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Analysis of parallel genotyping and expression profiling data has shown that mRNA expression
levels are highly heritable. Currently, only a tiny fraction of this genetic variance can be
mechanistically accounted for. The influence of trans-acting polymorphisms on gene expression
traits is often mediated by transcription factors (TFs). We present a method that exploits prior
knowledge about the in vitro DNA-binding specificity of a TF in order to map the loci (‘aQTLs’)
whose inheritance modulates its protein-level regulatory activity. Genome-wide regression of
differential mRNA expression on predicted promoter affinity is used to estimate segregant-specific
TF activity, which is subsequently mapped as a quantitative phenotype. In budding yeast, our
method identifies six times as many locus-TFassociations and more than twice as many trans-acting
loci as all existing methods combined. Application to mouse data from an F2 intercross identified an
aQTL on chromosome VII modulating the activity of Zscan4 in liver cells. Our method has greatly
improved statistical power over existing methods, is mechanism based, strictly causal,
computationally efficient, and generally applicable.
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Introduction

Understanding how phenotype relates to genotype, in terms of
the myriad molecular processes that govern the behavior of
cells and organisms, is one of the central goals of biology.
Genome-wide messenger RNA expression levels constitute an
intermediate molecular phenotype of great utility. They can be
readily measured using modern genomics technologies, and
provide high-dimensional information about the cellular state.
In recent years, the use of parallel genotyping and expression
profiling on segregating populations has enabled researchers
to ask quantitative questions regarding the genetics of
genome-wide expression in a variety of organisms (Jansen
and Nap, 2001; Brem et al, 2002; Cheung et al, 2003; Schadt
et al, 2003). These studies have revealed that steady-state
mRNA abundance for individual genes is highly heritable, and
can be treated as a quantitative genetic trait. Expression
quantitative trait loci (eQTLs), whose allelic variation influ-
ences the expression level of individual genes, have success-
fully been mapped in a number of model organisms, from
yeast to mouse (Brem et al, 2002). Local eQTL linkages to

polymorphisms in cis-regulatory regions frequently occur
(Ronald et al, 2005). However, trans-acting polymorphisms
at distal loci can influence the expression of large numbers of
genes in countless ways by changing the state and/or
connectivity of the gene regulatory network of the cell (Yvert
et al, 2003). It is therefore expected that such polymorphisms
account for much of the genetic variance of gene expression.

Perhaps the simplest method for mapping trans-acting loci is
to identify eQTL ‘hotspots’ that influence the expression of a
disproportionate number of genes (Brem et al, 2002).
A number of such hotspots have been identified in yeast and
other organisms (Rockman and Kruglyak, 2006). The genes
that link to a particular hotspot are often enriched for specific
biological functions, and tend to be controlled through the
same regulatory subnetwork (Brem et al, 2002; Zhu et al,
2008). A different approach has been to map trans-acting loci
for sets of coexpressed genes identified using hierarchical
clustering (Yvert et al, 2003) or more sophisticated module
inference algorithms (Lee et al, 2006). However, methods
based on coexpression are most useful when a relatively small
number of cell state parameters are perturbed and the
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expression of large subsets of genes changes in a coherent way.
One expects them to be less naturally suitable for analyzing
natural gene expression variation, where the segregation of
alleles in a genetic cross causes a very large number of cell
state parameters to be independently perturbed. Indeed, with
some exceptions, the number of genes in genetic coexpression
modules is very small (Yvert et al, 2003; Lee et al, 2006).
Principal component analysis (PCA) (Biswas et al, 2008) of the
matrix of genes by segregants, and extensions of PCA that
incorporate qualitative information about regulatory network
topology (Kliebenstein et al, 2006; Sun et al, 2007; Ye et al,
2009), have also been applied to map trans-acting loci.
Although these methods all improve upon single-gene based
approaches, the lion’s share of the heritable variation in gene
expression remains to be accounted for.

We here present a transcription-factor-centric and sequence-
based method for the dissection of genetic expression
variation. A key feature of our approach is the use of
quantitative prior information about the DNA-binding speci-
ficity of transcription factors (TFs) in the form of position-
specific affinity matrices (Bussemaker et al, 2007). These
matrices are used to predict the affinity with which each TF
binds to the promoter region of each gene. We use a linear
regression model motivated by a biophysical description of
gene expression regulation (Bussemaker et al, 2001, 2007) to
explain the genome-wide transcriptional response to the
genetic perturbations in each segregant in terms of changes
in ‘hidden’ TFactivity. Treating the latter as a quantitative trait
allows us to map the activity quantitative trait loci (‘aQTLs’)
whose allelic status modulates the regulatory activity of
specific TFs.

As we will demonstrate below, our method has a greatly
improved statistical power to detect regulatory mechanisms
underlying the heritability of genome-wide mRNA expression.
Specifically, it identified six times as many locus-TF associa-
tions from a genetic cross between two haploid yeast strains as
all existing methods combined. This includes novel trans-
acting polymorphisms in the TF-encoding gene STB5, RFX1,
and HAP4. We also identified 20 previously unknown trans-
acting loci. Furthermore, for many of the 13 known eQTL
hotspots in yeast, our method implicated several TFs that were
not previously known to mediate the effect of inheritance of
these loci on gene expression levels. We validated our ability to
predict locus-TF associations in yeast using gene expression
profiles for allele replacement strains. Finally, application to
mouse data identified an aQTL modulating the activity of a
specific TF in liver cells, demonstrating that our method also
works in higher eukaryotes.

Results

We applied our method in two different organisms: budding
yeast and mouse. For yeast, the data set we used (Smith and
Kruglyak, 2008) covers 108 haploid segregants from a cross
between two haploid strains of Saccharomyces cerevisiae—a
lab strain (BY) and a wild isolate from a vineyard (RM). It
includes two-color DNA microarray measurements for each
gene of the mRNA abundance in each individual segregant
relative to a pooled reference consisting of equals amounts of

mRNA from both parental strains, and genotyping information
at 2957 genomic marker locations. The mouse data set
consisted of gene expression levels in the liver cell lines of
an F2 intercross population between C57BL/6J and DBA/2J
(BXD) consisting of 111 animals (Schadt et al, 2003), and the
genotyping at 139 microsatellite markers uniformly distribu-
ted over the mouse genome (Drake et al, 2001).

Inferring segregant-specific TF activities

Figure 1 provides an overview of our computational proce-
dure. As inputs, it requires: (i) the nucleotide sequence of the
cis-regulatory region associated with each gene; (ii) a weight
matrix for each TF, used to predict the strength with which the
TF binds to each cis-regulatory region; (iii) a matrix containing
continuous values, whose rows correspond to genes and
whose columns contain the genome-wide mRNA expression
profile of a particular segregant; and (iv) a genotype matrix
containing binary values, whose rows correspond to genetic
markers, and whose columns specify from which parent each
marker was inherited in a particular segregant. As cis-
regulatory sequence, we used 600 bp upstream of each open
reading frame. We previously demonstrated that when the
binding specificity of a TF is known, quantitative changes in its
regulatory activity can be inferred by performing genome-wide
linear regression of differential mRNA expression on the
predicted in vitro binding affinity of cis-regulatory regions
(Foat et al, 2008). The biophysical foundation that underlies
this regression approach requires the binding specificity of
each TF to be represented as a position-specific affinity matrix
(PSAM) (Foat et al, 2005). We used an existing compendium of
position weight matrices (PWMs) for yeast TFs (MacIsaac
et al, 2006), converting each PWM to an approximate PSAM by
assuming base frequencies to be proportional to relative
binding affinities at each position within the binding site
(Bussemaker et al, 2007). Each PSAM was then used to
estimate the segregant-specific promoter affinity for all genes
(Figure 1A). With only a few exceptions, these promoter affinity
profiles are not correlated between TFs (Supplementary Figure
S1). This allowed us to estimate the segregant-specific
regulatory activity of most TFs in an independent manner. For
each segregant, genome-wide linear regression of differential
mRNA expression on segregant-specific promoter affinity for
each TF was performed (Figure 1B). The coefficients from this
fit represent protein-level TF activities, which we treat as a
quantitative phenotype. Whenever the distribution of TF
activity depends on the inheritance at a particular genomic
position, this indicates the presence of an aQTL (Figure 1C).
Details are provided in the Materials and methods section.

TF activity is a highly heritable quantitative trait

To establish that the TF activities inferred by our regression
procedure are meaningful, we calculated their heritability
h2 (see Materials and methods). Encouragingly, we found that
the activity of 102 of the 123 TFs tested is heritable at a false
discovery rate (FDR) of 5% corresponding to h2480.4%. In
general, the heritability of the inferred TF activity is higher
than that of the mRNA expression level of the gene encoding
the TF (Supplementary Figure S2). Figure 2 shows differences
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in TF activity between the BY and RM parental strains as
estimated by applying the regression procedure of Figure 1 to
the average differential mRNA expression profile between BY
and RM (Smith and Kruglyak, 2008). Hap1p is the factor
whose regulatory activity is the most strongly modulated
between the BYand RM strains. Indeed, it is known that a Ty1
insertion in the HAP1 coding region occurs in BY and other
derivatives of the lab strain S288C (Gaisne et al, 1999) and that
this insertion is absent in RM (Brem et al, 2002). Overall,
46 TFs are more active in RM, whereas 56 are more active in
BY, at a 5% FDR. Merely comparing the two parental strains,
however, does not reveal which loci are responsible for the
differences in TFactivity. Only genetic mapping to quantitative
trait loci can provide that information.

Identifying aQTLs: genomic loci that modulate
TF activity

The regression procedure of Figure 1 takes into account prior
information about the connectivity of the transcriptional
network of the cell in a way that allows us to directly treat
TFactivity as a quantitative trait. To identify aQTLs for each TF,
we used composite interval mapping (CIM) (Zeng, 1994),
which accounts for linkage between neighboring markers and
has significantly better spatial resolution than single-marker
methods (Supplementary Table S1; Supplementary Figure S3).
This is important, as even the aQTL regions detected using CIM
typically encompass 20–30 genes, and our goal is to uncover
trans-acting causal mutations in individual genes or even
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Figure 1 Overview of our transcription-factor-centric approach to detecting trans-acting sequence variation. (A) We construct a matrix containing the promoter-binding
affinity for each combination of the upstream non-coding sequence of a particular gene and the position-specific affinity matrix (PSAM) of a particular transcription factor
(TF). (B) The promoter-binding affinity matrix is interpreted as a regulatory connectivity matrix and used to infer a matrix containing the regulatory activity of each TF in
each segregant. For each segregant independently, multivariate genome-wide linear regression of segregant-specific differential mRNA expression on the matrix of
promoter affinity for all TFs is performed. The coefficients from this linear fit represent (differential) protein-level TF activities. (C) For each TF independently, we treat the
inferred activity as a quantitative phenotype and use genetic linkage analysis across all segregants to identify loci that genetically modulate TF activity. Whenever TF
activity is statistically associated with genotype at a particular genetic marker, this shows as a high log-odds (LOD) score indicating the presence of a TF activity
quantitative trait locus, or ‘aQTL’.
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nucleotides. Figure 3 provides an overview of the TF-locus
associations identified using our method. To control for
multiple testing, we use a log-odds (LOD) score threshold
(red line in Figure 1C) corresponding to a 5% FDR (see

Materials and methods and Supplementary Figure S6). We
identified a single aQTL for 55 and multiple aQTLs for 22 of the
123 TFs analyzed. Together, the mapped aQTLs cover several
dozen distinct genomic loci (Supplementary Table S2). Note

Figure 2 Inferred differences in TF activity between the BY and RM parental strains. Shown are the t-values corresponding to the regression coefficients in a
multivariate linear model that predicts genome-wide differential mRNA expression from predicted binding affinity of upstream promoter regions.
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that all aQTLs are by definition trans-acting from the point of
view of the mRNA expression level of individual genes, as the
trait analyzed is the ‘hidden’ regulatory activity of each TF.

Validation of aQTL-TF linkages using an IRA2
allele swap

To the extent that aQTLs act independently, the regulatory
consequences of allelic variation at a particular locus should
be independent of the genetic background in which it occurs.
To validate our method, we therefore analyzed gene expres-
sion profiles of allele replacement strains from a previous
study (Smith and Kruglyak, 2008). According to our analysis,
chromosome 15 contains an aQTL that influences the activity
of several dozen distinct TFs (Figure 3; Supplementary Table
S2). Among the 19 genes in this region is IRA2, which encodes
a GTPase-activating protein that negatively regulates Ras

proteins and thereby controls intracellular cAMP levels
(Tanaka et al, 1990). The coding region of IRA2 is highly
polymorphic (Smith and Kruglyak, 2008). We analyzed the
gene expression profile of a BY strain carrying the RM allele of
the IRA2 coding region, and vice versa, and found that the
activity of Adr1p, Cha4p, and Msn4p was significantly affected
by the allele replacement (Supplementary Figure S4; P-value
3.3�10�16, 1.1�10�10, and 1.6�10�5, respectively, see
Materials and methods). Each of these TFs was indeed
predicted by our method to link to the IRA2 locus. Consis-
tently, cAMP-dependent protein kinase is known to influence
Adr1p activity (Cherry et al, 1989) and regulate subcellular
localization of Msn4p, which influences its activity (Gorner
et al, 1998). Altogether, there are 30 TFs with an aQTL region
containing the IRA2 gene. They do not all need to be influenced
by the polymorphism(s) in its coding region; additional causal
polymorphisms in nearby genes, modulating other subsets of
the 30 TFs, may well exist. It is therefore not surprising that the

Figure 3 Overview of the trans-acting genetic modulators of TF activity mapped using our method. All transcription factors that have at least one significant aQTL
region at a 5% FDR are shown. Transcription factors are sorted according to the chromosomal position of their maximum LOD score. Putative causal gene assignments
are indicated in green (local aQTL: TF encoded by gene in aQTL) or red (protein–protein interaction identified between TF and gene in aQTL).
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activity of only 3 out of 30 TFs was significantly affected by
the IRA2 allele replacement. On the other hand, we do not
expect any TF whose activity does not link to the IRA2 locus to
be affected by the allele replacement. Indeed, as can be seen
from Supplementary Figure S4, our method achieved 100%
specificity in this regard: none of the 93 TFs whose aQTL(s) do
not contain IRA2 showed a change in regulatory activity.

Novel trans-acting polymorphisms in
transcription-factor genes

Of the aQTL linkages we detected, only four—those of Hap1p,
Stb5p, Rfx1p, and Hap4p—are local (Figure 3, green boxes).
The probability that a locus showing aQTL linkage encom-
passes the gene encoding the TF itself by chance is typically
o1% (it equals the ratio of the number of genes in the aQTL
and the total number of genes). Therefore, whenever such
local linkage happens, it is highly likely that the causal
polymorphism resides in the coding region or regulatory
region of the TF gene. The aQTL profile for Hap1p is shown in
Figure 1C, and the polymorphism in HAP1 that gives rise to it
was already discussed above.

Stb5p is a C2H2 zinc finger protein that serves as an
activator of multidrug resistance genes (Kasten and Stillman,

1997). A significant difference in Stb5p activity exists between
the BY and RM strains (Figure 4A), and this activity is highly
heritable (h2¼95%). We detected highly significant local linkage
(LOD score¼10.84; Q-value¼2.69�10�8) between Stb5p activ-
ity and the allelic status of the STB5 locus (Figure 4B).
Alignment of the BY and RM protein sequences for Stb5p
revealed five amino-acid mutations (see Supplementary Table
S3), all of which occur outside the DNA-binding domain. We
found no nucleotide differences in the 50 and 30 untranslated
regions or o1 kb upstream of the transcription start site of
STB5. Consistently, the mRNA expression level of the STB5 gene
is not significantly correlated with the activity of Stb5p (r¼0.18;
P-value40.05). Furthermore, CIM analysis of the mRNA
expression level of the STB5 gene did not reveal any local
eQTL linkage (Supplementary Figure S5). The power of our
aQTL approach is further underscored by the fact that no eQTL
hotspot has been detected at the STB5 locus (Brem et al, 2002).
It will be interesting to further dissect the post-translational
mechanism(s) by which the sequence differences between the
BY and RM alleles of Stb5p cause a difference in its regulatory
activity.

Rfx1p is a major transcriptional repressor of the DNA
damage response. The RM allele of the RFX1 gene contains a
premature stop codon. Consistently, genes whose promoter is

Figure 4 (A) Inferred activity of Stb5p in parental strains and segregants. The first and second columns show the activity of Stb5 in six replicates of a BY-reference
comparison and six replicates of a RM-reference comparison. The third and fourth columns show the activity of Stb5p for segregants that inherited the BY and RM allele,
respectively, at the STB5 locus. (B) LOD score profile for the activity of Stb5p. An asterisk denotes the STB5 locus.
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predicted to be bound by Rfx1p tend to be more highly
expressed in the BY strain than in the RM strain (Figure 2).

The last local aQTL we discovered was for Hap4p, a subunit
of the heme-activated, glucose-repressed Hap2p/3p/4p/5p
CCAAT binding complex. Consistently, the mRNA expression
level of the HAP4 gene is highly correlated with the activity of
Hap4p (r¼0.79).

CDC28 antagonistically modulates Fkh1 and Fkh2

Chromosome II contains an ‘aQTL hotspot’ whose allelic
status influences the activity of no fewer than 15 distinct TFs
(Figure 3), including Fkh1p and Fkh2p. The locus contains the
CDC28 gene, which encodes a cyclin-dependent kinase.
Phosphorylation by Cdc28p is known to regulate the activity
of Fkh2 by promoting interaction with a coactivator (Pic-
Taylor et al, 2004). On the basis of the aQTL mapping to the
CDC28 locus in combination with high-throughput evidence of
their physical interaction (Ho et al, 2002) with Cdc28p
(Supplementary Table S3), we predict that Fkh1p is also
post-translationally modulated by Cdc28p. The sign of the
aQTL linkage to the CDC28 locus for Fhk2p is the opposite of
that for Fkh1p (Figure 5A): whereas the transcriptional targets
of Fkp1p are more highly expressed in segregants carrying the
BYallele at the CDC28 locus, the opposite is true for the targets
of Fkh2p (Figure 5B). The same pattern holds for the inferred
difference in TF activity between the two parental strains
(Figure 2). The antagonism between Fkh1p and Fkh2p is
consistent with previously observed differences in function
between the two factors (Hollenhorst et al, 2001; Morillon et al,
2003). These two TFs have similar sequence specificity, and
consequently their total promoter affinity profiles are corre-
lated across genes (r¼0.72; see also Supplementary Figure
S1B). Nevertheless, we were able to detect the opposite
influence of the CDC28 polymorphism on their activity
because our method uses multivariate regression, which
forces TFs with correlated promoter affinity profiles to compete
for the same differential mRNA expression signal. When we
analyze each TF separately using a univariate model, the CIM
regression coefficients for Fkh1p and Fkh2p (incorrectly) have
the same sign. This example underscores the importance of our
affinity-based quantification of the matrix of regulatory
connectivities between TFs and their target genes.

An aQTL on chromosome VII controlling Zscan4
activity in mouse liver cells

To determine whether our method could map aQTLs for
mammalian TFs, we applied it to parallel genotyping and liver
cell expression data for an F2 mouse population (Schadt et al,
2003). Weight matrices derived from protein-binding micro-
array (PBM) data for 104 mouse TFs were used (Badis et al,
2009). The model we used to analyze the yeast segregants
contains ‘cis’ coefficients, which explicitly model changes in
expression because of allelic variation in promoter sequence,
in addition to the ‘trans’ coefficient that model the changes in
TF activity. However, we found that a simpler ‘trans-only’
model performed equally well in terms of mapping aQTLs
when applied to the yeast segregant data (Supplementary

Figure S7). This gave us confidence to use a ‘trans-only’ model
in mouse, where the density of markers is too low to assign
gene-specific promoter sequences. We identified an aQTL for
Zscan4, a TF containing four zinc finger domains and a SCAN
domain, which is also known as the leucine-rich region
(Williams et al, 1995) (Figure 6). Using a multivariate linear
model to analyze the homozygous C57BL/6J (BB), homo-
zygous DBA/2J (DD), and heterozygous (BD) genotype at the
aQTL locus (Figure 6A), we found the behavior of the aQTL to
be additive and show no significant dominant effect (see
Materials and methods). A highly significant linkage (LOD
score¼10.8) with Zscan4 activity occurs between 43 and 66 cM
on mouse chromosome 7 (Figure 6B). This region contains
4500 genes, which makes it difficult to predict the causal
polymorphism. Limited information is available about pro-
tein–protein interaction (PPI) for mouse, and we could not
detect any direct interaction between genes within this region
and Zscan4p. However, our result demonstrates that TF
activity can also be inferred and mapped in mammalian cells
using our method, and provides a starting point for further
dissection of trans-acting regulatory variation mediated by
Zscan4p.

Discussion

We have presented a transcription-factor-centric method for
identifying trans-acting genetic modulators of gene expression
using parallel genotyping and mRNA expression phenotyping
data. Our approach is based on the idea of treating the
genotype-specific regulatory activity of each TF as a quanti-
tative trait. It exploits prior information about the network of
interactions between TFs and their target genes to infer
genotype-specific TF activities from genome-wide measure-
ments of mRNA expression. Our method has greatly increased
statistical power to detect locus-TF associations. It is sensitive
even to a relatively subtle influence of genotype-specific TF
activity on mRNA expression because it is based on a statistical
analysis across both genes and segregants. The fact that TF
activity is not a gene-specific phenotype allows us to make the
rather crude assumption that the strength of the regulatory
connectivity between TF and target gene is proportional to
in vitro promoter affinity. In reality, many of the predicted
binding sites in promoter regions are not functional, due to
complex interactions with nucleosomes and other chromatin-
associated factors. It is remarkable that our method works in
spite of this complexity.

Application of our aQTL method to a data set for 108 haploid
segregants from a cross between two yeast strains (Smith and
Kruglyak, 2008) demonstrated a dramatic increase in statis-
tical power to uncover the regulatory mechanisms underlying
genetic variation in gene expression levels. The results are
summarized in Supplementary Table S2. We identified a total of
103 locus-TF associations, a more than six-fold improvement
over the 17 locus-TF associations identified by several existing
methods (Brem et al, 2002; Yvert et al, 2003; Lee et al, 2006;
Smith and Kruglyak, 2008; Zhu et al, 2008). The total number of
distinct genomic loci identified as an aQTL for one or more TFs
equals 31, which includes 11 of the 13 previously identified
eQTL hotspots (Smith and Kruglyak, 2008). Thus, our method
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identifies 20 novel trans-acting polymorphisms: almost double
the number of known such loci in yeast. For many of the eQTL
hotspots, it also implicated several TFs not previously known to
mediate the influence of these loci on genome-wide mRNA
expression.

Our regression procedure fully accounts for post-transla-
tional regulation of TF activity at the protein level, as we do
not use the mRNA expression level of either the gene encoding
the TF or one its upstream modulators as a surrogate for
regulatory activity. Indeed, the correlation between the
protein-level regulatory activity of a TF and its expression at
the mRNA level across a large number of experimental
conditions in yeast was recently found to often be quite poor

(Boorsma et al, 2008). The present study confirms this
observation: Only one third of TFs analyzed show a significant
(o5% FDR) correlation between mRNA expression and
activity (Supplementary Figure S6). Moreover, only 12 of the
103 TF-locus associations could be confirmed when mRNA
expression level was used as a proxy inferred protein-level
TF activity.

We also applied our aQTL method to the earlier yeast
segregant data set of (Brem and Kruglyak, 2005). This
confirmed the dramatic increase in statistical power afforded
by our approach (see Supplementary Table S5). We detected a
total of 79 locus-TF associations, which again is a more than
six-fold improvement over the 14 locus-TF associations

Figure 5 (A) Activity of Fkh1p and Fkh2p across all segregants. The activity of Fkh1p is negatively correlated with that of Fkh2p. The yellow dots correspond to
segregants carrying the BY allele at the CDC28 locus, the green dots to those carrying the RM allele. (B) Schematic diagram illustrating the antagonistic modulation of
Fkh1p and Fkh2p by Cdc28p. Although the transcriptional targets of Fkh1p are more highly expressed in segregants carrying the BY allele at the CDC28 locus, the
opposite is true for the targets of Fkh1p.
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detected from these data by several existing methods (Lee et al,
2006; Sun et al, 2007; Zhu et al, 2008; Ye et al, 2009) combined.
Furthermore, 28 of these 79 locus-TF associations were also
detected using the data of (Smith and Kruglyak, 2008). This
degree of reproducibility strongly validates our method: given
that the number of possible such associations equals the
number of TFs (123) times the number of markers (B3000)
divided by the average number of genes per locus (B20), we
would expect this overlap to beB0.4 by random chance. There
is also no reason to expect complete overlap, as the data sets
were similar but not identical. Indeed, although 13 eQTL
hotspots have been identified in each respective data set, only
8 of these are the same (Smith and Kruglyak, 2008; Zhu et al,
2008).

Our findings are consistent with previous observations
(Yvert et al, 2003) that most trans-acting variation in yeast
does not map to TF genes, but to upstream modulators of TF
activity. Indeed, of the total of 103 TF-locus associations
shown in Figure 3 only four are local. We confirmed that HAP1
is directly affected by a sequence polymorphism, and
discovered novel trans-acting polymorphisms in the TF-
encoding gene STB5, RFX1, and HAP4. Unexpectedly, our
analysis revealed loci on chromosomes II and XV that are
informative for a large number of TFs (‘aQTL hotspots’). We
stress that this cannot be accounted for in terms of correlated
profiles of promoter affinity across genes, as we found these to

be largely independent between TFs (cf. Supplementary Figure
S1A). Rather, this phenomenon seems to point to one-to-many
relationships between signal transduction pathways and TFs.
For instance, our method predicts that genetic variation at the
locus on chromosome II encoding the cyclin-dependent kinase
CDC28 changes the activity of multiple cell cycle associated
TFs (Ace2p, Fkh1p, Fkh2p, and Swi5p). At the same time,
distinct polymorphisms at the same aQTL could be responsible
for modulating different subsets of linked TFs. Evidence for
this is our observation that allele replacement at the IRA2 locus
on chromosome XVonly affected a small subset of the TFs whose
activity is linked to this aQTL (cf. Supplementary Figure S4).

In an effort to uncover further specific molecular mechan-
isms underlying the aQTL linkages summarized in Figure 3,
we supplemented our genetic analysis with knowledge about
physical and genetic PPIs; see Materials and methods for
details. The information provided by PPI and aQTL is highly
complementary. On the one hand, aQTL linkage can only
implicate relatively large genomic regions, not individual
genes, as genetic modulators of TF activity. On the other hand,
although PPI data can connect a TF to a putative modulator of
its activity, it would be questionable to conclude that the
interaction corresponds to a functional regulatory network
connection without the strict causality and directionality
associated with aQTL linkage. In all cases, the probability
that a gene within the aQTL region encodes one of the direct

Figure 6 (A) Inferred activity of Zscan4p across all F2 mouse population. Each column shows the activity of Zscan4 in homozygous C57BL/6J (BB), heterozygous
(BD), and homozygous DBA/2J (DD) mice at aQTL positions, respectively. (B) LOD score profile for Zscan4p.
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interactors of the TF by chance is o3% (see Materials and
methods and Supplementary Table S4). Therefore, most of
these genes (aQTG) are expected to encode direct or indirect
modulators of the TF’s activity. We were able to implicate a
non-coding polymorphism in the CDC28 gene as a plausible
genetic factor underlying the major eQTL hotspot on chromo-
some II (in addition to the experimentally validated trans-
acting polymorphism in the AMN1 gene in the same region
(Yvert et al, 2003)) and make a strong prediction that the
functionally distinct cell cycle regulators Fkh1p and Fkh2p are
modulated by the cyclin-dependent kinase Cdc28p in an
antagonistic manner.

Extensive transgressive segregation has been previously
identified for the expression levels of individual genes (Brem
and Kruglyak, 2005). However, when we tested for the same
phenomenon at the level of TF activity (see Materials and
methods), we were only able to detect transgressive segrega-
tion for Ecm22p and Tec1p (Supplementary Figure S8); in both
cases, the effects of two aQTLs for same TF cancel each other
in both parental strains, and no differential activity between
RM and BY could be observed (Figure 2). Presumably, much of
the transgressive segregation at the level of individual genes is
due to the fact that positive and negative contributions from
different TFs can cancel each other. Our multivariate modeling
of each individual gene’s expression level in terms of the
activity of multiple TFs accounts for such compensation
explicitly, and hence the transgression is much less prevalent
for aQTLs than for eQTLs.

In our approach, ‘phenotype space’ is reduced from that of
all genes to that of all TFs. Rather than mapping the measured
mRNA expression level of individual genes to eQTLs, we map
the inferred activity of each TF to ‘aQTLs.’ This enhances
statistical power in two distinct ways. First, it improves the
signal-to-noise ratio for the quantitative trait itself, as the
activity of each TF is estimated from the mRNA expression
levels of its many targets. Second, the severity of the multiple-
testing problem associated with QTL mapping because of the
large number of marker/trait combinations is greatly reduced.
Running in only seconds on a single processor, our algorithm is
also computationally efficient.

It is important to emphasize that in our method the
molecular identity of a TF is only defined through the PSAM
that parameterizes its DNA-binding specificity. The sequence-
to-affinity model for each TF needs to be specific enough to
allow differentiation from all other TFs. We found that in the
case of the budding yeast S. cerevisiae this condition generally
holds. Given the rapid pace at which in vitro DNA-binding data
is currently being generated for mammalian TFs (Badis et al,
2009), together with the demonstrated ability of regression-
based models to infer TF activity in human cells (Das et al,
2006), we expect application of our method also to be feasible
in higher eukaryotes.

Taken together, our results underscore the value of explicitly
treating TF activity as a quantitative trait from a systems
biology perspective as a promising strategy for increasing the
statistical power of genome-wide linkage and association
studies. More generally, our method is applicable whenever a
matrix of connection strengths between regulators and targets,
independent of the phenotype matrix, is available as prior
information. There are several directions in which this

approach can be extended. First, the use of more sophisticated
methods for causal gene identification (Sun et al, 2007;
Suthram et al, 2008; Lee et al, 2009) is likely to uncover
additional molecular mechanisms. It will also be interesting to
analyze to what extent the connectivity between the TF and
their genetic modulators depends on the nutrient condition in
which the yeast cells are grown (Smith and Kruglyak, 2008).
Furthermore, aQTLs provide a novel vantage point for
analyzing locus–locus interactions. Finally, it should be
interesting to analyze to what extent genetic variation in
steady-state gene expression levels because of post-transcrip-
tional regulation of mRNA stability (Foat et al, 2005; Lee et al,
2009) is amenable to dissection using the method introduced
in this paper.

Materials and methods

Gene expression and genotyping data

We analyzed genome-wide mRNA expression data from a study
performed by Smith and Kruglyak (2008), which used two-color cDNA
arrays. The data (GEO accession number GSE9376) cover a genetic
cross between two haploid yeast strains—a laboratory strain (BY4716)
and a natural isolate (RM11-1a). The data set includes six biological
replicates of the BY parental strain, six replicates of the RM parental
strain, and one replicate for each of 108 haploid segregants grown in
two different conditions, with glucose and ethanol as the carbon
source, respectively. For the present study, we only used data for the
glucose condition. The study used a reference design in which all
hybridizations were performed using equal amounts of mRNA from
both parents (BY and RM) grown in both conditions as a reference.
Log2-ratios, averaged over a dye swap, were used for all further
analysis.

For comparison, we also analyzed genome-wide mRNA expression
data for yeast segregants from a cross between BYand RM strains (GEO
accession number GSE1990) from an earlier study performed by Brem
and Kruglyak (2005). Following these authors, we excluded ORFs
rejected by Kellis et al (2003). The data set covers 6 biological
replicates of the BY parental strain, 12 replicates of the RM parental
strain, and 1 replicate for each of 112 haploid segregants. The study
used the BY material as a reference. Log2-ratios, averaged over the dye
swap, were used for all further analysis. In addition, we averaged log-
ratios for 13 ORFs that were spotted twice. Finally, we normalized each
array by subtracting the mean log-ratio. For each of the segregants
whose expression levels were determined, 2957 markers were
genotyped by Brem and Kruglyak (2005), who kindly made this data
available to us.

We also analyzed previously published F2 mouse genome-wide
expression data (Drake et al, 2001; Schadt et al, 2003) (GEO accession
GSE2008). The data set contains genome-wide oligonucleotide
microarrays profiled using liver tissue from 111 F2 mice, which were
constructed from two standard inbred strains, C57BL/6J and DBA/2J.
The F2 mice fed an atherogenic diet for 4 months beginning at 12
months of age. This study used a common pool created from equal
portions of RNA from each of the samples as a reference. Following the
previous study, expression changes between each sample and a
reference were quantified as expression log10-ratios between normal-
ized, background-corrected intensity values for the two channels. The
F2 intercross mice were genotyped at 139 microsatellite markers
uniformly distributed over the mouse genome.

Genome sequence of BY and RM strains

We obtained RM11-1a sequence data from the Broad Institute (http://
www.broad.mit.edu) and BY4716 sequence data from the Saccharo-
myces Genome Database (SGD; http://www.yeastgenome.org).
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Defining genotype-specific promoter sequences

To define genotype-specific promoter sequences, we first identified
pairs of genes orthologous between BY and RM. We aligned coding
sequences of RM genes to the BY strains using BLAST in Bioperl
(Altschul et al, 1997), and chose the best BLAST hits to identify the
orthologous genes. Then, we obtained 600 bp upstream sequences of
each orthologous pair to define BY and RM-specific promoter
sequence. For segregants, we determined whether the promoter
sequence of a particular gene was inherited from BY or RM strains.
To this end, we first identified all genetic markers located within the
600 bp upstream of each open reading frame. If no genetic marker
within 600 bp could be found, we selected the marker closest to the
upstream region. The genotype of the selected markers was used to
assign either the BYor RM promoter sequence to the gene. If multiple
markers with inconsistent genotypes were selected, we discarded
the gene.

Inferring segregant-specific TF activities

We downloaded a collection of 124 PWMs from a study by MacIsaac
et al (2006) (we excluded Hap3, as it has the exact same PWM as
Hap5). Next, we used the convert2psam utility from the REDUCE Suite
version 2.0 software package (see http://bussemakerlab.org) to
convert each PWM to a PSAM (Foat et al, 2005, 2006; Bussemaker
et al, 2007). Pseudo-counts equal to one were added to the PWM at
each position, and the resulting base counts were divided by that of the
most frequent base at each position to get an estimate for the relative
affinity associated with each point mutation away from the optimal-
binding sequence (Foat et al, 2008). The resulting PSAM collection was
used to infer genotype-specific changes in TF activity.

The occupancy Nfg of the upstream region Ug of gene g by TF f
depends on the nuclear concentration [f] of the TF and on the
landscape of binding affinity across Ug. Both these quantities are
genotype specific. At non-saturating concentrations of the TF, the
occupancy in genotype G can be approximated by the product of
concentration and affinity (Foat et al, 2006):

NgfðGÞ � ½f�ðGÞKfgðGÞ
The total promoter affinity Kfg(G) depends on the segregant-specific
upstream sequence Ug(G), and is given by:

Kfg ¼
X
i2Ug

Kgfi ¼
X
i2Ug

YLf

j¼1

wfjbiþj�1ðUgÞ

Here, Kgfi represents the binding affinity (relative to the optimal DNA
sequence) between TF f and the DNA in a window of length Lf

starting at position i within Ug. Assuming independence between
nucleotide positions, we approximate Kgfi by a product of position-
specific relative affinities wfjb. Finally, bi(Ug) denotes the base identity
at nucleotide position i within Ug.

We assume that when steady-state mRNA abundances are being
compared between genotype G and reference genotype Gref, the
expression log2-ratio for gene g, to linear approximation, is propor-
tional to the difference in promoter occupancy:

log2 ð½mRNAg �ðGÞÞ� log2 ð½mRNAg �ðGrefÞÞ / NfgðGÞ � NfgðGrefÞ
� ½f�ðGÞKfgðGÞ � ½f�ðGrefÞKfgðGrefÞ
¼ ð½f�ðGÞ � ½f�ðGrefÞÞKfgðGÞ
þ ½f�ðGrefÞðKfgðGÞ � KfgðGrefÞÞ

All total promoter affinities are known, so we can use the differential
mRNA abundances to estimate coefficients bcis�[f](Gref) and
btrans�[f](G)�[f](Gref). This motivated us to fit the following
multivariate linear model to each segregant:

ygs ¼ b0s þ
X
f

btrans
fs KfgðsÞþ

X
f

bcis
fs KfgðsÞ � Kfg

� �
ref

� �

Here ygs represents mRNA expression log-ratios for gene g in segregant s.
For the segregant data of Smith and Kruglyak (2008), whose used a
pool of equals amounts of parental strains as their reference sample,
Kfg

� �
ref

equals the average of BYand RM promoter affinities, whereas

for that of Brem and Kruglyak (2005), who used the BY strain as their
reference, Kfg

� �
ref

equals the BY promoter affinity. The intercept b0s

absorbs any normalization differences that may occur. The genome-
wide affinity profiles for several PSAMs are highly correlated (e.g.
Msn2 and Msn4, Ino2 and Ino4). To avoid any problems resulting from
such multicollinearity, we used ridge regression, which minimizes the
residual sum of squares subject to a penalty proportional to the L2-
norm of the coefficients, and gives a slightly biased but more precise
estimator of coefficients than ordinary least squares (Hoerl and
Kennard, 1970). We also fit the above model in ‘trans-only’ mode
(bcis�0).

To infer segregant-specific TF activities in mouse, we downloaded
PWMs defined by Badis et al (2009) who used PBM technology to
determine the in vitro DNA-binding specificities of 104 different mouse
TFs. We estimated PSAM and total promoter affinity from PWMs using
1000 bp upstream sequence of C57BL/6J strain by the same procedure
explained above. We obtained C57BL/6J mouse genome sequence
from UCSC Genome Browser (http://genome.ucsc.edu/).

Heritability

We calculated the heritability of the activity of each TF as follows:

h2 ¼ ðs2
s � s2

pÞ=s2
s

Heress
2 andsp

2 are the variance of the linear regression coefficient from
the ridge regression across the segregants, and the pooled variance of
the parental strains, respectively. To determine the statistical
significance of the heritability, we performed ridge regression after
independent random permutation of expression log-ratios (parents
and segregants combined) for each gene (1000 samples) and used the
resulting empirical null distribution to compute a FDR.

aQTL mapping in yeast

To detect significant genetic contributions to TF activity by specific
loci, we performed a split of the segregants by each specific marker and
tested for a difference between the two distributions of ridge regression
coefficients using Welch’s t-test and the non-parametric Wilcoxon–
Mann–Whitney test. We also used CIM, which uses multivariate
regression on multiple markers for increased precision of QTL
mapping (Zeng, 1994), as implemented in the R/qtl package (Broman
et al, 2003). Statistical significance was determined by performing
independent random permutation of expression log-ratios (segregants
only) for each gene. The FDR corresponding to a given LOD score
threshold was computed as the ratio of the number of linkages above
threshold averaged over 20 randomized data sets, and the number of
transcripts with detected linkage. We also estimated the FDR using the
standard Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995). For the CIM method, a 5% FDR based on the empirical
permutation test corresponded to a LOD score 44.49 (Supplementary
Figure S9).

aQTL mapping in mouse

In the case of mouse data analysis, aQTL mapping was conducted
using a linear model. First, we constructed explanatory variables for
the additive and dominance terms for each marker from the estimated
genotype probabilities and used them in the regression analysis.
Linkages were identified by comparing the likelihood, maximized as a
function of the regression coefficients, for the following multivariate
linear model

btrans
fs ¼ b0 þ badd

f Xadd
ms þ bdom

f Xdom
ms

to the likelihood for the null model bfs
trans¼b0. Here, the dependent

variable bfs
trans represents the TFactivity as estimated using the affinity-

based model defined above in ‘trans-only’ mode (bcis�0). The
independent variables Xms

add (taking values 0, 1, and 2, for (diploid)
genotypes BB, BD, and DD, respectively) and Xms

dom (taking values 0, 1,
and 1, for the same respective genotypes) represent additive and
dominant terms for each marker, respectively. The LOD score was
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defined as the log10 of the likelihood ratio between the two models. The
FDR was computed using the same procedure described above; an FDR
o5% based on empirical permutation test corresponded to a LOD
score 44.21.

Protein–protein interaction data

To identify putative causal genes from the aQTL regions of each
specific TF, we used three different types of PPI data: (i) physical and
genetic interactions in the BioGRID database (Stark et al, 2006),
(ii) interactions between chromatin modifiers and associated TFs
(Steinfeld et al, 2007), and (iii) kinase–TF interactions (Ptacek et al,
2005). We computed the expected number of direct interactors among
the genes in the aQTL region for a specific TF based on the total
number of interactors of the TF genome wide, the number of genes in
the aQTL, and the total number of genes. Statistical significance was
computed using Fisher’s exact test.

Validation of predicted locus-TF associations

We downloaded gene expression profiles obtained by Smith and
Kruglyak (2008) for a strain carrying the RM allele of IRA2 in the
BY4742 background (RM@IRA2), a strain carrying the BY allele of
IRA2 in the RM11-1a background (BY@IRA2), and six replicates each
of the BY and RM parental strains (GEO accession number GSE9376).
We only used the data for cells grown in glucose as the carbon source.
The reference sample used in all cases was pooled parental mRNA (see
above). Therefore, to obtain an estimate for the differential expression
between RM@IRA2 and BY, we subtracted the mean log-ratio of the BY
replicates from the RM@IRA2 log-ratios,

yBY-RM@IRA2
g ¼ log2

½mRNAg �ðRM@IRA2; glucoseÞ
½mRNAg �ðpoolÞ

� �

� log2

½mRNAg �ðBY; glucoseÞ
½mRNAg �ðpoolÞ

� �

and performed multivariate (ridge) regression of these values on the
BY promoter affinities for all TFs. We also performed the equivalent
analysis where the roles of RM and BY were reversed. Finally, to
average over strain background, we took the difference between the
two regression coefficients for each TF to be our statistic for differential
activity. To determine statistical significance, we performed 1000
random permutations of all genes to determine the standard error of an
empirical null distribution, and used it to compute a P-value. A FDR of
5% corresponded to a P-value of 10�4.20.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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