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Abstract: Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is
crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been
reported to be one of the most prominent cellular targets of post-translational modifications (PTMs),
which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting
protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs
(oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter
the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream
partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss
the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on
GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through
regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling
complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic
activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are
also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration
and metabolic disorders.
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1. Introduction

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the most abundant proteins,
well known for its function in cellular metabolism. During glycolysis, GAPDH catalyzes the
oxidative phosphorylation of glyceraldehyde-3-phosphate (G3P) to glycerate-1,3-bisphosphate, with the
concomitant release of reduced nicotinamide adenine dinucleotide (NADH) [1,2]. The important role
of GAPDH in cellular metabolism has led to extensive functional and regulatory studies, which have
also uncovered diverse non-glycolytic functions (Figure 1) [3–9]. Many of these functions are
controlled by different post-translational modifications (PTMs) on GAPDH, e.g., phosphorylation,
acetylation, sulfenylation, nitrosylation, sulfhydration, and S-thiolation, among others [8,10–19].
These PTMs impact the enzymatic activity of GAPDH, its regulatory interactions and its subcellular
localization [8,10–19].

The regulation of GAPDH by oxidative PTMs (oxPTMs, e.g., sulfenylation, disulfide bond
formation, nitrosylation, sulfhydration, glutathionylation, and other S-thiolations) has been the subject
of extensive studies since the beginning of this century [8,17,18,20]. The catalytic cysteine of GAPDH
plays a central role in the redox regulation of GAPDH. Different oxPTMs introduced on the catalytic
cysteine inhibit the glycolytic function of GAPDH, causing the disruption of glycolysis. This can lead
to rerouting of the cellular carbohydrate flux toward the pentose phosphate shunt, which generates
NADPH+H+ [21,22]. The latter plays an important role as the final electron donor to different cellular
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reducing pathways that have a key role in reestablishing and maintaining the cellular reducing
environment under stress conditions [22,23]. In this review, we present an overview of the redox
regulation of GAPDH by the different redox writers (e.g., hydrogen peroxide). We will also shed light
on the consequences of the introduction of oxPTMs on GAPDH and the role of readers and erasers
in the redox regulation of its subcellular localization and functional interactions with downstream
partners. Finally, we will discuss the different human pathologies (e.g., neurodegeneration and
metabolic disorders) associated with the oxidation-induced dysregulation of GAPDH.

Figure 1. The diversity of cellular functions of GAPDH. Glycolytic and non-glycolytic functions
of GAPDH are shown. The structure of GAPDH is featured (PDB ID: 4WNC) with its N-terminal
NAD+-binding domain indicated in green, and the C-terminal catalytic domain in yellow. The catalytic
cysteine residue is shown in red and the NAD+ molecule in orange.

2. GAPDH Modifications by Redox Writers

2.1. Key Features of Redox Writers

Redox homeostasis is achieved and maintained by the coordinated control of redox reactive
species (RRS) production and removal. RRS, such as reactive oxygen (ROS), nitrogen (RNS) and sulfur
(RSS) species constitute groups of cellular metabolites, which contribute to the redox balance of the
cell. ROS are produced endogenously as by-products of cellular respiration and exhibit a dual role:
beneficial or harmful to cells. Under physiological conditions, ROS play an important role in cellular
signaling and metabolic pathways. However, prolonged exposure of cells to elevated levels of ROS,
caused by environmental variations, metabolic changes or disease [24,25], may lead to the damage of
DNA, lipids and proteins [26,27]. ROS can be generated via electron-based redox cycling, and can
be in the form of a radical (e.g., hydroxyl radical, superoxide anion) or non-radical (e.g., hydrogen
peroxide (H2O2)). These oxidants, referred to as redox writers in this review, modify target proteins by
priming oxPTMs, which can trigger further redox-associated intra- or intermolecular modifications
and interactions.

Under oxidizing conditions, such as H2O2-induced stress, the sulfur-containing cysteine residues
are most susceptible to oxidation. At lower levels of H2O2 (physiological conditions (“oxidative
eustress”), 1–10 nM) [28], protein cysteine thiols, which have a high nucleophilic character, are oxidized
to a sulfenic acid state (reversible oxPTM) [29]. Higher levels of H2O2 (supraphysiological conditions
(“oxidative distress”), >100 nM) [28] can cause further oxidation of the cysteine to a sulfinic acid (mostly
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irreversible oxPTM) or a sulfonic acid (irreversible oxPTM) state (Figure 2) [29]. To prevent cysteine
overoxidation and loss of protein function, cysteine residues can form intra- or intermolecular disulfide
bonds, as well as mixed disulfides with low molecular weight (LMW) thiols (Figure 2). Formation of a
mixed disulfide bond on a protein is termed thiolation, which “edits” the sulfenic acid and creates
new redox-induced binding motifs. These motifs are recognized by the “readers”, which promote
redox signaling and antioxidant response. Reduction of the modified cysteine residues is mediated by
specific antioxidant recycling enzymes.

In addition to ROS, during cellular stress, other types of redox writers are also generated, and these
include: (a) RNS, such as nitric oxide (NO) and peroxynitrite; and (b) RSS, such as hydrogen sulfide
(H2S) [30,31]. Both species are capable of modifying cysteine residues by nitrosylation or sulfhydration,
respectively (Figure 2). Overall, once the redox writers (ROS, RNS and RSS) have primed the protein
by introducing an “oxPTM code”, as part of the “Redox Code” [32], e.g., sulfenylation, nitrosylation or
sulfhydration on a target cysteine, the protein’s activity, interaction with downstream partners and
subcellular localization can be altered.

Figure 2. oxPTMs on the catalytic cysteine of GAPDH. At lower levels of H2O2, a sulfenic acid is
formed on the GAPDH catalytic cysteine. However, at higher H2O2 levels, sulfinic/sulfonic acids
and intermolecular disulfides are formed. The latter can lead to GAPDH aggregation. To prevent
further cysteine overoxidation, either intramolecular disulfides or mixed disulfides with LMW thiols
(e.g., glutathione (GSH), bacillithiol (BSH), mycothiol (MSH) and coenzyme A (CoASH)) are formed.
GAPDHs from different organisms have been shown to be nitrosylated or sulfhydrated by nitric oxide
(NO) and nitroso-glutathione (GSNO), or hydrogen sulfide (H2S), respectively.

2.2. Redox Sensing by GAPDH and Its Regulatory Consequences

GAPDH is a homo-tetramer, with each monomer composed of two domains: the N-terminal
NAD+-binding domain, which displays the characteristic Rossmann fold [33]; and the C-terminal
catalytic domain, which carries the conserved catalytic cysteine (Figure 1) [34–37]. During catalysis,
the GAPDH catalytic cysteine binds to its substrate (G3P), through a thiohemiacetal intermediate
formation. A histidine residue, located in the microenvironment of the active site, facilitates this
reaction by lowering the pKa of the catalytic cysteine, leading to its deprotonation, followed by its
interaction with G3P [38,39]. During oxidative stress, the redox-sensitive catalytic cysteine of GAPDH
is modified by different oxPTMs [8,17,18,40], e.g., sulfenylation, disulfide bond formation, nitrosylation,
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sulfhydration, glutathionylation and other forms of S-thiolation, which lead to changes in its catalytic
activity and glycolytic function [23,41] (Figure 2, Table 1; Table 2).

2.2.1. Sulfenylation and S-Thiolation of GAPDH

GAPDH is a highly abundant cellular protein, known to be one of the most prominent targets of
H2O2 during cellular stress [18,42,43]. Global proteome analyses of oxidative stress-induced PTMs in
different organisms have identified the catalytic cysteine of GAPDH homologs as the most abundant
targets of both sulfenylation and S-thiolation [20,40,44–50]. Using genetic (e.g., YAP1C probe) and
chemical (e.g., DYn-2 and BTD probes) approaches, combined with mass spectrometric analyses,
the Arabidopsis thaliana and Homo sapiens sulfenomes (sulfenylated proteins) were identified [49–53].
Sulfenylation of GAPDH was reported, in addition to other proteins with important metabolic
functions. Further in vitro studies showed that H2O2 oxidizes the GAPDH catalytic cysteine to
a sulfenic acid [23,41,54,55], and depending on the GAPDH homolog, this reaction occurs with a
second order rate constant of 10–103 M−1s−1 [41,55,56]. Subsequently, the sulfenic acid can form
intra- or intermolecular disulfide bonds, as well as mixed-disulfides with LMW thiols (Figure 2,
Tables 1 and 2). An in vitro study performed by Nakajima et al. (2007) showed that the rabbit
muscle GAPDH undergoes conformational changes in the presence of oxidizing agents (e.g., nitric
oxide) [57]. These conformational changes facilitate the formation of an intermolecular disulfide bond
between two catalytic cysteine residues of GAPDH [57]. The latter induces further conformational
changes, which expose non-catalytic cysteine residues. The exposed cysteines then form additional
intermolecular disulfide bonds, leading to GAPDH oligomerization and aggregation (Figure 2) [57].
GAPDH aggregation is observed in diseases such as Alzheimer’s disease (Section 5).

Table 1. Examples of catalytic cysteine oxidation states of different GAPDH homologs.

Cysteine Oxidation to Sulfenic, Sulfinic and Sulfonic Acids or Disulfide Bond Formation

Target Protein Oxidant Cys Residue oxPTM Influence on
Enzymatic Activity Ref.

H. sapien
GAPDH H2O2 Cys152 Sulfenic and

sulfonic acids Inhibition [23]

Rabbit muscle
GAPDH H2O2 Cys150–Cys154 Intramolecular

disulfide bonds Inhibition [58]

A. thaliana
GAPC1 H2O2 Cys155 Sulfenic, sulfinic

and sulfonic acids Inhibition [59]

C.diphtheriae
GAPDH H2O2, NaOCl Cys153,

Cys153–Cys157

Sulfonic acid, and
intramolecular
disulfide bond

Inhibition [47]

In addition to intra/intermolecular disulfide bond formation, GAPDH can also form mixed
disulfide bonds with LMW thiols, which serve as cellular redox buffers and contribute to the protection
of proteins from H2O2 and other oxidants [60,61]. GAPDH has been reported to form mixed-disulfides
with various LMW thiols, including glutathione (GSH—eukaryotes and Gram-negative bacteria),
bacillithiol (BSH—Gram-positive Firmicutes), mycothiol (MSH—Actinobacteria) and coenzyme A
(CoA—all organisms) (Figure 2, Table 2) [20,40,46,47,58,59,62].

Glutathionylation of GAPDH—Glutathione is a tripeptide composed of γ-glutamyl-cysteinyl
-glycine, which is involved in numerous detoxification reactions and functions as a major cellular
antioxidant [60,63,64]. GAPDH glutathionylation protects the catalytic cysteine from overoxidation
(Figure 2), and subsequently, inactivates the glycolytic function of GAPDH (Table 2) [65–68]. GAPDH
glutathionylation has been reported in different organisms including yeast, unicellular protozoan
(Plasmodium falciparum), rabbit muscle cells and plants (A. thaliana), among others [48,58,59,69,70].
In vitro studies demonstrated that in the presence of H2O2, rabbit muscle GAPDH acquired two
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oxPTMs: glutathionylation on its catalytic cysteine (Cys150), and the formation of an intramolecular
disulfide bond between Cys150 and Cys154 (non-catalytic cysteine) (Figure 2) [58]. Both redox
modifications led to the reversible inactivation of GAPDH. Upon glutathionylation of GAPDH,
Barinova et al. (2017) reported structural changes associated with the oxidation-induced dissociation
of NAD+ from the active site and the decrease in GAPDH thermal stability [58]. This structural change
may influence the inactivation of the enzyme and its interaction with downstream interacting partners.

In addition to H2O2-induced GAPDH glutathionylation, the catalytic cysteine of GAPDH
can be glutathionylated by nitroso-glutathione (GSNO) under cellular nitrosative stress [71,72].
GSNO is considered to be the main nitric oxide (NO) reservoir within cells, and it can induce both
trans-nitrosylation and glutathionylation of GAPDH and other proteins [73]. The cellular level of
GSNO is controlled by prokaryotic and eukaryotic GSNO reductases [74].

Bacillithiolation and Mycothiolation of GAPDH—Most Gram-positive bacteria do not produce
GSH and instead use other types of LMW thiols. Actinobacteria, e.g., Corynebacterium diphtheriae and
Mycobacterium tuberculosis, use mycothiol (MSH) as their major LMW thiol [75,76]. Structurally different
from GSH, MSH is composed of a cysteine residue in which the amino group is acetylated, and the
carboxy group linked to glucosamine, which in turn is linked to myo-inositol [77,78]. Using shotgun
liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, 26 mycothiolated proteins
were identified from the proteome of C. diphtheriae subjected to hypochlorite (NaOCl) stress [47].
GAPDH was identified as the most abundant mycothiolated protein (0.75% of the total Cys proteome).
In vitro studies using recombinant C. diphtheriae GAPDH demonstrated that its catalytic cysteine
(Cys153) is protected from overoxidation by both mycothiolation and intramolecular disulfide bond
formation in the presence of H2O2 and NaOCl. Mycothiolation of the active site cysteine was reported
to inhibit its catalytic activity [47].

Other Gram-positive bacteria, e.g., Staphylococcus aureus and Bacillus subtilis, produce and use
bacillithiol (BSH) as LMW thiol [20,79–81]. BSH structure is composed of a glycoside formed
between L-cysteinyl-D-glucosamine and malic acid [79]. GAPDH was identified as the most abundant
bacillithiolated protein in the proteomic study of S. aureus (Sa) subjected to NaOCl stress [46]. In the
presence of H2O2 or NaOCl, Sa-GAPDH is bacillithiolated (in vitro) on Cys151, which reversibly
inhibits its catalytic activity [46]. Molecular docking studies of BSH into the active site of GAPDH
suggested that disulfide bond formation between BSH and Cys151 occurs without major conformational
changes, making GAPDH the preferred bacillithiolation site in S. aureus under NaOCl stress [46].

CoAlation of GAPDH—Coenzyme A is an essential cofactor in all living cells. It is synthesized
by an evolutionarily conserved pathway, which requires ATP, pantothenate (vitamin B5) and a
cysteine residue [82]. CoA functions as a key metabolic cofactor in numerous catabolic and anabolic
reactions. Recently, a novel antioxidant function of CoA was uncovered in eukaryotic and prokaryotic
cells in response to oxidative and metabolic stress, and termed protein CoAlation [20,44]. Using
CoA-specific monoclonal antibodies and tandem mass spectrometry, more than 1000 CoAlated
proteins were identified from mammalian and prokaryotic cells subjected to oxidative or metabolic
stress [20,44,83]. Under various stress conditions, GAPDH CoAlation is observed in numerous
proteomic studies e.g., in mammalian cells and tissues, and in bacteria (Gram-positive S. aureus and
B. subtilis, and Gram-negative Citobacter sp. 5-77) [20,44,62]. Tsuchiya et al. (2018) reported the
reversible inactivation of Sa-GAPDH upon CoAlation [20]. Molecular dynamics studies proposed a
possible mode of CoA binding to oxidized Sa-GAPDH that includes an initial binding of the CoA ADP
moiety to the vacant NAD+-binding site (Rossmann fold), which would allow the CoA pantetheine tail
to reach the catalytic Cys151 residue of GAPDH and form a mixed disulfide bond [20]. Citobacter sp.
5-77 GAPDH was also shown to be reversibly inactivated upon CoAlation of its catalytic Cys149 [62].

CoA has recently been reported to form a nitroso-coenzyme A (SNO-CoA) heterodimer in the
presence of nitric oxide (NO) [84]. SNO-CoA and GSNO are involved in protein trans-nitrosylation [72,84].
In addition to trans-nitrosylation, GSNO can also trans-glutathionylate proteins, while the role of
SNO-CoA in mediating protein CoAlation remains to be investigated. The study may shed light on the
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regulation of proteins (e.g., GAPDH) by SNO-CoA-mediated CoAlation during cellular nitrosative
stress. SNO-CoA reductases, which reduce SNO-CoA, have been reported and proposed to play an
important role in the mechanisms involving metabolic regulation by NO [84].

2.2.2. Nitrosylation and Sulfhydration of GAPDH

In addition to ROS, reactive nitrogen (RNS) and sulfur (RSS) species are also produced during
cellular stress, and contribute to different signaling pathways by introducing oxPTMs on proteins.
Nitric oxide (NO) is a highly reactive molecule, which participates in diverse cellular signaling pathways.
It causes the formation of nitrosothiol on proteins, which is termed nitrosylation (Figure 2) [85].
Protein nitrosylation can occur chemically by NO and peroxynitrite, or through trans-nitrosylation by
nitrosothiols (e.g., GSNO or SNO-CoA) or other nitrosylated proteins [85,86]. The catalytic cysteine
of GAPDH is a target of nitrosylation by NO and GSNO (Figure 2, Table 2), which leads to the
reversible inhibition of its catalytic activity [71,73], translocation from the cytoplasm to the nucleus or
mitochondria, and its contribution to different cellular processes e.g., apoptosis [8].

Similar to NO, H2S can also target protein cysteine thiols (sulfhydration) to form persulfide
bonds (-SSH) (Figure 2). Protein sulfhydration is reported to be a more abundant PTM compared to
nitrosylation within liver lysates [17]. GAPDH has been identified as a target of sulfhydration [17,87,88].
Mustafa et al. (2009) reported the sulfhydration of the catalytic cysteine of GAPDH from mouse
liver lysate, which was treated with sodium hydrogen sulfide (NaHS—H2S donor) [17]. GAPDH
sulfhydration on the catalytic cysteine was also reported in HEK293 cells treated with NaHS, which led
to an increase in its activity (Table 2) [17]. In a separate study, Gao et al. (2015) observed an increase in
GAPDH activity in response to elevated H2S production in the pancreatic cell line, MIN6, during ER
stress [89]. In vitro studies revealed that inhibition of the activity of GAPDH by H2O2 and GSSG
(glutathione disulfide) was reversed by H2S treatment [89]. Overall, the study by Gao et al. (2015)
proposed that during ER stress, the control of H2S synthesis might regulate the activity of proteins
involved in metabolic pathways (e.g., GAPDH) [89]. An in vitro study performed by Jarosz et al. (2015)
reported a decrease in GAPDH activity in the presence of persulfides [88]. Furthermore, Jarosz et al.
(2015) demonstrated that the activity of glutathionylated GAPDH is lower than that of the reduced
enzyme, and can be partially restored upon treatment with NaHS [88]. Overall, in these studies,
sulfhydration has been reported to impact the catalytic activity of GAPDH.

2.2.3. Methionine Oxidation, Cysteine Disulfide Formation and GAPDH Aggregation

Human diseases (e.g., Alzheimer’s disease—Section 5) are associated with the aggregation of
GAPDH due to the formation of intermolecular disulfides [57,90–92]. An in vitro study performed by
Nakajima et al. (2007) showed that the rabbit muscle GAPDH undergoes conformational changes,
and forms intermolecular disulfide bonds that lead to the aggregation of GAPDH [57]. In a later
study, which focuses on the mechanism of GAPDH aggregation, Samson et al. (2014) reported that
the oxidation of a highly conserved Met46 of GAPDH to methionine sulfoxide, could cause structural
changes, which facilitate cysteine intermolecular disulfide formation and GAPDH aggregation [93].
In this study, the authors propose that oxidation of Met46 could initiate GAPDH structural changes,
which lead to aggregation [93].
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Table 2. Examples of S-thiolations (glutathionylation, mycothiolation, bacillithiolation and CoAlation),
nitrosylation and sulfhydration on the catalytic cysteine of different GAPDH homologs. The cysteine
residues shown within the table are the catalytic cysteines of the GAPDH homologs.

Regulatory S-Thiolations on GAPDH

Target Protein Oxidant or
Molecule Residue oxPTM

Influence on
Enzymatic

Activity
Recycling Ref.

P. falciparum
GAPDH GSSG Cys153 Glutathion

ylation
Reversible
inhibition

Grx1, Trx,
and plasmo-

redoxin
[70]

Rabbit muscle
GAPDH H2O2 (+GSH) Cys150 Glutathionylation Reversible

inhibition
Excess GSH,

and Trx [58]

A. thaliana
GAPC1

GSSG, and
H2O2 (>+GSH) Cys155 * Glutathionylation Reversible

inhibition
GrxC1, and

Trx [59]

A. thaliana
A4-GAPDH

GSSG, and
H2O2 (+GSH) Cys149 Glutathionylation Reversible

inhibition
Grx1, and

Grx3
[94,
95]

H. sapiens
GAPDH H2O2 (+GSH) Cys152 Glutathionylation Reversible

inhibition DTT [23]

C. diphtheriae
GAPDH

H2O2 (+MSH),
and NaOCl

(+MSH)
Cys153 Mycothiolation Reversible

inhibition
Mrx1, and

Trx [47]

S. aureus
GAPDH

H2O2 (+BSH),
and NaOCl

(+BSH)
Cys151 Bacillithiolation Reversible

inhibition Brx [46]

S. aureus
GAPDH1 CoASSCoA Cys151 CoAlation Reversible

inhibition DTT [20]

Citobacter sp.
5-77 GAPDH

CoASSCoA,
NaOCl (+CoA),

and H2O2
(+CoA)

Cys149 CoAlation Reversible
inhibition

Excess DTT,
GSH, and

CoA
[62]

Nitrosylation and Sulfhydration of GAPDH

Target Protein Oxidant or
Molecule Residue oxPTM

Influence on
Enzymatic

Activity
Recycling Ref.

A. thaliana
GAPC1 GSNO Cys155 * Nitrosylation Reversible

inhibition GSH [72]

GAPDH
(SH-Sy5Y cell

extract)
SNO-Trx1 Cys247 Nitrosylation Reversible

inhibition
Reduced

Trx1
[96,
97]

GAPDH
(HEK293
extract)

H2S Cys152 Sulfhydration Activity
increase DTT [17]

* The catalytic cysteine of A. thaliana GAPC1 is at position 155; however, it is referred to as Cys149 in the cited
publications, to be consistent with the first solved GAPDH structure (PDB: 2DBV) in which the catalytic cysteine
residue is numbered 149.

3. Decoding of the GAPDH Redox Communication

Diverse proteins have been identified, which recognize and interact with redox-modified GAPDH,
regulating its glycolytic and non-glycolytic (moonlighting) functions. In this section, we describe
these GAPDH readers, particularly focusing on those proteins, which decode and transduce the redox
information, or amplify it via the attachment of LMW thiols (e.g., for the case of sulfenylated GAPDH).
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3.1. Readers of Sulfenylated and S-Thiolated GAPDH

The catalytic cysteine of GAPDH plays a crucial role in defining its activity, interaction with
partners, and its role in the regulation of cellular processes. A study performed in Schizosaccharomyces
pombe showed that under H2O2-induced stress, redox-modified GAPDH participates in phospho-relay
signaling [98]. S. pombe phosphorelay signaling is activated by external stimuli (e.g., H2O2)
and is composed of a two-component system: (a) the multi-step phosphorelay (sensor kinase,
phosphotransferase and response regulator, Mcs4), which transmits H2O2 stress signal to (b) the
mitogen-activated protein kinase (MAPK) cascade [99,100]. Mcs4 (response regulator) activates MAPK
cascade. In response to H2O2-induced stress, the catalytic cysteine (Cys152) of S. pombe GAPDH
(Tdh1) is transiently oxidized, and in turn, enhances the association of Tdh1 with Mcs4 [98]. Therefore,
in S. pombe, oxidation of GAPDH may provide additional input signal, and promote peroxide stress
signaling through the multistep phosphrelay system [98]. In addition, the tdh1 null mutant cells have a
reduced H2O2-stress response through phosphorelay signaling, compared to wild-type cells [98].

In another study, the H2O2-induced modification on the catalytic cysteine of mammalian GAPDH
is reported to participate in the H2O2-dependent activation of mammalian phospholipase D2 (PLD2)
in PC12 cells, which mediates an anti-apoptotic effect during oxidative stress [101,102]. PLD2 catalyzes
the hydrolysis of the phosphodiester bond of phosphatidylcholine, which generates phosphatidic acid,
a lipid second messenger [103]. The study shows that the H2O2-modified catalytic cysteine of GAPDH
acts as a positive regulator of PLD2 [101].

In both examples mentioned above, oxidation of GAPDH enhances its recognition and binding to
different types of GAPDH readers. Alternatively, GAPDH readers may also recognize the S-thiolated
form of GAPDH. For example, CoAlation of GAPDH introduces a bulky molecule (pantetheine tail
and ADP moiety) within the GAPDH active site [20]. The CoA ADP moiety could be recognized by
Rossmann fold-containing proteins (readers), which can facilitate the interaction between GAPDH
and the reader protein. The interaction between these readers and GAPDH could potentially lead to
the regulation of different cellular processes. Similarly, the S-mycothiolation or S-bacillithiolation of
GAPDH may possibly enhance binding of proteins that recognize these bulky molecules, which are
covalently bound to the GAPDH catalytic cysteine residue.

3.2. Readers of Nitrosylated GAPDH

3.2.1. Nuclear Transportation and Cellular Apoptosis

Nitrosylation of mammalian GAPDH has been associated with triggering an apoptotic cascade,
which is initiated in the cytoplasm. When cells are initially exposed to a stressor, and the level of
nitric oxide (NO) within cells becomes slightly higher than physiological concentrations, GOSPEL
(GAPDH’s Competitor of Siah Protein Enhances Life) becomes nitrosylated on Cys47, binds to GAPDH,
and competes with Siah1, an E3 ubiquitin ligase, to retain GAPDH in the cytoplasm [104]. The binding
of GOSPEL to GAPDH maintains cellular homeostasis under nitrosative stress, and prevents the
triggering of a cellular apoptotic cascade [104]. However, an increase in the level of nitrosative stress
beyond a certain threshold leads to the nitrosylation of the catalytic Cys150 of rat GAPDH (forming
SNO-GAPDH) [8]. SNO-GAPDH is recognized by Siah1, and their interaction is induced by cell
stressors which augment nitric oxide production. Siah1 marks proteins for proteasomal degradation
by ubiquitinating the target proteins. It contains a nuclear localization signal, which mediates the
translocation of the SNO-GAPDH-Siah1 complex to the nucleus [8]. The nuclear complex interacts
with various target proteins and regulates their function by e.g., ubiquitination, acetylation or
trans-nitrosylation, which lead to apoptosis.

Once in the nucleus, the stabilized Siah1 causes ubiquitination and subsequent degradation of
the nuclear co-repressor (N-Cor), which contributes to cellular apoptosis. On the other hand, nuclear
SNO-GAPDH directly interacts with the acetyltransferase p300/CBP (CREB-binding protein) [105].
Their binding initiates the auto-acetylation and subsequent activation of p300/CBP, which acetylates
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downstream targets (including tumor suppressor p53) that contribute to cellular apoptosis [105].
Once activated, p53 induces apoptosis by trans-activating numerous downstream pro-apoptotic
genes, e.g., mainly the expression of p53-up-regulated modulator of apoptosis (PUMA) [105,106].
Nuclear SNO-GAPDH can also trans-nitrosylate and alter the function of several nuclear proteins
e.g., deacetylase sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase
(DNA-PK) [107].

An alternative mechanism for the binding of oxidized GAPDH to Siah1 has been reported [108].
It involves the apoptosis signal-regulating kinase 1 (ASK1), which is activated in response to different
cellular stresses [109,110]. Tristan et al. (2015) reported that ASK1 could enhance the interaction between
GAPDH and Siah1 by phosphorylating Siah1. This in turn leads to the activation of GAPDH-Siah1
nuclear signaling cascade, followed by the activation of acetyltransferase p300, and the induction of
cellular apoptosis [108].

In addition to the induction of an apoptotic cascade, nuclear GAPDH also participates in DNA
repair, DNA replication and telomere maintenance [6,7].

3.2.2. GAPDH Translocation to the Mitochondria

Upon exposure to stress, the level of mitochondrial GAPDH has been reported to increase [111,112].
This may indicate the functional requirement of GAPDH within the mitochondria during cellular stress.
Kohr et al. (2014) show that SNO-GAPDH is able to translocate to the matrix of mitochondria isolated
from ischemically preconditioned mouse heart [112]. Mitochondrial ischemic preconditioning has
been reported to increase the level of nitrosylated mitochondrial proteins [113]. Several mitochondrial
proteins, e.g., voltage-dependent anion channel (VDAC1—outer mitochondrial membrane), Hsp60
and acetyl-CoA acetyltransferase (ACAT1), were shown to interact with and to be transnitrosylated
by SNO-GAPDH [112]. Therefore, future studies might shed light on the role of SNO-GAPDH in
regulating mitochondrial function by trans-nitrosylating specific mitochondrial proteins and regulating
their function.

3.3. Readers of Sulfhydrated GAPDH

Mir et al. (2014) reported that interleukin-1β causes the degradation of postsynaptic density 95
(PSD95) in a H2S-dependent manner [114]. PSD95 is a scaffolding protein, which plays an important
role in synapse maturation, stability, and plasticity [115]. In the presence of IL-1β, the expression of
cystathionine beta-synthase (CBS) increases, which leads to the production of H2S. Upon exposure to
H2S, GAPDH is reported to become sulfhydrated and binds to Siah1 [114]. In complex with sulfhydrated
GAPDH, Siah1 interacts with and ubiquitinates PSD95, which results in PSD95 degradation and
synapse loss within the brain [114].

4. Erasers of Redox-Associated Modifications

“Redox erasers” remove redox-associated modifications and restore the reduced form of modified
proteins. In turn, they network with other antioxidant enzymes/molecules to restore their own activity
by using NADPH+H+ as the final electron donor. In this section, we will focus on the redox regulation
of GAPDH by the thioredoxin pathway and the LMW thiol pathways (Figure 3).
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Figure 3. Redox erasers restore the reduced and active form of GAPDH. OxPTMs introduced on GAPDH
by the redox writers (e.g., H2O2) and editors (e.g., XSH, where X can be glutathione, or other LMW
thiols, e.g., mycothiol, bacillithiol or coenzyme A), are removed by redox erasers e.g., (A) thioredoxin
(Trx), or (B) glutaredoxin (Grx), respectively. (A) Trx reduces the disulfide bond on GAPDH. This leads
to the release of the reduced form of GAPDH, and the oxidized form of Trx. The latter is then reduced
by TrxR, which uses NADPH+H+ to restore its reduced form. (B) Redoxins (Xrx) e.g., glutaredoxins
(Grx), reduce the glutathionylated form of GAPDH. This leads to the release of the reduced form of
GAPDH, and the subsequent glutathionylation of Grx. Another molecule of e.g., GSH, can then reduce
Grx, and in turn, form glutathione disulfide (GSSG). The latter is then reduced by glutathione reductase
(GR), which uses NADPH+H+ to restore its reduced form.

4.1. Key Features of Cellular Redox Erasers

Redox-sensitive cysteines participate in diverse cellular signaling and metabolic pathways.
The activity and coordination of these cysteines depend on molecular thiol switches such as thioredoxin
(Trx) and glutaredoxin (Grx) (Figure 3). The thioredoxin pathway takes part in the cellular antioxidant
response by reducing disulfide bonds formed on target proteins. This pathway catalyzes the electron
transfer from NADPH+H+, through the flavoenzyme thioredoxin reductase (TrxR) to Trx. The latter
can control numerous signaling pathways by interacting with and transferring electrons to different
proteins, which form disulfide bonds when oxidized (Figure 3) [116–119]. Another reducing enzyme is
glutaredoxin (Grx), which can deglutathionylate proteins via the monothiol mechanism.

S-glutathionylation is reversed by Grx, which can reduce the mixed disulfide bond and
subsequently, become itself glutathionylated. The second mixed disulfide between GSH and Grx is
then attacked by another GSH molecule resulting in the release of the reduced form of Grx and a
glutathione disulfide molecule (GSSG). The GSSG is reduced by glutathione reductase (GR), which uses
NADPH+H+ as its final electron donor (Figure 3) [120,121].
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4.2. Erasers of GAPDH Redox Modifications

4.2.1. Erasers of Intra- and Intermolecular Disulfide Bonds

The redox-induced formation of intra- and intermolecular disulfide bonds has been reported
for GAPDH (Table 1) [93,122–124]. Different reducing pathways participate in recycling the oxidized
GAPDH, and in recovering its catalytic activity (Figure 3, Table 1). Landino et al. (2014) showed that
the H2O2-induced oxidation of GAPDH resulted in the formation of disulfide bonds, which were
reduced by the Trx pathway [123]. Interestingly, within the same study, they showed a possible
thiol-disulfide exchange between tubulin and GAPDH, making tubulin a potential redox eraser
of oxidized GAPDH [123]. Future studies on understanding the detailed thiol-disulfide exchange
mechanism between tubulin and oxidized GAPDH may shed light on how tubulin could potentially
function as a redox eraser. Important to note is that tubulin is an abundant protein in neuronal cells,
which interacts with different microtubule-associated proteins (MAP) such as Tau and MAP2 [125].
These proteins have been reported to be redox-sensitive and can form disulfide bonds that reduce
their microtubule binding ability. Trx and Grx are reported to reduce these disulfides and restore their
function [126–128].

4.2.2. Erasers of GAPDH S-Thiolation

Redox erasers, such as thioredoxins, glutaredoxins, mycoredoxins, bacilliredoxins and
CoAredoxins use thiol-disulfide exchange mechanisms to regulate proteins with diverse cellular
functions (Figure 3 and Table 2). The mechanisms of GAPDH deglutathionylation have been studied
in numerous organisms, such as yeast, unicellular protozoans (P. falciparum), plants (A. thaliana) and
animals [48,59,69,70,94,129]. The catalytic activity of the glutathionylated cytosolic A. thaliana GAPDH
(GapC1 isoform) recovers upon treatment with cytosolic Grx [59]. The latter deglutathionylates GAPDH
using the GSH-dependent monothiol mechanism, and restores its catalytic activity. Interestingly,
although Trx enzymes have been reported to reduce sulfenic acids and disulfide bonds, recent studies
have revealed that they can also participate in the deglutathionylation of GapC1, but less efficiently
compared to Grx [59]. The activity of glutathionylated P. falciparum GAPDH is also restored upon
treatment with both Grx1 and Trx1, in addition to the P. falciparum-specific plasmoredoxin [70].
The glutathionylated A. thaliana chloroplastic GAPDH (A4-GAPDH isoform) was deglutathionylated
by Grx1 (cytosolic isoform) and Grx3 (chloroplastic isoform) [94], while glutathionylated yeast GAPDH
(Tdh3) was deglutathionylated by Trx1, Trx2 [69], and the yeast mitochondrial matrix Grx5 [130].
Interestingly, the glutathionylated rabbit muscle GAPDH was reported to be deglutathionylated
non-enzymatically in the presence of GSH or enzymatically by Trx [58]. The latter only partially
reactivated GAPDH [58]. Overall, the mechanisms of protein deglutathionylation depend on
the organism, subcellular localization of GAPDH, and the availability and specificity of “redox
eraser” isoforms.

Demycothiolation of GAPDH was found to involve mycoredoxin-1 (Mrx1) and thioredoxin.
The latter was considered to be less efficient in demycothiolating GAPDH compared to Mrx1 [47].
Bacillithiol-modified S. aureus GAPDH is shown to be debacillithiolated by bacilliredoxin, which
uses BSH, bacillithiol disulfide reductase and NADPH+H+ to restore its activity [46,131]. In contrast,
the mechanism of protein deCoAlation is not well understood. Analysis of mammalian and bacterial
cells exposed to different oxidative and metabolic stresses revealed extensive protein CoAlation,
which was rapidly reversed after the removal of oxidizing agents [20,44]. This suggests the presence of
a CoAredoxin activity, which remains to be further explored. A study performed by Tsuji et al. (2019)
showed that Citrobacter sp. S-77 GAPDH can be in vitro deCoAlated non-enzymatically by excess of
GSH, and less efficiently by excess of CoA [62].
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4.2.3. Erasers of GAPDH Nitrosylation and Sulfhydration

A recent study showed that human GAPDH could also be trans-nitrosylated by the nitrosylated
form of thioredoxin-1 (SNO-Trx1). Interestingly, the reduced form of Trx1 was proposed to denitrosylate
SNO-GAPDH, which restored its catalytic activity [96,97,132]. Therefore, Trx1 may play an important
role by regulating the apoptotic function of GAPDH via nitrosylation/denitrosylation mechanisms.
A study performed on the A. thaliana cytosolic GAPDH (GapC1) showed that SNO-GAPDH
is denitrosylated non-enzymatically in the presence of excess GSH [72]. This GSH-dependent
denitrosylation of GAPDH fully recovered its catalytic activity, without glutathionylating GAPDH.
Further studies demonstrated that the GapC1 denitrosylation was directly linked to the cellular ratio
between glutathione and nitrosoglutathione ([GSH]/[GSNO]) [72].

Knowledge of the desulfhydration mechanism of GAPDH is emerging. Ju et al. (2016) showed
that thioredoxin can desulfhydrate proteins. Cells overexpressing Trx1 showed a decrease in the
level of sulfhydrated proteins, which included GAPDH. Mutation of the Trx catalytic cysteine (Cys32)
abolished its GAPDH desulfhydration function [133]. This may suggest that Trx can have an important
role in the regulation of endogenous sulfhydrated proteins, which have important cellular signaling
and metabolic functions.

Overall, diverse redox-induced PTMs of GAPDH are temporally and spatially introduced to
coordinate its activity, subcellular localization, and function via the interaction with redox readers and
the formation of multi-enzyme regulatory complexes. The function of the redox erasers is critical for
restoring the reduced form of GAPDH and thus supporting its glycolytic and moonlighting functions.

5. Human Pathologies Associated with Dysregulated GAPDH Function

The dysregulation of GAPDH function by oxPTMs has been associated with various human
pathologies, including neurodegeneration and metabolic disorders. Such aberrations in GAPDH
function include, among others, altered glycolytic activity, involvement in amyloidogenesis and
induction of apoptosis. Therefore, GAPDH is an attractive target for the development of diagnostic and
therapeutic approaches. This section briefly summarizes the roles GAPDH plays in neurodegeneration
and metabolic disorders, as well as therapeutic compounds that target redox-modified GAPDH.

5.1. GAPDH in Neurodegeneration

Neurodegenerative diseases are pathological conditions in which the nervous system progressively
deteriorates, eventually leading to neuronal death. Aberrant GAPDH function has been associated
with different neurodegenerative pathologies, including Alzheimer’s disease (AD), Parkinson’s disease
(PD) and Huntington’s disease (HD). It is well known that oxidative stress is linked to the progression
of different neurodegenerative pathologies. In vitro studies of GAPDH oxidation were shown to
induce structural changes, and intermolecular disulfide bond formation, which cause aggregation
of this enzyme [57,93]. GAPDH aggregates were observed in post-mortem brain extracts of AD
patients [90,134], while aged brains of AD transgenic mice contain insoluble disulfide-bonded form of
GAPDH, which does not occur in control mice [90]. Oxidized GAPDH has also been directly linked
to AD progression through its association with amyloidogenic proteins e.g., amyloid-β (Aβ) and
Tau. The progression of AD is linked to the accumulation of extracellular Aβ deposits in the brain,
which are induced by oxidative stress and eventually lead to the formation of amyloid plaques and
neuronal death. Oxidized GAPDH is capable of forming a complex with soluble Aβ and accelerating
its aggregation [135]. On the contrary, the reduced form of GAPDH is unable to form a stable complex
with Aβ. Studies on the post-mortem AD brain tissues showed that GAPDH co-localizes with both
plaque-like structures and neurofibrillary tangles in AD patient brains [134]. Similarly, in PD, GAPDH
was found to promote the aggregation of the amyloidogenic protein, α-synuclein, into Lewy body-like
inclusions [136].
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Different oxPTMs on GAPDH, e.g., nitrosylation and glutathionylation, have been reported in
AD. Studies have reported a 7-fold and 2-fold increase in the level of glutathionylated and nitrosylated
GAPDH, respectively, in the brains of AD patients, compared to control individuals [137,138]. Both these
modifications decrease the glycolytic function of GAPDH, and may contribute to the loss of neuronal
function in AD brains. Furthermore, oxPTMs, e.g., nitrosylation, may promote pathological nuclear
targeting of GAPDH. Indeed, nuclear GAPDH was observed in postmortem brain tissues of AD [90,139]
and PD [140] patients, and HD transgenic mice [141], indicating that nuclear targeting of the enzyme may
be a common pathological feature in different neurodegenerative pathologies. Interestingly, the nuclear
GAPDH in samples of AD brains [90,139] was found in an aggregated form, suggesting that nuclear
translocation and amyloidogenesis of GAPDH may operate synergistically in neurodegeneration.
Studies in AD have also shown that the neurotoxic Aβ is capable of inducing disulfide bond formation
on GAPDH, which can promote its nuclear translocation and pro-apoptotic function [90,139].

5.2. GAPDH in Metabolic Disorders

Dysregulated GAPDH function is also implicated in metabolic disorders, particularly diabetes.
Hyperglycemia is a common diabetic condition that causes vascular pathology in tissues throughout the
body and associates with superoxide generation [142]. Hyperglycemia-induced superoxide production
has been linked to the inhibition of GAPDH glycolytic activity, resulting in the activation of protein
kinase C signaling, hexosamine biosynthetic pathway, and generation of advanced glycation end
products (AGEs) [143–146]. Redox-induced PTMs of GAPDH were reported in several studies on
diabetic retinopathy, a disease resulting from chronic hyperglycemia. Hyperglycemic conditions
were shown to induce nuclear translocation of GAPDH and consequent apoptosis of human retinal
Müller and pericyte cells [147–151], both of which undergo cell death in diabetic retinopathy [150].
Importantly, this apoptotic cascade is dependent on GAPDH-Siah-1 complex formation [147,148],
which is known to be promoted by GAPDH nitrosylation [8]. These findings are supported by the
demonstration that R-(−)-Deprenyl, a drug that prevents S-nitrosylation of GAPDH, can reduce nuclear
GAPDH accumulation and associated apoptosis in human Müller cells [149]. Hyperglycemia-induced
superoxide and nitric oxide production may also lead to the accumulation of peroxynitrite and protein
nitration. Indeed, increased nitration of GAPDH has been detected in the retina of diabetic rats [152].

5.3. Therapeutic Targeting of Redox-Modified GAPDH

The development of compounds capable of counteracting the aberrant effects of oxPTMs
on GAPDH function in human pathologies has emerged as a promising direction of research.
Several compounds have been already developed, including the PD drug R-(−)-Deprenyl and its
derivative TCH346, which bind to GAPDH, preventing its S-nitrosylation and associated nuclear
translocation [153]. Notably, R-(−)-Deprenyl can prevent cell death induced by etoposide, a process
associated with nuclear translocation of GAPDH [153]. Similarly, a synthetic compound named
AXP3009, binds to the redox-sensitive Cys152 of Plasmodium falciparum GAPDH, and reduces nuclear
translocation of GAPDH and associated cellular apoptosis [154,155].

Although R-(−)-Deprenyl is a potent inhibitor of GAPDH nuclear translocation, it is not capable
of averting GAPDH aggregation, highlighting the multifactorial nature of redox-induced GAPDH
dysregulation in pathologies. In contrast, the naturally occurring compound piceatannol was reported
to prevent both nuclear translocation and aggregation of GAPDH [156]. Piceatannol was demonstrated
to covalently bind the catalytic cysteine of GAPDH and preclude GAPDH nuclear translocation and
apoptosis in cells exposed to oxidative stress, while also preventing formation of intermolecular
disulfide bonds and associated GAPDH aggregation [156]. Several small molecule compounds of
plant origin have been recently shown to inhibit oxidative stress-induced GAPDH aggregation [157],
by binding to the NAD+-binding site of GAPDH. Among these, the compounds RX409 and RX426
were protective against cultured neuroblastoma cell death induced by hydrogen peroxide, as well as
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murine brain injury and associated motor impairments induced by malonic acid injection; in both
settings, protection was accompanied by reduced GAPDH aggregation [157].

6. Conclusions

Different metabolites produced during cellular stress (metabolic and oxidative stress) contribute
to the redox regulation of numerous proteins and signaling pathways, which can direct the cellular
machinery toward cell survival or death. By introducing redox modifications on target proteins,
these metabolites may alter the conformation, subcellular localization, and function of the target
protein, and modulate its downstream interactions with partners and signaling complexes. GAPDH is
an example of a well-studied protein, which is redox regulated. Its redox-sensitive catalytic cysteine
is considered to be a “hub” of different oxPTMs, which direct GAPDH toward different cellular
compartments and numerous non-glycolytic functions. These oxPTMs can enhance or diminish the
interaction of GAPDH with various downstream partners (oxGAPDH readers) in different cellular
organelles, where it can participate either in cell survival or death. The removal of oxPTMs involves
different cellular recycling pathways (redox erasers), which reduce the GAPDH catalytic cysteine and
restore its glycolytic function. This highlights the complexity of the redox regulatory mechanisms within
cells. The dysregulation of GAPDH during oxidative stress has been associated with human pathologies,
including neurodegenerative diseases (AD, PD and HD), and metabolic disorders, among others.
Given the association of oxPTMs on GAPDH with different diseases, there are still many unknown
mechanisms/interactions of GAPDH that remain to be explored and understood. Future studies on
deciphering the role of regulatory interactions and oxPTMs of GAPDH in health and disease will
provide the insight and direction needed for advancing the development of novel diagnostic and
therapeutic approaches targeting GAPDH.
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