolds showed 2-folds,
5-folds, and 5.5-folds decrease in wound area within
14 days as compared to gelatin nanofibers, PHH
microfibers, and diabetic control group, respectively
(ii) In addition, the developed scaffolds increased
collagen synthesis, cell attachment, and proliferation
at the site of injury

[146]

14. Quercetin Fat digestion
STZ

(80mg/kg)
Male ICR mice

(i) Collagen scaffolds loaded with PEGylated
graphene oxide and quercetin exhibited 2-folds, 1.6-
folds, and 1.3-folds decrease in drug release at pH 7.4
within 15 h, 25 h, and100 h as compared to ADM
scaffolds composed of graphene oxide and quercetin
(ii) The scaffolds composed of PEGylated graphene
oxide and quercetin showed 1.28-folds increase in
wound closure as compared to ADM treated group

[147]

15. Resorcinol Freeze drying
STZ

(55mg/kg)
Male albino rats

(i) Resorcinol-loaded collagen-based scaffolds
exhibited increase in wound closure by 1.25-folds as
compared to collagen alone-treated group due to
reepithelization, angiogenesis, and collagen
deposition at the wound site

[148]

16. siMMP-9 Freeze drying - -

(i) Glycosaminoglycan collagen scaffolds loaded with
siMMP-9 (80 nmol/L) treated groups showed 3.3-
folds, 3-folds, 1.5-folds, and 1.3-folds decrease in
relative MMP-9 mRNA expression in comparison to
diabetic control, nontargeted siRNA,
glycosaminoglycan collagen scaffolds composed of
siMMP-9 (20 nmol/L), and glycosaminoglycan
collagen scaffolds composed of siMMP-9 (40 nmol/
L) treated groups

[149]

17. VEGF Lyophilization
STZ

(50mg/kg)
Male SD rats

(i) Collagen scaffolds loaded with VEGF showed
decrease in wound closure within 21 days by 1.06-
folds, 1.14-folds, and 1.18-folds in comparison to
VEGF alone, PBS, and diabetic control-treated
groups

[150]
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its crystallinity and thermal stability. The use of PEG as
wound dressing material in DW helps in reducing scar for-
mation and promotes collagen deposition at the wound site
[163]. It is also used in the preparation of hydrogel-based
dressings in combination with HA and adipose-derived stem
cells, which support cell viability both in vitro and in vivo. It
also acts as a temporary hydrogel and prevents wound con-
traction as well as promote angiogenesis at the wound site
[164, 165]. Various studies wherein polyester-based syn-
thetic polymers have been used to treat DW are discussed
below.

Lv et al. investigated the effect of silicate-based biocera-
mic particles (NAG)/poly (caprolactone) (PCL)/gelatin-
(Ge-) based nanofibrous composite scaffold against DW
healing in STZ-induced female C57BL/6 diabetic mice. The
scaffolds were prepared by electrospinning technique and
tested for cell adhesion, human umbical vascular endothelial
cell (HUVEC) migration, histocompatibility, and wound
healing studies. The results of cell adhesion study showed
that NAG/PCL/Ge-based scaffolds exhibited 1.98-folds
increase in cell adhesion as compared to PCL scaffold-
treated groups. To evaluate cell migration, HaCaT cell line
was used. The results of cell line study revealed that NAG/
PCL/Ge-based scaffolds exhibited 1.79-folds and 1.70-folds
increase in cell migration as compared to diabetic control
and PCL-treated groups, respectively. The results of wound
healing study showed that NAG/PCL/Ge-based scaffolds
exhibited 1.14-folds and 1.36-folds increase in wound clo-
sure as compared to PCL and diabetic control-treated
groups. The results of histocompatibility studies revealed
that the thickness of epidermis in NAG/PCL/Ge-based
scaffold-treated groups was found to be 1.8-folds and 2.45-
folds higher than that of PCL and diabetic control groups,
respectively. Furthermore, it was observed from the study
NAG/PCL/Ge-based scaffold-treated groups exhibited 1.43-

folds and 1.67-folds increase in collagen deposition as com-
pared to PCL-treated and diabetic control-treated groups,
respectively [166].

A study was carried out by Cheng et al. to evaluate ree-
pithelization and angiogenesis activity of bone marrow mes-
enchymal stem cell- (BMSC-) based radially aligned
scaffolds (RAS + BMSCs) and BMSC-based vertically
aligned scaffolds (VAS + BMSCs) against DW in STZ-
induced male TALLYHO T2D mice. It is an inbred poly-
genic mice model that is generated to inducing T2DM and
moderate obesity in the mice. The developed scaffolds were
found to exhibit 2.2-folds, 2.5-folds, and 1.05-folds increase
in reepithelization rate as compared to diabetic control,
VAS, and combination of VAS and BMSC-treated groups,
respectively. In addition, combination of RAS and BMSC-
treated groups exhibited 1.2-folds, 1.4-folds, and 1.7-folds
increase in angiogenesis in comparison to mice treated with
combination of VAS and BMSCs, VAS alone, and RAS
alone-treated groups, respectively [167].

Ilomuanya et al. investigated the reepithelization and
wound closure effect of PLA-valsartan-based hydrogel-
based scaffolds against DW in STZ-induced male diabetic
rats and compared its efficacy with neomycin-based dress-
ings. The results of reepithelization study revealed that the
PLA-valsartan-based hydrogel scaffold-treated groups
showed 1.43-folds increase in reepithelialization rate as com-
pared to neomycin-based dressings. In addition, PLA-
valsartan-based hydrogel scaffold-treated groups exhibited
2.5-folds increase in wound closure as compared to
neomycin-based dressing-treated groups [168].

Lee et al. evaluated the epidermis thickness and wound
closure effect of PLGA-PDGF-based scaffolds against DW
in STZ-induced male diabetic SD rats and compared its
results with phosphate buffer saline (PBS)/gentamicin/
PLGA and PLGA blended with gentamicin. The results

Table 5: Continued.

S.N.
Therapeutic

moiety
Method of
preparation

Diabetes-
inducing
agent
(dose)

Animal model Key findings References

Fibrin-based scaffolds

18. eNOS Homogenization
Alloxan
(150mg/

kg)

New Zealand
white rabbits

(i) Fibrin scaffolds loaded with eNOS exhibited 1.26-
folds and 1.46-folds increase in epithelialization rate
as compared to eNOS alone and fibrin alone-treated
groups

[151]

Hyaluronic acid-based scaffolds

19. Chlorhexidine - - Male albino rats

(i) Hyaluronic acid scaffolds loaded with
chlorhexidine exhibited increase in wound closure
by 1.2-folds and 1.09-folds as compared to gauze and
SEESKIN® (clinically used scaffold in market)-
treated groups
(ii) The total protein content of hyaluronic acid
scaffolds loaded with chlorhexidine treated group
was found to be 1.2-folds higher in 21 days than that
of SEESKIN®-treated group

[152]

Abbreviations: ADSCs: adipose-derived stem cells; Bcl-2: B-cell lymphoma-2; BM-MSCs: bone marrow-derived mesenchymal stem cells; bFGF: basic
fibroblast growth factor; eNOS: endothelial nitrous oxide synthase; ICR: institute cancer research; MMP-9: matrix mettalo proteinase-9; PLGA: poly-D-L-
lactide-glycolide; PHB: poly-3-hydroxybutyrate; SVFs: stromal vascular fraction; VEGF: vasoendothelial growth factor.
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showed that PLGA-PDGF-based scaffold-treated groups
exhibited 4.7-folds and 5.2-folds increase in epidermis thick-
ness within 2 weeks as compared to phosphate buffer saline
(PBS)/antibiotics/PLGA and PLGA blended with
gentamicin-treated groups. In addition, PLGA-PDGF-
based scaffold-treated groups exhibited 1.14-folds and 1.7-
folds increase in wound closure as compared to phosphate
buffer saline (PBS)/gentamicin/PLGA and PLGA blended
with gentamicin only [169].

A study was carried out by Han et al. to evaluate the effect
of 30 asiatic acid- (AA-) embedded aligned porous PLLA
fibrous scaffold (AA-PL) against male diabetic C57BL/6Jmice.
The results of the wound healing study revealed that 30 AA-
PL scaffolds exhibited 1.93-folds, 1.47-folds, and 1.03-folds
increase in wound closure as compared to control, PL, and
10 AA-PL scaffolds, respectively. The results of the reepithelia-
lization study showed that the 30 AA-PL scaffolds showed
1.85-folds, 1.47-folds, and 1.21- folds increase in reepitheliali-
zation rate as compared to control, PL, and 10 AA-PL scaf-
folds, respectively. The results of the collagen deposition
study revealed that 30 AA-PL scaffold-treated mice showed
1.54-folds, 1.26-folds, and 1.08-folds increase in collagen
deposition as compared to control, PL, and 10 AA-PL
scaffold-treated mice, respectively [170].

The potential of core shell insulin-loaded PLGA-based
nanofibrous scaffolds were checked against DW in STZ-
induced SD diabetic rats. In vitro drug release study showed
that core shell insulin-loaded PLGA-based nanofibrous scaf-
folds released drug at steady rate for 28 days. The release rate
was found 12:8 ± 4:8mU/mL, 10:7 ± 1:1mU/mL, and 15:7
± 1:2mU/mL on days 1, 3, and 21, respectively. Afterwards,
the concentration of drug gradually decreased to 8:5 ± 1:9
mU/mL on the 28th day. This indicated that core shell
insulin-loaded PLGA-based nanofibrous scaffolds prolonged
the release of insulin in a sustained manner that increased
the retention of drug at the wound site for a longer period of
time. Wound closure study revealed that core shell insulin-
loaded PLGA-based nanofibrous scaffolds showed 3.01-folds
and 3.16-folds decrease in wound area within 14 days as com-
pared to core PBS and shell PLGA and blend of insulin and
PLGA. In addition, core shell insulin-loaded PLGA-based
nanofibrous scaffolds exhibited 1.87-folds and 2.17-folds
increase in collagen to glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) ratio in comparison to core PBS and shell
PLGA and blend of insulin and PLGA [171].

In one of the studies, Chen et al. studied the effect of PEG–
desferrioxamine (DFO) hydrogel-based scaffolds against DW
in STZ-induced male SD diabetic rats. The results revealed
that PEG-DFO hydrogel-based scaffold-treated groups exhib-
ited 1.2-folds and 1.5-folds increase in length of epidermis as
compared to placebo hydrogel and diabetic control groups.
In vivo wound healing study revealed that PEG-DFO
hydrogel-based scaffold-treated groups exhibited 4-folds and
7-folds increase in wound closure as compared to placebo
hydrogel and diabetic control groups [172].

5.2.2. Polyvinyl Alcohol. Polyvinyl alcohol (PVA) is a syn-
thetic polymer formed by the hydrolysis of vinyl acetate. It
is used mostly in food industries for packaging, paper indus-

tries for the production of paper as well as used in medical
devices. The utilization of PVA in medical applications are
increasing at immense rate due to their nontoxicity, biocom-
patibility, bioadhesive characteristics, swelling properties,
and noncarcinogenic nature. Owing to their enormous
potential of PVA is used in replacement of cartilages, soft
contact lenses, eye drops, and tissue adhesion barriers [59].
In addition, they are used in the fabrication of wound dress-
ings because of their biodegradable nature, exudate absorb-
ing capacity, and fiber formability. Furthermore, fibers of
PVA have been extensively used in tissue rejuvenation as
they provide help in cell proliferation and allow cell adhe-
sion and breathability for cellular growth [173]. Owing to
these advantages, PVA-based scaffolds are used in the treat-
ment of DW. Some of the studies wherein PVA-based scaf-
folds have been used to treat DW are discussed below.

A study was carried out to investigate the effect of brown
algae-derived polysaccharide (BAP)-PVA-based scaffolds
against DW in STZ-induced male C57 diabetic mice. Topical
application of BAP-PVA-based scaffolds accelerated DW
healing within 12 days by promoting neo-vascularization,
anti-inflammatory action, and cell proliferation at the site
of injury. In addition, BAP-PVA-based scaffold-treated
group exhibited 1.05-folds and 1.17-folds increase in wound
closure in comparison to PVA alone treated mice and dia-
betic control groups [174].

The activity of nanofibrous mats prepared from PVA,
chitosan, and zinc were checked against DW in STZ-
induced male SD diabetic rats. Nanofibrous mats prepared
from PVA, chitosan, and zinc were found to exhibit about
1.8-folds increase in wound closure as compared to
chitosan-PVA alone-treated group. The enhanced activity
of nanofibrous mats prepared from PVA, chitosan, and zinc
were attributed to its increased collagen deposition and anti-
bacterial effect at the site of injury [175].

In another study, the effect of chitosan-PVA based nano-
fibrous scaffolds was studied against DW in STZ-induced
male Wistar diabetic rats. It was found that the topical appli-
cation of chitosan-PVA-based nanofibrous scaffolds acceler-
ated DW healing within 14 days by promoting antibacterial
action and collagen deposition at the site of injury. On the
14th day, chitosan-PVA-based nanofibrous scaffold-treated
groups showed reduction in average wound area of diabetic
rats by 22-folds as compared to diabetic control group [176].

The activity of scaffolds prepared from CS and PVA
was checked against DW in STZ-induced male SD diabetic
rats. Topical application of prepared scaffolds accelerated
DW healing within 15 days by showing 2-folds and 1.1-
folds decrease in wound area as compared to diabetic con-
trol and PCL-PVA-CS-based scaffold-treated groups. In
addition, it promoted antibacterial action, granulation tis-
sue formation, epidermal cell regeneration, and dermal tis-
sue proliferation at the site of injury that helped in DW
healing [177].

In one of the studies, wound healing potential of PVA
nanoscaffolds loaded with propolis NPs was checked against
DW in STZ-induced male Swiss diabetic mice. The results
revealed that PVA nanoscaffolds loaded with propolis NPs
exhibited 2.3-folds, 1.2-folds, and 1.3-folds increase in
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wound closure in comparison to negative control (no treat-
ment), PVA alone, and positive control (allantoin-based
treatment) groups [178].

In another study, angiogenesis effect of PLA-PVA scaf-
folds loaded with connective tissue growth factor (CTGF)
was evaluated against DW in chicken chorioallantoic mem-
brane (CAM). The results showed that PLA-PVA scaffolds
loaded with CTGF exhibited 1.2-folds and 1.3-folds increase
in angiogenesis as compared to placebo scaffolds and normal
control group [179].

The wound healing activity of PVA-CS nanofibers was
checked against DW in STZ-induced male Wistar diabetic
rats. Topical application of prepared scaffolds accelerated
DW healing by promoting antibacterial action at the wound

site. In vivo wound healing study revealed that PVA-CS
nanofibers exhibited increase in wound closure by 1.3-folds
in comparison to diabetic control group [180]. Lists of vari-
ous synthetic polymers explored to treat DW are enumer-
ated in the Table 6.

6. Scaffold Fabrication Techniques

Scaffolds are 3D polymeric structures which supports tissue
rejuvenation upon topical application at the wound site.
They can be fabricated by using conventional and rapid pro-
typing (RP) techniques. In conventional scaffold fabrication
techniques, there is construction of porous polymeric struc-
tures, i.e., substrates for cell adhesion, but does not provide

Table 7: Different techniques of scaffold fabrication.

Fabrication technique Advantages Disadvantages References

Conventional technique

Thermal-induced phase
separation

(i) Used for the fabrication of thermoplastic
crystalline polymeric scaffold
(ii) Bioactive molecules can be integrated
by utilizing low temperature
(iii) Provide porosity to the fibers more
than 98%

(i) Fabricate only thermoplastic
polymeric scaffolds

[199, 200]

Electrospinning
(i) Develop nanofibrous scaffolds
(ii) Improve tensile strength of
the scaffolds

(i) Solvent used in the fabrication
can be toxic
(ii) Require lot of process variables

Gas foaming
(i) Provide porosity to the fibers
upto 85%

(i) Product obtained might have
a closed pore structure or a solid
polymeric skin

Solvent casting and practical
leaching

(i) Cost effective
(ii) High porosity upto 50-90%

(i) Time consuming
(ii) The widespread use of the toxic solvents

Freeze-drying
(i) Utilized in variety of purposes
(ii) Manageable pore size

(i) High energy consumption
(ii) Time consuming
(iii) Use of cytotoxic solvents in the
fabrication

RP technique

Fused deposition
modeling (FDM)

(i) Useful in the scaffold designing
(ii) Low-temperature deposition

(i) Has limitations in its application to
biodegradable polymers

[199, 200]

Stereolithography (SLA)
(i) High resolution
(ii) Uniformity in the pore size
interconnectivity

(i) Limitations in the process of
photopolymerization
(ii) Requiring massive amounts of
monomers and postpolymerization
treatment to improve monomer
conversion

Selective laser sintering (SLS)

(i) Using ultrahigh-molecular-weight
polyethylene
(ii) Fabricate scaffold with preferred
properties
(iii) Provide excellent microstructures

(i) High operating temperature
(ii) Time consuming

Solvent-based extrusion
free forming (SEF)

(i) Utilize in the fabrication of ceramic
and metal-based composites
(ii) Provide precise control of scaffold
structure at the micron level

(i) Temperature extrusion

Bioprinting

(i) Cost effective
(ii) High accuracy
(iii) Greater shape complexity
(iv) Higher speed

(i) Depends on existence of cells
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tunable macroscale and microscale complex structures. RP is
an advanced form of conventional technique that provides a
plethora of potential opportunities in the field of tissue engi-
neering. This technique provides independent control over
macroscale and microscale features that helps in the forma-
tion of multicellular structures required for complex tissue
functions. In addition, this technique also helps in fabrica-
tion of three-dimensional vascular beds needed for massive
tissue formation. With the advancement the technology,
researchers have combined clinical imaging data, and 3D
fabrication techniques can provide the possibility of produc-
tion of customized scaffolds as well as mass production of
the scaffold designs [199, 200]. The classification of scaffolds
on the basis of fabrication are given in Table 7.

7. Miscellaneous

Chu et al. investigated the potential of MSC-acellular dermal
matrix (ADM) scaffolds for DW healing in STZ-induced
male ICR diabetic mice. The fabricated scaffolds were tested
for wound healing, vessel density, and epidermal thickness
studies. The wound healing studies demonstrated that
MSC-ADM scaffolds showed 1.1-folds and 1.07-folds
increase in wound closure as compared to control and
ADM scaffold-treated groups, respectively. The angiogenesis
study revealed that MSC-ADM scaffolds exhibited 1.52-folds
and 2.4-folds increase in vessel density. Furthermore, MSC-
ADM scaffolds exhibited 1.6-folds and 2.7-folds increase in
epidermal thickness as compared to control and ADM
scaffold-treated groups, respectively [201].

A study was carried out to investigate the effect of ADM-
reduced graphene oxide (RGO)-MSCs composite scaffolds

against DW in STZ-induced male ICR diabetic mice. The
results revealed that ADM-RGO-MSC composite scaffolds
exhibited 1.05-folds, 1.5-folds, and 1.62-folds increase in
regenerative collagen percentage within 28 days as compared
to ADM-GO-MSCs, ADM-MSCs and diabetic control
groups, respectively. The cell migration studies showed that
ADM-RGO-MSCs composite scaffolds exhibited 1.08-folds
and 1.87-folds increase in cell migration as compared to
ADM-GO-MSC- and ADM-MSC-treated groups. The
results of angiogenesis study revealed that ADM-RGO-
MSC composite scaffold-treated groups showed 1.09-folds,
1.3-folds, and 2.05-folds increase in vascular density within
4 weeks as that of ADM-GO-MSCs, ADM-MSCs, and dia-
betic control-treated groups, respectively. In addition,
ADM-RGO-MSC composite scaffold-treated groups showed
1.12-folds, 1.38-folds, and 1.66-folds increase in granulation
thickness within 28 days in comparison to ADM-GO-MSCs,
ADM-MSCs, and control-treated groups, respectively. The
wound healing studies revealed that ADM-RGO-MSC com-
posite scaffolds exhibited 1.11-folds, 1.66-folds, and 2.08-
folds decrease in wound area within 28 days as compared
to ADM-GO-MSCs, ADM-MSCs, and diabetic control-
treated groups, respectively [202].

In one of the studies, effect of wingless and hUCMSCs
(Int-1 (Wnt) signaling pathway agonist (Wnt3a)-human
umbilical cord MSCs) scaffolds and Wnt signaling pathway
antagonist (sFRP3)-hUCMSC scaffolds were checked against
DW in STZ-induced male SD diabetic rats. The results
revealed that Wnt3a-hUCMSCs scaffold-treated groups
exhibited 1.42-folds and 1.25-folds increase in wound clo-
sure as compared to sFRP3-hUCMSC scaffolds and diabetic
control groups. Furthermore, Wnt3a-hUCMSC scaffold-

Monolithic scaffold Hydrogel scaffold Micro/nanosphere or 
particle composites 

Polysaccharide based
scaffold

Nanoparticles scaffold Protein based scaffold Microfiber within porous
scaffold

Electroconductive
scaffolds

Microporous scaffold Micro/nanofiber
composites 

Synthetic scaffold Fungal exopolysaccharide
scaffold

Figure 3: The pictorial representations of different type of scaffolds available for wound healing.
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treated groups showed equivalent wound healing as com-
pared to normal control group. In addition, Wnt3a-
hUCMSC scaffold-treated groups exhibited 1.36-folds, 2-
folds, and 3.3-folds increase in skin appendage regeneration
as compared to normal control, diabetic control, and sFRP3-
hUCMSC scaffold-treated groups, respectively. Moreover,
Wnt3a-hUCMSC scaffold-treated groups exhibited 3.6-folds
and 8-folds increase in hUCMSC differentiation as com-
pared to normal control and sFRP3-hUCMSC scaffold-
treated groups. The CCK8 staining study revealed that
Wnt3a-hUCMSC scaffold-treated groups exhibited 1.25-
folds and 1.87-folds increase in cellular viability in compar-
ison to normal control and sFRP3-hUCMSC scaffold-treated
groups [203].

Vijayan et al. studied the in vitro drug release effect of
dual GF (VEGF, bFGF)-based nanofibrous scaffolds in phos-
phate buffer saline pH 7.4. In addition, the wound closure
and cell viability rate of GF-NPs-nanofibrous (NF) scaf-
folds was evaluated against DW in STZ-induced Swiss
albino diabetic mice. In vitro drug release studies revealed
that the developed nanofibrous scaffolds exhibited 1.2-
folds, 1.16-folds, and 1.08-folds increase in release of
VEGF in a sustained manner as compared to bFGF scaf-
folds in 50 h, 190 h, and 270h, respectively. The wound
closure study showed that GFs-NPs-NF scaffold-treated
groups exhibited 1.18-folds, 1.7-folds, and 1.94-folds
increase in percentage wound closure as compared to
GF-NPs, NF alone, and control groups, respectively. Fur-
thermore, GFs-NPs-NF scaffold-treated groups exhibited
1.3-folds, 1.25-folds, 1.2-folds, and 1.6-folds increase in cell
survival rate as compared to NF alone, GF-NPs, GFs
alone, and control groups, respectively [204].

In one of the studies, potential of human amniotic mem-
brane (HAM) scaffolds was studied against DW in STZ-
induced male adult Wistar diabetic rats. The results revealed
that HAM scaffold-treated groups exhibited 1.5-folds and
1.7-folds increase in percentage wound closure as compared
to HAM matrix and normal control groups. Furthermore,
HAM scaffold-treated groups exhibited 1.4-folds increase
in volume of epidermis as compared to HAM matrix and
normal control groups. The results of collagen deposition
study revealed that HAM scaffold-treated groups showed
1.05-folds and 12-folds increase in collagen deposition
within 21 days as compared to HAM matrix and normal
control groups [205].

8. Miscellaneous Nondiabetic Wound
Electroconductive Scaffolds

A wide variety of electrically active polymers and conductive
doping agents have been utilized in the fabrication of elec-
troconductive scaffolds because of their numerous favorable
positive biological responses at cellular and tissue level such
as wound healing, biocompatibility, proliferation, and tissue
regeneration that make them as a suitable candidates as con-
ductive scaffolds for tissue regeneration with promising
results [206]. In addition, these scaffolds mimick the extra-
cellular matrix (ECM) and, as well as provide electrical stim-
ulation to the injured tissues that helps in the tissue

rejuvenation [207, 208]. Looking at these potentials, various
electroconductive scaffolds used for the management of dif-
ferent damaged tissue are depicted in the Table 8.

The pictorial representations of different type of scaf-
folds available for DW are given in Figure 3.

9. Conclusion and Future Perspectives

The market of scaffolds is growing rapidly across the globe.
In 2020, its market size was valued at USD 1.1 billion that
is expected to expand at a compound annual growth rate
(CAGR) of 8.4% from 2021 to 2028 [209]. The scaffold mar-
ket is basically divided into four major segments based on its
end-use, technology, type of product, and type of applica-
tion. On the basis of end-use, these have been basically,
divided into three subsegments, i.e., cell attachment and
migration, nutrients, and products diffusion, and cell phase
behaviour modification. On the basis of technology, they
are categorized as synthetic scaffolds, decellularized scaf-
folds, and 3D printed scaffolds, whereas, on the basis of type
of product, these are divided into hydrogels, polymeric scaf-
folds, nanofiber-based scaffolds, and micropatterned surface
microplate. Lastly, on the basis of application, these are
divided into cancer cell research, stem cell research, regener-
ative medicine, tissue engineering, and cell-based assays.

The main research behind the rise in market size is
attributed to the increase in the demand for 3D cellular scaf-
folds in biological studies and translational research. Some
of the marketed scaffolds and patents are listed in Tables 9
and 10, respectively. The demand of 3D scaffolds is growing
due to its efficiency in mimicking the in vivo physiological
state for better presentation of disease-causing microenvi-
ronmental factors. Further, significant advancements in
regenerative medicines and tissue engineering have
increased the utilization of 3D bioprinting for organs and
tissue reconstruction procedures.

In recent years, some of the companies such as CEL-
LINK GLOBAL and its TRIANKLE consortium developed
new personalized gelatin- and collagen-based implants with
the application of 3D printing technology for ankle joints
tissue regeneration [209]. Many other attempts have also
been made to develop 3D scaffolds for treating cancer, and
most recently, an attempt has been made by the company
Ligandal, who developed a peptide scaffold as a prospective
antidote and vaccine against corona virus disease-19
(COVID-19). The hydrogel-based scaffolds have given the
largest revenue share of 14.2% in 2020 [209, 210]. Further,
the microfabrication of hydrogels is expected to further
increase the demand of hydrogel-based scaffolds. In March
2021, Cultrex UltiMatrix Reduced GF Basement Membrane
Extract (RGF BME) was introduced by company Bio-
Techne Corporation for culturing pluripotent stem cells
and organoids, which is an advanced matrix hydrogel with
optimized ECM protein composition, increased total protein
content, and improved tensile strength for various applica-
tions such as personalized medicine, drug discovery
research, and regenerative medicine.

The nanofiber-based scaffold market is also increasing
with CAGR of 9.8% as of report of 2020. Despite these
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significant advancements in the field of scaffolds, the
research on scaffolds for DW remains a challenge. There
are many reports related to development of natural/synthetic
polymer-based scaffolds for DW in in vitro/animal models.
However, their translation to clinical application is facing
still some hurdles.

The implantation of scaffolds is a challenging task as it is
related to tissue engineering and tissue regeneration. Hence,
the mechanical properties of scaffolds as well as their
implantation in a proper way at the target site is really
important. To achieve a successful response and efficacy
among the patients suffering from DW or, severely diseased
tissues or, organs, there is a much-needed requirement of
proper coordination between medical surgeons and bioma-
terial scientists who can implant as well as evaluate the per-
formance of scaffolds. It is the biomaterial scientist who can
better select the material for designing scaffold. For example,
the mechanical property of the scaffold can be enhanced by
suturing. However, the materials like collagen, which are
known for their softness and porosity, are unable to endure
fixation with suture due to their low tearing strength. In such
cases, reasonable fibers are more preferred. For instance,
nonwoven PGA fabrics and beta-caprolactone homopoly-
mer have been extensively used to fabricate scaffolds and
reinforced by suturing. But due to high porosity of the
PGA fabrics, the entrapment of cells inside them is poor.
Similarly, beta-caprolactone homopolymer have poor
resorption rate.

Similar to the challenges related to biomaterials used for
scaffolds, the process of manufacturing scaffolds also has an
impact on its quality as well as performance. In recent years,
electrospinning technique has been widely reported for fab-
rication of scaffolds. It produces nanofibers from polymer
solution using simple procedure. However, the nanofiber-
based sheets offer too small pore sizes for allowing cell seed-
ing. The solid free protocol technique has also been utilized
for scaffold fabrication but it needs extensive and sophisti-
cated instruments for fabrication. Hence, it is important to
look forward for amalgamation of biomaterial science and
tissue engineering.

Hence, there is a requirement to understand the factors
that implement their clinical translation and find out the
possibilities to overcome these challenges. Furthermore,
based on the complexity of wound healing, various bioactive
agents with specific release profile can be tailored into scaf-
folds. In addition, drug-polymer compatibility for designing
scaffolds for DW should also be considered. Nevertheless,
scaffolds have appeared as boon in the area of DW owing
to their advantages over conventional dressings. In the
future, it is expected that scaffolds will utilize theranostic
materials that would offer interactive as well as bioactive
means along with therapeutic and diagnostic function in a
single unit. Further, the incorporation of biomarkers in scaf-
folds would enable the monitoring of wound healing
process.
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