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Thrombin-derived C-terminal peptides (TCPs), including a
major 11-kDa fragment (TCP96), are produced through cleav-
age by human neutrophil elastase and aggregate lipopolysaccha-
ride (LPS) and the Gram-negative bacterium Escherichia coli.
However, the physiological roles of TCP96 in controlling bacte-
rial infections and reducing LPS-induced inflammation are
unclear. Here, using various biophysical methods, in silico
molecular modeling, microbiological and cellular assays, and
animal models, we examined the structural features and func-
tional roles of recombinant TCP96 (rTCP96) in the aggregation
of multiple bacteria and the Toll-like receptor (TLR) agonists
they produce. We found that rTCP96 aggregates both Gram-
negative and Gram-positive bacteria, including Staphylococcus
aureus and Pseudomonas aeruginosa, and their cell-wall com-
ponents LPS, lipid A, and lipoteichoic acid (LTA). The Gram-
negative bacteria E. coli and P. aeruginosa were particularly sen-
sitive to aggregation-induced bacterial permeabilization and
killing. As a proof of concept, we show that rTCP96 reduces
LPS-induced NF-�B activation in human monocytes, as well as
in mouse models of LPS-induced subcutaneous inflammation.
Moreover, in a mouse model of subcutaneous inoculation with
P. aeruginosa, rTCP96 reduced bacterial levels. Together, these
results link TCP-mediated aggregation of endotoxins and bacteria
in vitro to attenuation of inflammation and bacterial levels in vivo.

All wounds, whether caused by trauma, burns, or surgery, are
at risk of becoming contaminated by bacteria, which could lead
to infection. The ability to effectively counteract bacteria is of
evolutionary significance to our survival. For this purpose, mul-

tiple host defense systems have evolved, such as multiple host
defense peptides (1–4). Toll-like receptors (TLRs)2 have an
important role in the innate immune system by detecting a
broad range of pathogen-associated molecular patterns (5). For
example, TLR4 is activated by lipopolysaccharides (LPS) from
Gram-negative bacteria, and TLR2 is activated by lipoteichoic
acid (LTA) and peptidoglycan (PGN) from Gram-positive bac-
teria (6). The sensing of microbes and their products by TLRs is
crucial in early responses to infection. However, an excessive
TLR activation is deleterious, causing localized inflammation,
such as that found in infected wounds, but also severe systemic
responses, as seen in sepsis (7). Therefore, clearance and con-
trol of not only bacteria but various TLR activators, such as LPS
and LTA, is critical to maintaining an effective antibacterial
response while maintaining control of inflammatory responses.

We have previously shown that proteolysis of thrombin by
human neutrophil elastase (HNE) leads to the formation of
thrombin-derived C-terminal peptides (TCPs) of roughly 2 kDa
(8), which are present in wound fluids (9, 10) and have been
demonstrated to exert antiendotoxic functions in vitro and in
vivo (8, 10–14). Apart from these smaller fragments, proteolysis
of thrombin by HNE also generates 11-kDa TCPs that are pres-
ent in wounds. Recently, we have shown that such TCPs can
aggregate both LPS and Escherichia coli bacteria, leading to
killing of the bacteria, and subsequent phagocytosis in in vitro
models (15). This study builds upon and extends our previous
work with the aim of understanding of TCPs spectrum of inter-
actions with TLR agonists and bacteria, and importantly, the
physiological role in vivo.

Here, we demonstrate that a recombinant 96-amino acid
TCP (rTCP96) aggregates both Gram-positive and Gram-neg-
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we show as a proof of principle, that such aggregation reduces
LPS-induced inflammatory signaling as well as levels of Pseu-
domonas aeruginosa bacteria both in vitro as well as in vivo in
experimental animal models.

Results

Antimicrobial effects of rTCP96

TCP96 represents an HNE-generated fragment, which is
nine amino acids shorter (from the N terminus) than the B4
chain of �-thrombin (Fig. 1) (15). We recombinantly expressed
TCP96 (rTCP96) and evaluated its antimicrobial effect on the
Gram-positive Staphylococcus aureus, Bacillus subtilis, and
Enterococcus faecalis and the Gram-negative E. coli and two
P. aeruginosa isolates (indicated as I and II in Fig. 2). The results
showed that rTCP96 reduced the levels of particularly the
Gram-negative strains E. coli and P. aeruginosa by 100 –1000 –
fold, whereas the reduction of the Gram-positive S. aureus and
E. faecalis was, albeit statistically significant, less marked (Fig.
2). To analyze whether the killing was mediated by bacterial
permeabilization, we next employed live/dead staining, which
uses propidium iodide (red color) to detect loss of membrane
integrity. As seen, rTCP96 aggregated the bacteria, and killed
(red) bacterial cells were observed in the aggregates of E. coli,
P. aeruginosa, and S. aureus (Fig. 3A and Fig. S1). The size dis-
tribution of the aggregates and the relative abundance of the
respective size groups was recorded and is summarized in Fig.
3, B and C, respectively. The shorter TCP GKY25 killed the
bacteria but did not cause aggregation (Fig. 3A, rightmost pan-
els). We next selected E. coli and S. aureus bacteria for analysis
using TEM after treatment with 5 �M rTCP96. Membrane
breaks and perturbations, compatible with the results using the
live/dead assay (Fig. 3A and Fig. S1) were observed (Fig. S2).
Taken together, these results show that rTCP96 can induce
aggregation and permeabilization of various Gram-negative
and Gram-positive bacteria, leading to bacterial killing.

Aggregation of rTCP96 in the presence of TLR ligands

Next, we investigated the interaction between rTCP96 and
various TLR ligands. We used Blue Native gels to determine the

complex formations between rTCP96 (5 �M) and LPS (E. coli, 0
to 500 �g/ml) (Fig. 4A). Under the conditions used, rTCP96
alone is not detected in the gel, whereas increased amounts of
LPS caused a significant increase in complexes migrating as
�700 kDa and larger (Fig. 4A). Furthermore, we measured a
significant increase of �-sheet structure/aggregation by detect-
ing thioflavin T1 (ThT) fluorescence in the samples of rTCP96
(5 �M), which were treated with LPS (E. coli) in the concentra-
tion range from 10 to 500 �g/ml in Tris buffer, pH 7.4 (Fig. 4B).
Based on the results from the ThT experiment, for the next set
of experiments, we chose to use 5 �M rTCP96 and 50 �g/ml of
TLR ligands in Tris buffer, pH 7.4. We performed the ThT assay
to determine the increase of �-sheet structure in rTCP96
treated with the TLR ligands LPS (E. coli), LPS (P. aeruginosa),
lipid A (E. coli), LTA (S. aureus), and PGN (S. aureus). We
detected a significant increase in the �-sheet secondary struc-
ture of rTCP96, as reflected by an increase in ThT fluorescence
in rTCP96 subjected to LPS (from E. coli and P. aeruginosa),
lipid A (E. coli), and LTA (S. aureus). We did not observe any
changes after addition of PGN (S. aureus) (Fig. 4C). Dynamic
light scattering analyses corresponded with the results from the
ThT assay and the electrophoresis results using Blue Native gel.
A significant increase of hydrodynamic radius, compatible with
the observed interactions between rTCP96 and the TLR
ligands, was detected in the presence of LPS (E. coli), LPS
(P. aeruginosa), lipid A (E. coli), and LTA (S. aureus) but not in
the presence of PGN (S. aureus) (Fig. 4D). Moreover, we
employed microscale thermophoresis to measure the direct
interaction between rTCP96 and TLR ligands in the solution
(Fig. 4E). The Kd (�g/ml) constants for LPS (E. coli), LPS
(P. aeruginosa), lipid A (E. coli), LTA (S. aureus), and PGN
(S. aureus) were 14 � 6, 16 � 5, 18 � 7, 15 � 6, and 1449 � 375,
respectively, demonstrating that rTCP96 exhibited signifi-
cantly lower binding affinity to PGN when compared with the
other TLR ligands (Fig. 4F).

Structural changes in rTCP96 triggered by TLR ligands

Next, we used TEM to visualize amorphous aggregates of
rTCP96 (of sizes from 0.5 to 5 �m), which were formed after

Figure 1. Proteolysis of thrombin. Illustration of proteolyzed thrombin products and the position and sequence of TCP96. The numbers indicate the amino
acid position in the B chain.
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incubation with the different TLR ligands LPS, Lipid A, and
LTA (Fig. 5A). rTCP96 did not aggregate in the presence of
PGN. Correspondingly, an increase of �-sheet structure of
rTCP96 was detected by CD measurements in the samples
incubated with the two LPS forms, lipid A, and LTA (S. aureus).
As above, no significant difference in the secondary structure of
rTCP96 treated by PGN was observed (Fig. 5B). Inflammatory
local environments can have a low pH (16, 17). We therefore
next investigated aggregation and structural changes of
rTCP96 at pH 5.5. Using the ThT assay we found that LPS, lipid
A, and LTA also induced �-sheet formation at low pH (Fig.
S3A). Correspondingly, CD analysis at pH 5.5 demonstrated
changes in secondary structure of rTCP96 in the presence of
the TLR ligands LPS, lipid A, and LTA (Fig. S3B).

Molecular simulations of the TCP96-LPS and -LTA interaction

CG simulations enabled us to study the large-scale aggrega-
tion propensity for TCP96 fragments in the presence of the
lipid core components from different microbial products,
including LPS from P. aeruginosa and E. coli, and LTA from
S. aureus. The simulations in the presence of all molecules dis-
played an increase in aggregation over time, driven primarily by
hydrophobic interactions (Fig. 6). Pairwise distance analysis
supported visual analysis (Fig. 7), with LPS derived from differ-
ent species forming stable co-aggregates in a 1:1 ratio. Notably,
the 1:2 ratio of TCP96 with LTA lipids exhibited a greater pro-
pensity for aggregation compared with the 1:1 ratio, consistent
with the smaller size of the lipidic component of LTA compared
with that of LPS.

The RDF for TCP96-TCP96 interactions was next calcu-
lated, as a measure of the mean variation in density as a function

of distance from the protein fragments (Fig. S4). The RDFs indi-
cate that TCP96s come into closer contact in the presence of
LTA or LPS compared with when they are incubated alone.
Based on the first peak in the RDF profiles, these differences in
contact distances were shown to be significantly different, and
also confirm that for each simulation the co-aggregation pro-
cess had converged following the first 0.2 �s of simulation
(Table S1). Furthermore, the data lend additional support to the
observation that a higher concentration of LTA is required
compared with LPS for efficient TCP96 aggregation.

Effects of rTCP96 on endotoxin response in monocytes

We next used reporter THP-1 monocytes to detect effects on
LPS signaling by rTCP96. rTCP96 significantly reduced the
activation of NF-�B/AP-1 triggered by E. coli LPS (Fig. 8A). The
MTT viability assay did not show any significant cytotoxic
effect of rTCP96 on THP-1 cells, which suggests that the reduc-
tion in the NF-�B/AP-1 activation was due to the neutralizing
effect of rTCP96 on LPS and not by any rTCP96-mediated toxic
effects (Fig. 8A).

Effects of rTCP96 on endotoxin and bacteria in vivo

We next explored whether rTCP96 could suppress LPS-trig-
gered local inflammation in vivo. For this, we utilized the (NF-
�B-RE-Luc)-Xen reporter mouse model and studied the effects
of rTCP96 on subcutaneous inflammation induced by LPS.
(NF-�B-RE-Luc)-Xen reporter mice carry a transgene contain-
ing six NF-�B-responsive elements and a modified firefly lucif-
erase cDNA. The reporter gene is inducible by LPS and helps in
in vivo studies of transcriptional regulation of the NF-�B gene.
LPS (25 �g) was subcutaneously injected into the mice, either

Figure 2. Antimicrobial activity of rTCP96. Viable count assay revealed a significant reduction in colony forming units of the indicated bacterial strains after
treatment with 5 �M rTCP96. The strains used were E. coli ATCC 25922, P. aeruginosa ATCC 27853 (indicated by I and 9027 II), S. aureus ATCC 29213, E. faecalis
ATCC 29212, and B. subtilis ATCC 6633. Results are expressed as the number of viable bacteria of 4 different experiments each carried out in triplicate. *, p � 0.05;
**, p � 0.01; ****, p � 0.0001. p values were determined relative untreated (control) bacteria using one-way ANOVA followed by Dunnett’s multiple compar-
isons test.
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Figure 3. Fluorescence microscopy analysis of bacterial viability. A, visualization of live (green) and dead (red) bacteria. E. coli ATCC 25922, P. aeruginosa
ATCC 27853, and S. aureus ATCC 29213 were subjected to 5 �M rTCP96 and bacterial viability in the aggregates was analyzed by LIVE/DEAD� BacLightTM

staining. The insets show a 6 times magnified region and the scale bar is 1 �m. The antimicrobial peptide GKY25 was used as positive control and did not aggregate
bacteria. The scale bar is 2 �m. One representative image from three independent experiments is shown (n � 3). B, size distribution of aggregates for the indicated
bacteria. C, the relative abundance of aggregates for the respective size class. For B and C, the analysis was performed by measuring the area of all the aggregates in
10 view fields from three different experiments. * indicate p � 0.05 calculated using one-way ANOVA followed by Dunnett’s multiple comparisons test.
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alone or with rTCP96 (25 �g). The luminescent signal after
subsequent addition of luciferin, reporting NF-�B activation,
was recorded using live bioimaging (IVIS Spectrum) (Fig. 8B).
We detected a significant reduction of NF-�B activation after
3 h in mice co-treated with rTCP96-LPS when compared with
LPS treatment alone. rTCP96 alone did not yield any significant
increase in NF-�B activation (Fig. 8C). In the next experimen-
tal model, we wanted to simulate a situation of direct con-
tamination with bacteria. Bioluminescent P. aeruginosa or
S. aureus bacteria (106 cfu, cfu/animal) were incubated with
buffer or rTCP96 and immediately injected subcutaneously
in SKH1 mice. In this model, the bacterial dose used causes a
transient, and self-limiting bacterial infection. The results
showed that rTCP96 reduced the bacterial load of P. aerugi-
nosa, as assessed by in vivo bioimaging (Fig. 8, D and E).
However, no significant reduction of S. aureus was observed
(Fig. 8, D and E).

Discussion

In this study, we present evidence that rTCP96 aggregates
not only Gram-negative E. coli but also other Gram-negative
bacteria, such as P. aeruginosa, as well as Gram-positive bacte-
ria, such as S. aureus. Although both Gram-negative and Gram-
positive bacteria were aggregated in vitro, we observed that bac-
terial killing was most pronounced for the Gram-negative
E. coli and P. aeruginosa in vitro. Correspondingly, rTCP96
only reduced P. aeruginosa in an experimental model of subcu-
taneous inoculation of P. aeruginosa, whereas no effects on
S. aureus were observed in the in vivo model. From a clinical
perspective, this observation corresponds with the well-estab-
lished fact that E. coli and P. aeruginosa are less frequent as
infective agents in acute surgical wounds. Notably, the majority
of surgical site infections are caused by Gram-positive bacteria,
of which one major agent is S. aureus (18, 19). Although spec-

Figure 4. Aggregation of rTCP96 in the presence of various agonists from Gram-positive and Gram-negative bacteria. A, separation on Blue Native gels
followed by Western blot analysis shows an increase of higher molecular complexes of rTCP96 (5 �M) with an increasing amount of LPS from E. coli (0 –500
�g/ml). One representative image of four independent experiments is shown (n � 4). B, rTCP96 was incubated with LPS at the indicated concentrations. ThT
assay demonstrates a significant increase of �-sheet structure in the studied concentration range for LPS (n � 6). C, ThT assay demonstrates aggregation of
rTCP96 in the presence of LPS (from E. coli and P. aeruginosa), lipid A (from E. coli), LTA (from S. aureus) but not with PGN (from S. aureus) (n � 6). D, dynamic light
scattering analysis of the samples analyzed in C is presented. For B and C, *, p � 0.05; **, p � 0.01; ****, p � 0.0001. p values were determined using one-way
ANOVA with Dunnett’s multiple comparison test, and for D with two-way ANOVA with Sidak’s multiple comparison test (n � 6). E, MST analysis for study of
interaction of rTCP96 (1 �M) with LPS (E. coli), LPS (P. aeruginosa), lipid A (E. coli), LTA (S. aureus), and PGN (S. aureus) is shown. F, Kd values based on the MST
analysis. The respective values are Kd (�g/ml) � 14 � 6, 16 � 5, 18 � 7, 15 � 6, and 1449 � 375, for the respective ligands. Mean � S.D. values of six
measurements are shown.
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ulative, these observations suggest that TCP-mediated aggre-
gation at physiological conditions, such as in wounds, may pref-
erentially target bacteria, such as E. coli and P. aeruginosa.

We also show that TLR4 agonists such as LPS and lipid A
from various bacteria (E. coli and P. aeruginosa) cause aggrega-
tion of rTCP96. Notably, the TLR2 agonist LTA from S. aureus

Figure 5. Structural changes of rTCP96. A, TEM-negative staining revealed amorphous aggregates of rTCP96 (size from 0.5 to 5 �m) after incubation with LPS
from E. coli (Ec) and P. aeruginosa (Pa), lipid A (from E. coli), and LTA (from S. aureus). Amorphous aggregates of rTCP96 were not observed in the samples treated
with PGN (S. aureus). One representative image from three independent experiments is shown (n � 3). The scale bar is 1 �m. B, CD was used to detect an
increase of �-sheet structures in rTCP96 after incubation with LPS from E. coli (Ec) and P. aeruginosa (Pa), lipid A (from E. coli), and LTA (from S. aureus). PGN (from
S. aureus) did not affect the secondary structure of rTCP96 (n � 3).

Thrombin fragments aggregate bacteria

3422 J. Biol. Chem. (2020) 295(11) 3417–3430



Figure 6. Computational prediction of co-aggregation of TCP96 fragments from random starting locations, in presence/absence of different micro-
bial products. Snapshots show LTA/LPS lipids (purple) with surrounding TCP96 molecules in multiple colors, at the start, at 0.25 �s (when most of the
molecules had undergone aggregation), and at the end of each simulation. Ec, E. coli; Pa, P. aeruginosa; Sa, S. aureus.
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exhibited a similar aggregating effect on rTCP96. On the other
hand, PGN (from S. aureus), which is a TLR2 agonist, did not
exert any aggregating effects on rTCP96. In this context, it is
notable that a major chemical difference between PGN and the
other ligands is the lack of an acyl tail component in PGN.
Hence, the data suggest that the hydrophobic lipid tails of lipid
A, LPS, and LTA seem to be crucial in mediating the aggrega-
tion with TCP96, and likewise in binding to TLR hydrophobic
pockets. Of particular importance was that we observed an
anti-inflammatory effect of rTCP96, as it significantly reduced
LPS-induced TLR4 activation of human monocytes in vitro,
indicating that confinement of LPS leads to reduced inflamma-
tory signaling. Importantly, this in vitro observation was trans-
lated to the in vivo situation, showing that TCP96 can also
reduce NF-�B activation in the experimental model of endo-
toxin-induced inflammation in NF-�B-RE-luc mice.

Taken together, the present work on aggregation of TCPs
induced by bacteria and their products, therefore, adds a fur-
ther role to proteolyzed thrombin fragments in aggregation and
amyloid formation for rapid confinement of endotoxins and
microbes. This connection between host defense and aggrega-

tion suggest that control of bacteria and its products is a com-
mon theme for many amyloidogenic proteins (20), such as
�-amyloid-peptide variants (21, 22), peptides from �-amyloid
precursor protein, and the prion protein (13, 23). Moreover,
eosinophilic cationic protein, known to be released from eosin-
ophils, aggregates and kills bacteria in vitro (24). It remains to
be investigated whether these other proteins and peptides
mediate similar activities as reported here for TCP96.

Worldwide antimicrobial resistance is an increasingly seri-
ous threat to global public health that requires the urgent dis-
covery of new therapeutic approaches (25–27). The activities of
TCP96 on LPS delineate an endogenous mechanism by which
aggregation-prone TCPs facilitate and control inflammation.
From an evolutionary perspective, this activity is both logical
and beneficial from an organism’s point of view, illustrating
that it is better to localize and attenuate inflammation than not
to contain it (Fig. 9). This observation is of interest, as this
suggests that potentially lethal systemic reactions, such as seen
in endotoxin-induced shock, can potentially be avoided. Future
in vivo work utilizing systemic models of endotoxin shock and
bacterial infections with both Gram-negative as Gram-positive

Figure 7. Mean intermolecular distances between TCP96 fragments following co-aggregation simulations in the presence/absence of various micro-
bial products. The panels indicate pairwise intermolecular distances between all eight TCP96 molecules in the simulation box, ranging from close contact
(white) to more separated (black). Bright regions of the panels signify larger contact areas between molecules. Dark areas indicate that the respective molecules
do not interact. Increased aggregation is apparent through the appearance of additional bright areas in the system containing LTA/LPS. Note that the bright
area through the center of each matrix is due to self-contact. Ec, E. coli; Pa, P. aeruginosa; Sa, S. aureus.
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pathogens are mandated to explore the therapeutic potential
of anti-infective concepts based on aggregation induced
confinement.

Experimental procedures

Peptide

The thrombin-derived peptide GKY25 (GKYGFYTHV-
FRLKKWIQKVIDQFGE) was synthesized by Biopeptide Co.,
Inc. We confirmed the purity (over 95%) via mass spectral anal-
ysis (MALDI-TOF Voyager).

Microorganisms

E. coli ATCC 25922, S. aureus ATCC 29213, S. aureus
229, P. aeruginosa ATCC 9027, P. aeruginosa ATCC 27853,
P. aeruginosa XEN 41, B. subtilis ATCC 6633, and E. faecalis
ATCC 29212 bacterial strains were purchased from LGC
(UK).

Cell culture

THP-1 cells (ATCC) were cultured in Roswell Park
Memorial Institute 1640 Medium-GlutaMAX-1 (Gibco, Life

Figure 8. Antiendotoxic effect of rTCP96 in vitro and in vivo. A, THP-1-XBlue-CD14 cells were treated with rTCP96, LPS from E. coli (Ec), or a combination of
both. rTCP96 yielded a significant reduction of activation of NF-�B/AP-1 (14). **, p � 0.01; ****, p � 0.0001. MTT viability assay for analysis of toxic effects of
rTCP96 on THP-1 cells is shown. The dotted line (Con) represents positive control of dead cells. The mean � S.D. values of five measurements are shown. p values
were determined using one-way ANOVA with Dunnett’s multiple comparison test. B, NF-�B activation in the NF-�B-RE-luc random transgenic mouse model
was analyzed by the IVIS imaging system. LPS, or LPS aggregated with rTCP96 (LPS � rTCP96), were injected subcutaneously and the NF-�B response was
imaged after an incubation period of 3 h. The scale bar is 1 cm. C, total radiance from of the experiment illustrated in B was measured. A significant reduction
of NF-�B activation was observed in mice treated with rTCP96-LPS compared with LPS treatment alone. The mean � S.D. values of five to seven measurements
are shown. *, p � 0.05. One-way ANOVA with Dunnett’s multiple comparison test was used. D, effects of rTCP96 in a mouse model of subcutaneous infection
are illustrated. In vivo infection imaging in a mouse model of subcutaneous infection. Bioluminescent P. aeruginosa or S. aureus bacteria (3 � 108 cfu/ml) was
incubated with rTCP96 or buffer only and deposited subcutaneously in the dorsum of SKH1 mice. Bioluminescence intensity was noninvasively analyzed using
the IVIS bioimaging system. Representative images show bacterial luminescence at 3 h post-infection. The scale bar is 1 cm. E, the bar chart shows measured
bioluminescence intensity emitted by the bacteria at 1, 3, 6, and 24 h post-infection. All in vivo data are presented as the mean � S.E. (n � 5–7 mice). *, p � 0.05.
p values were determined using the Mann-Whitney U test.
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Technology Ltd., UK), the medium was supplemented with
10% (v/v) heat-inactivated FBS (Invitrogen) and 1% (v/v)
antibiotic-antimycotic solution (Invitrogen) at 37 °C in 5%
CO2.

TLR ligands

LPS from E. coli, LPS from P. aeruginosa, and lipid A from
E. coli were purchased from Sigma-Aldrich. LTA and PGN
from S. aureus were purchased from InvivoGen.

Animals

BALB/c tg(NF-�B-RE-Luc)-Xen reporter male mice and
SKH-1 hairless male mice, purchased from Taconic Biosci-
ences, were used for all experiments. The animals were housed
under standard conditions of light and temperature and had
free access to standard laboratory chow and water.

Purification of rTCP96

A bacterial expression system consisting of pET-15b plasmid
in E. coli strain BL21 codon plus (DE3) RIPL (Invitrogen) was
used to produce the rTCP96. We cultivated the bacteria in LB
broth (Sigma-Aldrich) supplemented with 34 �g/ml of chlor-
amphenicol and 100 �g/ml of carbomycin. Isopropyl 1-thio-�-
D-galactopyranoside (400 �M; VWR), added at the mid-log
phase, was used to induce peptide production in the bacterial
system. The rTCP96 peptides were extracted and purified by
immobilized metal affinity chromatography (nickel-nitrilotri-
acetic acid-agarose, Invitrogen) under denaturing conditions (8
M urea, 10 mM Tris, pH 7.4), extensively washed with 20 mM

imidazole in 8 M urea, 10 mM Tris, pH 7.4, and then eluted by
stepwise increasing concentrations of imidazole (200 mM).
rTCP96 was desalted in 10 mM Tris, pH 7.4, by stepwise dialysis
and concentrated using a 3-kDa molecular mass cut-off Ami-
con ultracentrifugal filter device (Millipore, Germany) and

stored at 4 °C prior to use. Peptide purity was confirmed via
Tricine gel electrophoresis followed by Gel Code Blue Safe Pro-
tein staining (Thermo Scientific) and Western blotting. The
protein concentration was determined by Nanodrop (ND 1000,
Thermo Scientific) (15).

Native gel analysis (BN-PAGE)

We detected the interactions of rTCP96 and TLR ligands by
BN-PAGE and Western blot analysis. rTCP96 (5 �M) was incu-
bated with TLR ligands for 30 min at 37 °C. The samples were
loaded under reducing conditions on BN-PAGE (Native PAGE
BisTris Gels System 4 –16%, Invitrogen) according to the man-
ufacturer’s instructions, which we followed by Western blot-
ting. Although the complex formation is known to be a process
involving several intermediate steps, this assay is accepted in
the field as an approximate measure of the binding capability
between peptides and ligands.

Viable count assay

To determine the antibacterial activity of rTCP96, we used
E. coli ATCC 25922, S. aureus ATCC 29213, P. aeruginosa
ATCC 27853 (indicated as Pa I), P. aeruginosa ATCC 9027
(indicated as Pa II), B. subtilis ATCC 6633, and E. faecalis
ATCC 29212. The bacteria were grown to mid-logarithmic
phase in 5 ml of Todd-Hewitt (TH) medium. The bacteria were
centrifuged, washed, and suspended in 5 ml of 10 mM Tris
buffer, pH 7.4. Next, the bacteria (10 �l, 3 � 108 cfu; cfu/ml)
were incubated with 5 �M rTCP96, 5 �M GKY25 (used as a
positive control), or buffer control (10 mM Tris buffer, pH 7.4)
for 2 h at 37 °C. A dilution series of the incubated samples were
plated on TH agar plates, incubated overnight at 37 °C, and the
cfu was calculated (15).

Figure 9. Summary of TCP96 function. Aggregation and confinement of LPS leads to attenuated inflammation in vivo.
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Thioflavin T dye-binding assays

Amyloid formation was determined using the dye ThT.
Thioflavin T preferentially binds to the �-sheet structures of
amyloidogenic proteins/peptides. For examination of the con-
centration dependence of the aggregation, we incubated
rTCP96 (5 �M) and LPS from E. coli (0, 10, 50, and 100 �g/ml)
in buffer (10 mM Tris, pH 7.4, and 10 mM MES, pH 5.5) for 30
min at 37 °C. Moreover, rTCP96 was incubated for with 50
�g/ml of each ligand (LPS (E. coli), LPS (P. aeruginosa), lipid A
(E. coli), LTA (S. aureus), and PGN (S. aureus)) for 30 min at
37 °C before measurements. Two hundred microliters of the
materials were incubated with 100 �M ThT for 15 min in the
dark (ThT stock was 1 mM stored in the dark at 4 °C). We mea-
sured ThT fluorescence using a VICTOR3 Multilabel Plate
Counter spectrofluorometer (PerkinElmer Life Sciences) at an
excitation of 450 nm, with excitation and emission slit widths of
10 nm. The baseline (10 mM Tris, pH 7.4, or 10 mM MES, pH 5.5,
buffer, LPS (E. coli), LPS (P. aeruginosa), lipid A (E. coli), LTA
(S. aureus), and PGN (S. aureus)) was subtracted from the sig-
nal of each sample (15, 28).

Circular dichroism spectroscopy

We performed circular dichroism (CD) measurements on a
Jasco J-810 spectropolarimeter (Jasco) equipped with a Jasco
CDF-426S Peltier set to 25 °C. The peptides were diluted to 5
�M in buffer (Tris, 10 mM, pH 7.4, and MES, pH 5.5) and incu-
bated with 10 –300 �g/ml of LPS for 30 min, placed in a 10-mm
quartz cuvette and, after extensive purging with nitrogen,
scanned over the wavelength interval at 200 –260 nm (scan
speed: 20 nm/min). We calculated the averages of five scans for
each sample. For examination of time dependence, rTCP96 (5
�M) was incubated for 10 and 120 min at 37 °C in the absence or
presence of TLR ligands (50 �g/ml) in 10 mM Tris, pH 7.4. The
baseline (10 mM Tris, pH 7.4, or 10 mM MES, pH 5.5, buffer, LPS
(E. coli), LPS (P. aeruginosa), lipid A (E. coli), LTA (S. aureus),
and PGN (S. aureus)) was subtracted from the spectra of each
sample (15, 29).

Transmission electron microscopy

We visualized the aggregates formed by rTCP96 (5 �M) in the
presence of ligands (50 �g/ml), such as LPS (E. coli), LPS
(P. aeruginosa), lipid A (E. coli), LTA (S. aureus), and PGN
(S. aureus) during incubation for 30 min at 37 °C. We examined
10 view fields (magnification �4200) of the mounted samples
on the grid (pitch 62 �m) from three independent sample prep-
arations using TEM (Jeol Jem 1230; Jeol, Japan) in combination
with negative staining. The samples were adsorbed onto car-
bon-coated grids (copper mesh, 400) for 60 s and stained with 7
�l of 2% uranyl acetate for 20 s. The grids were rendered hydro-
philic via glow discharge at low air pressure (15).

Fluorescence microscopy analysis of bacterial aggregates

The viability of E. coli ATCC 25922, S. aureus ATCC 29213,
and P. aeruginosa ATCC 27853 in the aggregates was assessed
by using the LIVE/DEAD� BacLightTM Bacterial Viability kit
(Invitrogen, Molecular Probes, Carlsbad, CA). For this purpose,
the bacterial suspension was prepared as described above for

VCA. Bacteria were then treated by 5 �M rTCP96 or 5 �M

GKY25 in 10 mM Tris, pH 7.4. The buffer was used for control.
After 2 h, the samples were mixed with 3 �l of the dye mixture
for each ml of the bacterial suspension, as reported on the man-
ufacturer’s protocol, and incubated in the dark at room temper-
ature for 15 min. At the end of incubation, 5 �l of the stained
bacterial suspension were trapped between a slide and an
18-mm square coverslip.

We examined 10 view fields (1 � 1 mm) of the mounted
samples from three independent sample preparations using a
Zeiss AxioScope A.1 fluorescence microscope (objectives: Zeiss
EC Plan-Neofluar �100/1.3 oil; camera: Zeiss AxioCam MRm;
acquisition software: Zeiss Zen 2.6 (blue edition). For the anal-
ysis we measured the area of all aggregates possible to distin-
guish in each picture (43 for E. coli, 42 for P. aeruginosa, and 67
for S. aureus).

Microscale thermophoresis

We performed MST analysis using a NanoTemper Monolith
NT.115 apparatus (Nano Temper Technologies, Germany).
We used a Monolith NT Protein labeling kit RED-NHS (Nano
Temper Technologies) to label 5 �M rTCP96 according to the
manufacturer’s protocol. A constant amount of 2 �M rTCP96
was mixed with increasing concentrations of LPS (E. coli), LPS
(P. aeruginosa), lipid A (E. coli), LTA (S. aureus), and PGN
(S. aureus) in Tris buffer (10 mM, pH 7.4). Next, 10 �l of each
sample was loaded into standard glass capillaries (Monolith NT
Capillaries, Nano Temper Technologies), and we performed
the MST analysis (settings for the light-emitting diode and IR
laser were 80%). Kd constants were analyzed using MST soft-
ware MO Affinity Analysis version 2.2.4 (15).

Dynamic light scattering

We performed dynamic light scattering (DLS) measure-
ments to determine the hydrodynamic radii of rTCP96 with or
without ligands: LPS (E. coli), LPS (P. aeruginosa), lipid A
(E. coli), LTA (S. aureus), and PGN (S. aureus). Wyatt QELS
(Quasi-Elastic Light Scattering, Wyatt Technology Corpora-
tion) and Dawn EOS (enhance optical system, Wyatt Technol-
ogy Corp.) equipped with a temperature-controlled microsam-
pler instrument were used for DLS measurements. We
incubated the samples for 30 min at 37 °C under reducing con-
ditions, and the scattered light was detected at 18 different
angles simultaneously. Before the experiment, all samples were
filtered through 0.22 �m pore-sized microfilters (Sartorius,
Germany). Aliquots of samples were manually loaded into the
flow cell and measured at 37 °C. All samples (1 �M rTCP96 with
or without ligands: LPS (E. coli), LPS (P. aeruginosa), lipid A
(E. coli), LTA (S. aureus), and PGN (S. aureus)) were measured
at least 15 times. GKY25 peptide was used as a negative control
and analyzed under the same conditions. For evaluation of time
dependence of the aggregation, rTCP96 (1 �M) was incubated
for 10, 30, 60, and 120 min at 37 °C in the absence or presence of
LPS (E. coli), LPS (P. aeruginosa), lipid A (E. coli), LTA
(S. aureus), and PGN (S. aureus) (5 �g/ml) in 10 mM Tris, pH
7.4. The hydrodynamic radii were analyzed by Astra V software
using Zimm modeling (15).
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Molecular dynamics simulations

The coarse-grained (CG) models of TCP96 and E. coli LPS
were taken from previously published work, with the closely
related P. aeruginosa LPS model derived from that reported in
Ref. 15. This involved switching the GL0 and GL5 beads in our
original E. coli LPS CG model and shortening the lengths of the
carbon lipid tails (30). The initial CG model for S. aureus LTA
was initially constructed based on an atomic model kindly pro-
vided by Dr. T. J. Piggot. This model did not include the
extended glycerol-phosphate units but was restricted to the
hydrophobic diacylglycerol component and carbon lipid tails,
which anchor LTA to the cell membrane, and are likely to be
key in the aggregation of the molecule, as well as interacting
with the hydrophobic TLR2 ligand-binding pocket (31). To
study the aggregation behavior of TCP with different lipids, 5 �
1-�s simulation replicas were run with eight TCP96 fragments
in the presence of: (i) eight S. aureus LTA molecules; (ii) eight
P. aeruginosa LPS molecules; or (iii) eight E. coli LPS molecules.
Also, 5 � 1-�s simulations of eight TCP96 fragments with 16
S. aureus LTA molecules were run, to check for possible side
effects upon aggregation, given that the lipid component of
LTA is significantly smaller than that of LPS. In all systems, the
proteins and microbial products were randomly placed and sol-
vated with water and neutralizing Na� and Cl� ions. The sim-
ulations were run using the MARTINI force field (32) at 313 K
and 1 bar, which was kept constant using the Berensden algo-
rithm (33). All simulations and analysis were carried out using
Gromacs 2018 (34), whereas rendering was performed using
VMD (35). The pairwise distances between all the residues
within the TCP molecules were determined and averaged. The
radial distribution function (RDF) for TCP-TCP interactions
was calculated for each simulation. For all analysis, each simu-
lation was divided into blocks of 0.2 �s, discarding the first
block to account for equilibration.

NF-�B activity assay

NF-�B/AP-1 activation, in THP-1-XBlue-CD14 reporter
monocytes, was determined after 20 –24 h of incubation
according to the manufacturer’s protocol (InvivoGen). Briefly,
1 � 106 cells/ml in RPMI were seeded in 96-well-plates (180 �l)
and incubated with peptides (GKY25 1 �M; rTCP96 0.5– 0.05
�M), LPS (10 ng/ml), or both overnight at 37 °C, 5% CO2 in a
total volume of 200 �l. The following day, the activation of
NF-�B/AP-1 was analyzed as the secretion of embryonic alka-
line phosphatase. The supernatant (20 �l) from the cells was
transferred to 96-well-plates, and 180 �l of Quanti-Blue was
added. The plates were incubated for 2 h at 37 °C, and the absor-
bance was measured at 600 nm in a VICTOR3 Multilabel Plate
Counter spectrofluorometer.

MTT viability assay

Sterile-filtered MTT (Sigma-Aldrich) solution (5 mg/ml in
PBS) was stored in dark at �20 °C until usage. We added 20 �l
of MTT solution to the remaining overnight culture of THP-1-
XBlue-CD14 reporter monocytes from the above NF-�B activ-
ity assay in 96-well-plates, which were incubated at 37 °C. The
supernatant was then removed, and the blue formazan product
generated in cells was dissolved by the addition of 100 �l of

100% DMSO in each well. The plates were then gently shaken
for 10 min at room temperature to dissolve the precipitates.
The absorbance was measured at 550 nm in a VICTOR3 Mul-
tilabel Plate Counter spectrofluorometer.

Mouse inflammation model

BALB/c tg(NF-�B-RE-Luc)-Xen reporter mice (Taconic,
10 –12 weeks old) were used to study the immunomodulatory
effects of rTCP96 (25 �g) after subcutaneous co-treatment with
LPS (E. coli, 25 �g). The samples were preincubated for 30 min
at 37 °C before injection. The dorsums of the mice (5 to 6 mice
per treatment group) were carefully shaved and cleaned. Mice
were anesthetized with isoflurane, and 200 �l of the sample was
injected subcutaneously. The animals were immediately trans-
ferred to individually ventilated cages and imaged 3 h later. We
used an In Vivo Imaging System (IVIS Spectrum, PerkinElmer
Life Sciences) for determination of NF-�B activation, which
plays a key role in the regulation of immune response during
infection. Bioluminescence from the mice was detected and
quantified using Living Image 4.0 Software (PerkinElmer Life
Sciences). Fifteen minutes before the IVIS imaging, mice were
intraperitoneally given 100 �l of D-luciferin (150 mg/kg body
weight) (14).

Mouse model of subcutaneous infection

Male SKH-1 hairless mice (12 weeks old), were anesthetized
using a mixture of 2% isoflurane and oxygen. Overnight cul-
tures of bioluminescent bacteria, P. aeruginosa Xen41 or
S. aureus 229, were refreshed and grown to mid-logarithmic
phase in TH media. Bacteria were washed for 15 min (5.6 �
1000 rpm) and diluted with 10 mM Tris buffer, pH 7.4. rTCP96
(5 �M) was then mixed with 106 cfu of the bacteria and incu-
bated for 2 h at 37 °C. A total of 100 �l of mixture was injected
subcutaneously into the mouse dorsum. In vivo bacterial infec-
tion was imaged by measuring bioluminescence in anesthetized
mice using IVIS imaging and the data obtained were analyzed
using Living Image 4.0 Software (PerkinElmer Life Sciences). 5
to 6 mice per treatment group were used (14).

Ethics statement

All animal experiments were performed according to the
Swedish Animal Welfare Act SFS 1988:534 and were approved
by the Animal Ethics Committee of Malmö/Lund, Sweden
(permit numbers M88-91/14, M5934-19, and M8871-19). Ani-
mals were kept under standard conditions of light and temper-
ature and water ad libitum.

Statistical analysis

The graphs of VCA, ThT, and DLS are presented as mean �
S.D. from at least three independent experiments. We assessed
differences in these assays using one-way ANOVA with Dun-
nett’s multiple comparison tests and two-way ANOVA with
Sidak’s multiple comparison tests. All of the data were ana-
lyzed using GraphPad Prism 8 (GraphPad Software, Inc.).
The p values less than 0.05 were considered to be statistically
significant (*, p � 0.05; **, p � 0.01; ***, p � 0.001; and ****,
p � 0.0001).
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