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Abstract

In metabolism, available free energy is limited and must be divided across pathway steps to 

maintain ΔG negative throughout. For each reaction, ΔG is log-proportional both to a 

concentration ratio (reaction quotient-to-equilibrium constant) and to a flux ratio (backward-to-

forward flux). Here we use isotope labeling to measure absolute metabolite concentrations and 

fluxes in Escherichia coli, yeast, and a mammalian cell line. We then integrate this information to 

obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free 

energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. 

Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially 

conserved, and that most substrate (but not inhibitor) concentrations exceed the associated enzyme 

binding site affinity. The observed conservation of metabolite concentrations is consistent with an 

evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints.

 Introduction

Absolute metabolite concentrations determine enzyme binding site occupancies1 and the 

thermodynamics of metabolic reactions2. Accordingly, knowledge of absolute metabolite 

concentrations is valuable for dynamic modeling of metabolism3,4. Such knowledge is also 

useful for conducting in vitro enzyme assays under physiologically relevant conditions5,6, 

for predicting whether antimetabolites will outcompete with endogenous metabolites for 
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relevant enzyme binding sites7, and for engineering enzymes that selectively bind desired 

substrates in the complex cellular environment8.

A variety of methods exist for measuring cellular metabolite concentrations, with liquid 

chromatography-mass spectrometry (LC-MS) enabling measurements of many metabolites 

with sensitivity and specificity9,10. A deficiency of LC-MS is that absolute signal intensity 

depends on ionization efficiency and therefore does not reliably reflect absolute 

concentrations. This limitation can be overcome by comparing the signal of endogenous 

metabolites to isotopically labeled standards, whose addition prior to extraction also 

accounts for losses in sample handling11. Because, isotopically labeled standards of many 

metabolites are not commercially available, it is often more convenient to feed isotopically 

labeled substrates to cells and compare labeled intracellular metabolites to unlabeled 

standards12. Through this approach, we have previously measured the absolute 

concentrations of 103 metabolites in E. coli1. The concentrations of these metabolites are 

typically higher than the associated Michaelis constants (Km) of the enzymes consuming 

them, suggesting that most active sites in E. coli are occupied.

Using these absolute concentrations, the thermodynamics (Gibbs energy, ΔG) of metabolic 

reactions have also been assessed based on the fundamental equation, where ΔG°′ is ΔG at 

standard biochemical conditions, Q is the reaction quotient (the ratio of the product to 

reactant activities), R is the gas constant, T is the temperature in kelvins, and Keq is the 

equilibrium constant (the ratio of product to reactant activities at equilibrium) at standard 

biochemical conditions:

(1)

For simplicity, Q is typically calculated based on concentrations, not activities, using ΔG°′ 

determined at cellular ionic strength and divalent cation concentrations.

Gibbs free energy of reaction (ΔG) has been applied in metabolic analysis to eliminate flux 

loops that violate the second law of thermodynamics13,14 and to constrain the directions of 

cellular metabolic reactions15. In addition, it determines the fraction of flux through 

metabolic reactions that is in the forward direction and thus productive, and thereby relates 

to the efficiency of enzyme utilization16. Thermodynamic analysis also can provide 

regulatory insights, with enzymes operating far from equilibrium being more effective 

targets for regulating pathway flux17.

Here we explore the potential to infer cellular reaction free energies based on relative 

forward to backward flux. Specifically, where J+ and J− are forward and backward 

fluxes18–20:

(2)
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We validated that the relative forward and backward flux ratios through reversible reactions 

like triose phosphate isomerase can be measured using isotope tracers. Moreover, we 

recognized that the resulting ΔG measurements can be used to evaluate the metabolite 

concentrations. For example, given direct measurements of the reversibility and all but one 

of the substrates or products of a reaction, the missing concentration can be determined by 

combining equations (1) and (2). More generally, concentrations, fluxes, and 

thermodynamics are all interrelated, and we aimed to obtain coherent values of each.

Here we report the application of such integrative analysis to E. coli, yeast, and a cultured 

mammalian cell line. The mammalian cell line was derived by immortalization of baby 

mouse kidney cells (iBMK cells)21. Each cell type was grown in nutrient-rich conditions 

including high glucose. Under such media conditions, we observed that absolute metabolite 

concentrations are significantly conserved across these highly divergent cell types, arguing 

for a common set of constraints on their metabolomes. We propose that the three most 

important constraints are thermodynamics, osmotics, and efficient enzyme utilization.

 Results

 Isotope tracers reveal reaction reversibility and thus ΔG

To lay the groundwork for integrative analysis of metabolite concentrations, fluxes, and free 

energies (Fig. 1a), we initially set out to validate the ability to measure the reversibility of a 

single glycolytic reaction catalyzed by triose phosphate isomerase (TPI) using isotope 

tracers. TPI converts dihydroxyacetone phosphate (DHAP) into glyceraldehyde-3-phosphate 

(GAP). To determine TPI reversibility, we needed a tracer that differentially labels DHAP 

and GAP. We selected [1,2-13C2]-glucose, which yields [1,2-13C2]-fructose-1,6-

bisphosphate, the parent molecule of DHAP and GAP. DHAP is formed from carbons 1–3 

and GAP from carbons 4–6 (Fig. 1b). Thus, in the absence of backwards flux through TPI, 

all DHAP molecules would be labeled (M+2), with reverse flux through TPI resulting in the 

appearance of unlabeled DHAP.

To verify that we can measure different extents of reversibility, we knocked out the 

chromosomal TPI in E. coli and introduced an inducible TPI plasmid. At low inducer levels, 

DHAP was almost completely labeled, indicating nearly unidirectional forward flux (Fig. 

1c). Increasing the inducer level resulted in unlabeled DHAP, up to a maximum value of 

50% unlabeled as expected for complete reversibility (Fig. 1c). The extent of DHAP labeling 

at pseudo-steady state can be converted into a ratio of forward to backward TPI flux based 

on isotopomer balancing (see Methods). Using equation (2), the forward-to-backward flux 

ratios yield ΔGTPI. Since DHAP absolute concentration can be directly measured, we can 

determine the absolute concentration of GAP (which is less abundant and can be obscured 

by analytical interferences22) using equation (1).

 Large-scale determination of net and exchange fluxes

The same conceptual approach that was applied to TPI can be expanded to cover a wide 

spectrum of central metabolic reactions. Analyzing the broader network advantageously 

accounts for all major sources and sinks of each metabolite, but requires a diversity of 
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tracers to quantitate fluxes throughout central metabolism. Independent experiments feeding 

multiple different 13C-glucose tracers and measuring pseudo-steady-state metabolite 

labeling patterns by LC-MS were conducted in E. coli, yeast, and the mammalian cell line 

iBMK. In addition, for the mammalian cells, tracer analysis was also conducted with 

[U-13C5]-glutamine, another important carbon source for these cells. Labeling data are 

shown in Supplementary Results, Supplementary Data Set 1. Together with nutrient uptake 

and waste excretion data, the labeling data were sufficient to determine pseudo-steady-state 

net fluxes throughout central metabolism by isotopomer and flux balancing. Results of all of 

the tracer experiments were integrated into a single unified flux set for each organism (Fig. 

2a, Supplementary Table 1).

Substantial differences in net fluxes were observed across the three organisms. The absolute 

glucose uptake rate, normalized to cell volume, was about 30-fold lower in the mammalian 

iBMK cells than in E. coli or yeast. While the largest intracellular flux in each organism was 

glycolysis, utilization of the pentose phosphate pathway and the TCA cycle differed. Net 

flux through the oxidative pentose phosphate pathway was 20% of glucose uptake in E. coli, 
but only 3% and 2% in yeast and mammalian iBMK cells respectively. Flux of glucose-

derived two-carbon units into the TCA cycle consumed 24% of pyruvate made in E. coli, but 

only 13% in the mammalian iBMK cells and 2% in yeast, which had minimal α-

ketoglutarate dehydrogenase flux with malate dehydrogenase operating net in reverse. Malic 

enzyme flux was substantial in yeast and mammalian cells, but not E. coli. Overall, fluxes 

were more similar in the two eukaryotic cell types than across the two microbes (Fig. 2b).

In addition to determining net fluxes, an in-house algorithm was developed to quantitate 

forward-to-backward flux ratios and their confidence intervals and associated ΔG (See 

Methods). The ability to obtain informative flux ratios depends on the backwards reaction 

producing a distinctive labeling pattern. The tested tracers enabled such direct measurement 

of forward-to-backward flux ratios for selected reactions in the pentose phosphate pathway, 

glycolysis, the tricarboxylic acid (TCA) cycle, and folate-mediated serine-glycine 

interconversion (Supplementary Table 2, Fig. 3).

 Integrating metabolite concentrations and free energies

With an eye towards a better understanding of the overall thermodynamics of central carbon 

metabolism, we aimed to combine the flux-based free energy measurements from Figure 3 

with direct measurements of metabolite concentrations by LC-MS into a coherent unified 

picture of central carbon metabolite concentrations and free energies. To this end, we 

obtained ΔG°′ by a group contribution method (component contribution)23 and searched for 

sets of central carbon metabolite concentrations that best matched both i) the directly 

observed concentrations for measured metabolites and ii) the observed cellular ΔG for 

measured reactions (see Methods). For reactions where free energy was not measured, ΔG 

was constrained to be negative in the direction of net flux. Metabolite sets were penalized 

when either concentrations or free energies fell outside of the 95% confidence intervals of 

the measurements. We subsequently obtained upper and lower boundaries for metabolite 

concentrations and reaction free energies by linear programming. This approach identified 

previously unmeasured absolute metabolite concentrations and more tightly constrained 
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those of metabolites that were involved in multiple reactions with measured cellular ΔG 

values (e.g. DHAP and pentose phosphates) (Fig. 4a and Supplementary Table 3). 

Particularly valuable was obtaining reliable measurements for species that were difficult to 

measure due to analytical interferences or instability, including ribulose-5-phosphate, 

erythrose-4-phosphate, 1,3-bisphosphoglycerate, 2-phosphoglycerate, and oxaloacetate.

Combining these concentrations together with ΔG°′ values, we determined ΔG for most 

central carbon metabolic reactions (Supplementary Table 4). Focusing on glycolysis, the 

cumulative free energy change from phosphoglucose isomerase (PGI) to pyruvate kinase 

(PYK) was on average −46 kJ/mol (Fig. 4b). In each case, phosphofructokinase was the 

most strongly forward driven glycolytic step, consuming nearly half of the available free 

energy. Downstream of phosphofructokinase, the available free energy was relatively evenly 

distributed across pathway steps, except for triose phosphate isomerase which was always 

the reaction closest to equilibrium. Such even flux partitioning, with a bias towards fast 

reactions such as triose phosphate isomerase being close to equilibrium, has been predicted 

to maximize the efficiency of enzyme utilization16.

Along with phosphofructokinase, pyruvate kinase is generally considered a committed step 

in glycolysis. Current textbooks indicate that almost all of the energy drop in glycolysis 

occurs at the phosphofructokinase and pyruvate kinase steps (Fig. 4b). Accordingly, we were 

surprised when our global analysis resulted in only a modest driving force for pyruvate 

kinase in the mammalian cell line iBMK (ΔG = −3.8 kJ/mol implying a forward-to-

backward flux ratio of 4.3). To evaluate further the free energy of the pyruvate kinase 

reaction, we added labeled pyruvate to growing cells and monitored the formation of lower 

glycolytic intermediates. Although the concentration of phosphoenolpyruvate was too low to 

measure its labeling directly, we observed labeling of 3-phosphoglycerate, confirming some 

back flux through the phosphoglycerate mutase-enolase-pyruvate kinase reaction sequence 

(Fig. 4c). The observed labeling was not due to canonical gluconeogenic flux, as this would 

have resulted in 3-phosphoglycerate being both M+2 and M+3 labeled24, whereas only M+3 

was observed. Thus, the pyruvate kinase reaction can be partially reversible.

Overall, reaction free energies were highly conserved across the three organisms (Fig. 4d). 

The details of free energy utilization, however, differed. Compared to mammalian iBMK 

cells, yeast had higher glucose-6-phosphate, ADP/ATP, and NAD+/NADH, with the net 

effect being nearly a doubling of the free energy drop in glycolysis. This larger free energy 

drop likely facilitates rapid fermentation. Intriguingly, despite most glycolytic reactions 

being more forward driven in yeast, aldolase was closer to equilibrium. This could 

potentially further favor yeast fermentation by enhancing the free energy available for 

downstream glycolytic steps. Thus, the details of free energy partitioning may be optimized 

to organism-specific metabolic objectives.

 Conservation of absolute metabolite concentrations

Given the fundamental connection between ΔG and metabolite concentrations, the similarity 

of reaction free energies across species suggested similarity in the metabolomes. A 

compilation of metabolite concentrations, from a combination of direct concentration 

measurements and the above approach integrating free energy measurements, is provided in 
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Supplementary Table 5. Across the organisms, amino acids composed the largest fraction of 

metabolome (Fig. 5a) and were similar in intracellular abundances despite the presence of 

amino acids in the mammalian but not the microbial culture media. Central carbon 

metabolites were the next most abundant class followed by nucleotides (including 

nucleotide-derived cofactors such as NAD+). The most abundant individual metabolite in 

each organism was glutamate, the amino group donor in many transamination reactions, 

whose high concentration may be required to drive transamination forward. Other abundant 

intracellular metabolites included reduced glutathione and pyruvate (Fig. 5a). Globally, the 

metabolite concentrations of E. coli, yeast, and mammalian iBMK cells were all correlated 

with each other (Fig. 5b and Supplementary Fig. 1), with the fraction of variance in absolute 

metabolite concentrations explained by the inter-organism correlation (r2) ranging from 40% 

to 70%. The remaining 30% to 60% of variance reflects some combination of measurement 

error and true inter-organism differences. In the previous work comparing the E. coli 
metabolome across three different carbon sources1, we found that ~75% of variance was 

explained by correlation across conditions, suggesting a nutrient contribution of no more 

than 25%. Thus, the impact of organism on absolute metabolite concentrations is stronger 

than that of carbon source. Nevertheless, in spite of different lifestyles, physiology, culture 

conditions across organisms, and the potential for metabolite concentrations to change 

without overt effects on cell physiology25, absolute metabolite concentrations are 

substantially conserved across kingdoms of life.

 Substrate and inhibitor enzyme binding site occupancy

To infer enzyme binding site occupancies, we compared the absolute concentrations of 

metabolites to the affinities of the enzyme sites to which they bind. Binding affinities (the 

inverse of the dissociation constants Km and Ki) were taken from the BRENDA database26 

(see Supplementary Data Sets 2 and 3). Similar prior analysis in E. coli had focused 

exclusively on substrate binding and found a propensity for most active sites to be 

occupied1. Here we validated this basic observation also for yeast and mammalian iBMK 

cells, with metabolite concentration exceeding Km for roughly two-thirds of sites in each 

case (Fig. 6a). As described previously for E. coli, the ubiquitous cofactors ATP, NAD+, and 

NADPH were almost always saturating. In contrast, NADP+ was not reliably saturating, 

perhaps reflecting prioritization of a high NADPH/NADP+ ratio over complete enzyme site 

occupancy (Supplementary Fig. 2). Central carbon metabolite concentrations were often 

near Km, perhaps to facilitate efficient regulation or switching to gluconeogenesis1, whereas 

the concentrations of the substrates of degradative enzymes (e.g. of nucleotide catabolism) 

were typically below Km. Such pathways are presumably useful only when substrate 

concentrations rise. In contrast to the general propensity for substrates to be saturating, 

inhibitor concentrations tended to be near or below Ki (Fig. 6b). This was despite a 

propensity for ATP, NAD+, and NADPH to be saturating also at inhibitory sites, although to 

a lesser degree than at substrate ones (Supplementary Fig. 2). The greater propensity for 

substrates than inhibitors to be saturating was statistically significant in each organism (Fig. 

6c). Thus, metabolite concentrations seem to be tuned to saturate enzyme active sites but not 

effector binding sites in freely growing cells. This favors efficient enzyme utilization, with 

inhibitor concentrations near Ki positioning the system for regulation to kick in if significant 

deviations from homeostasis occur.
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 Discussion

Metabolism is the process of converting nutrient inputs into usable energy and biomass 

building blocks. Like all chemical networks, metabolism must obey the second law of 

thermodynamics: each pathway step must cost free energy. A fundamental challenge is 

partitioning the available free energy across pathway steps. Too large a drop in free energy at 

any one step wastes the energy available in scarce nutrients. Too small a drop results in the 

associated enzyme catalyzing unproductive backwards flux.

To understand how cells manage this challenge, biochemists have long relied on the ability 

to infer the free energies of cellular reactions (ΔG) based on metabolite concentrations 

combined with standard free energies27,28 as per equation (1). Recently, such analyses have 

been conducted for increasingly large metabolic networks29,30. Here, using isotope tracers 

and mass spectrometry, we augmented the tool set for probing cellular thermodynamics by 

determining relative forward-to-backward reaction fluxes and thus ΔG directly as per 

equation (2). Measurement of reaction reversibility is based on the backward reaction 

producing a distinctive isotope labeling pattern in the substrate. This was exemplified by the 

formation of unlabeled DHAP via backwards triose phosphate isomerase flux after feeding 

[1,2-13C2]-glucose (Fig. 2). To obtain forward and backward fluxes for a substantial fraction 

of central metabolism, we integrated data from multiple different 13C-tracers (see 

Supplementary Table 2). More precise and comprehensive determination of flux reversibility 

should be possible in the future through dynamic 13C-labeling experiments31 and/or 

application also of 2H- and 15N-tracers.

Compartmentation introduces an unaccounted-for complexity into these flux and 

thermodynamic determinations. The analysis reported here is for metabolites collected from 

whole cells and does not distinguish forward-and-backward flux occurring through a single 

enzyme in one compartment from a pair of enzymes (such as distinct isozymes) in different 

compartments. Mitigating compartmentation concerns, however, similar results were 

obtained from E. coli and the eukaryotic cells, despite much more extensive 

compartmentation in the eukaryotes. Development of methods that enable compartmental 

analysis of metabolite concentrations, fluxes, and free energies is an important future 

objective.

In addition to the methodology for measuring ΔG, a key contribution of this work is a 

coherent systems-level set of fluxes, free energies, and metabolite concentrations for E. coli, 
yeast, and a mammalian cell line (iBMK) (Figs. 2, 3, 4, and 5, and Supplementary Tables 1, 

4, and 5). Prior work has integrated metabolite concentrations and fluxes in dynamic 

labeling experiments31 based on the relationship between metabolite pool sizes, turnover 

times, and fluxes: metabolites turn over (and thus tend to label) rapidly when flux is large or 

pool size is small31,32. This relationship, which is not applicable to the steady-state labeling 

experiments reported here, could be used to further constrain concentration and flux 

estimates in future work. More directly relevant to our current approach, prior studies have 

integrated metabolite concentration and free energies to achieve systems-level estimates of 

both1,2,17. By augmenting such thermodynamic analysis with the direct flux-based ΔG 

measurements for a subset of reactions, the present work markedly refines the overall 
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thermodynamic estimates, providing useful quantitative values of cellular ΔG for many 

reactions.

In addition to providing a valuable reference, these data shed light on metabolic design 

principles. Consider glycolysis, which is the highest flux pathway in each of the studied 

organisms and localizes to the cytosol, obviating compartmentation concerns. The textbook 

view involves three strongly thermodynamically forward-driven reactions, which cannot 

reverse flux direction during gluconeogenesis and thus must be bypassed, linked by near 

equilibrium ones that, during gluconeogenesis, flip their direction of net flux (Fig. 4b). The 

three committed reactions are glucose phosphorylation (hexokinase in yeast in mammals, 

phosphotransferase system in E. coli), phosphofructokinase, and pyruvate kinase. Glucose 

phosphorylation was omitted from our analysis, due to our inability to quantitate the 

intracellular glucose concentration (given the abundance of media glucose). For 

phosphofructokinase and pyruvate kinase, we found that the former is substantially more 

forward driven: ΔG for phosphofructokinase ranges from −13 to −25 kJ/mol, which results 

in minimal back flux (< 0.7% of forward flux), whereas for pyruvate kinase, it ranges from 

approximately −4 to −10 kJ/mol, which results in 2% to 20% backward-to-forward flux. 

Thus, while both reactions are far enough from equilibrium for changes in the associated 

enzyme activities to exert flux control, phosphofructokinase functions as a classic 

irreversible step, whereas some backward flux at pyruvate kinase is tolerated to achieve 

energy efficiency.

The lower free energy drop at pyruvate kinase results in a greater amount of free energy 

available to drive the reversible reactions of lower glycolysis. According to a standard 

textbook33, the net free energy drop from fructose-1,6-bisphosphate to phosphoenolpyruvate 

is only 1.7 kJ/mol. Spread evenly across six reactions, this would result in a drop per 

reaction of only 0.3 kJ/mol, which is associated with a forward-to-backward flux ratio of 

roughly 10 to 9, or one unit of productive flux for 18 units of exchange flux, resulting in 

only ~5% of enzyme contributing productive net flux. Given the high cellular levels of 

glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and enolase34–37, the 

expense of protein synthesis38, and cellular space limitations39, there should be strong 

evolutionary pressure to use these enzymes at greater than 5% efficiency. Indeed, the actual 

situation in cells is different from the current textbook description. The free energy drop 

over this six reaction sequence is not 1.7 kJ/mol but instead at least 6-fold higher (11.4 – 

24.2 kJ/mol) (Fig. 4b), with only the triose phosphate isomerase step having a drop less than 

2 kJ/mol in all organisms. Thus, in glucose-fed cells, the “difficult” steps of lower glycolysis 

that require high enzyme levels are sufficiently forward driven to avoid excessive wasteful 

backwards flux.

The more even free energy distribution in lower glycolysis may impact both pathway 

regulation and dynamics. Unlike reactions very close to equilibrium, where changes in 

enzyme activities do not impact overall pathway flux, several reversible glycolytic reactions 

including aldolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate 

mutase are sufficiently forward driven, in at least some organisms, for these enzymes to 

exert physiologically significant flux control. Indeed, glyceraldehyde-3-phosphate 

dehydrogenase is inactivated in response to oxidative stress, and this has been shown to 
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inhibit glycolysis and thereby promote pentose phosphate pathway flux and NADPH 

production40. More generally, these observations are consistent with findings from metabolic 

control analysis that flux control, while unevenly distributed across glycolytic enzymes, is 

not concentrated in one or two key steps41–43. Indeed, any reaction of lower glycolysis that 

is significantly forward driven could be used to control pathway flux or the levels of 

upstream and downstream intermediates, which are themselves important precursors for 

biosynthetic pathways such as serine synthesis. A disadvantage of such more even free 

energy distribution is slower return of the pathway intermediates to steady-state levels 

following perturbations and less ability to control pathway flux via any single effector-

enzyme interaction44. Apparently, at least for cells fed copious glucose, these disadvantages 

are outweighed by greater efficiency of enzyme utilization, which requires substantial 

driving force for all but the most rapid reactions, so as to mitigate backwards flux and thus 

the required amount of enzyme.

Maintaining sufficient driving force is expected to favor efficient enzyme utilization not only 

in glycolysis, but throughout metabolism. Selective pressure is presumably greatest for high 

flux pathways where adequate total free energy is available. In this respect, glycolysis in 

glucose-fed cells may reflect an extreme case. Indeed, we have previously reported that 

lower glycolytic reactions are closer to equilibrium in cells fed glycerol (where flux remains 

in the glycolytic direction) or acetate (where net flow is in the opposite direction). In 

general, one would also expect evolutionary pressure to maintain adequate ΔG to be greatest 

for steps where the total enzyme level is substantial, either due to high flux or low kcat.

Throughout metabolism, substrate-to-product ratios are tied together by thermodynamics. 

Because each metabolite is simultaneously the substrate and product of one or more 

reactions, the above considerations globally constrain the concentration ratios of all 

metabolites. Because ΔG depends on the ratio of substrate and product concentrations, but 

not their absolute magnitude, other factors determine the absolute concentration of the 

collective metabolome. A cap on metabolite concentrations is likely enforced by osmotics. 

In each of the studied organisms, the sum of all measured metabolite concentrations is 

around 200 mM, similar to the salt concentration in human plasma. Within this upper 

osmotic bound, an important determinant of absolute metabolite abundances is saturation of 

enzyme binding sites. Enzyme evolution is subject to dual pressures to enhance both 

substrate binding affinity and turnover rate. These competing pressures are captured by the 

classical metric of enzyme performance kcat/Km. Higher metabolite concentrations render 

low Km values unnecessary, thereby facilitating higher kcat and thereby enabling more net 

flux per enzyme. Thus, there is selective pressure to maintain metabolite pools as large as 

feasible given thermodynamic and osmotic bounds. As for maintaining substantial 

thermodynamic driving force, this pressure is greatest for “hard” reactions in high flux 

pathways. Reactions may be “hard” due to universal chemical reactivity constraints, or due 

to specific environmental challenges such as nutrient scarcity. Natural variation across 

organisms in pathway utilization and nutrient availability should therefore result in 

organism-specific tailoring of absolute metabolite concentrations. The observed impressive, 

but incomplete, conservation of absolute metabolite concentrations reflects the balance of 

this tailoring against universal reactivity and thermodynamic constraints on the metabolome.
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 Online Methods

 Strains and culture conditions

E. coli K-12 strain NCM3722 was grown at 37°C in Gutnick minimal media45 containing 10 

mM NH4Cl and 0.4% (w/v) D-glucose. To create the inducible triose phosphate isomerase 

strain, the chromosomal tpiA was knocked out by P1 phage transduction of a deletion allele 

with a kanamycin resistance cassette from the Keio collection, and a pAC24N::tpiA ASKA 

plasmid under the control of isopropyl β-D-thiogalactopyranoside (IPTG) was introduced by 

electroporation. S. cerevisiae derived from prototrophic strains S288C and W303 were 

grown at 30°C in 2% (w/v) D-glucose media containing 6.7 g/L Difco Yeast Nitrogen Base 

(YNB) without amino acids. BAX−/−/BAK−/−-immortalized baby mouse kidney epithelial 

cells (iBMK)21 were grown at 37°C, 5% CO2 in Dulbecco’s modified Eagle medium 

without pyruvate (DMEM) supplemented with 10% dialyzed fetal bovine serum. For steady 

state flux analysis, E. coli were cultured in media containing [1,2-13C2], [3-13C1], or 50% 

[U-13C6] glucose; yeast in [1,2-13C2] or 50% [U-13C6] glucose; and iBMK in [1,2-13C2] 

glucose, [U-13C6] glucose, or [U-13C5] glutamine (99%; Cambridge Isotope Laboratories) 

until isotopic steady states were reached; microbes were labeled starting from overnight 

cultures and mammalian cells were labeled for at least 24 hours. To verify the reversibility of 

mammalian pyruvate kinase, [U-13C3] pyruvate (as the sodium salt) was spiked into culture 

medium (which had been changed 3 hours beforehand) to a final concentration of 0.005% 

(0.45 mM) and metabolism was quenched after 20 minutes.

 Metabolite measurements and absolute quantitation

Metabolism of exponentially growing cells was quickly quenched and metabolites were 

extracted in pre-cooled extraction solvents. Briefly, small portions of E. coli or yeast culture 

(3 mL at OD600 ≈ 0.3 for E. coli and 0.6 for yeast) were vacuum-filtered onto nylon 

membrane filters (0.45 μm; Millipore) resting on a vacuum filter support. Once cells were 

loaded, the membranes were immediately submerged in pre-cooled −20°C 40:40:20 

acetonitrile:methanol:water in petri dishes. For iBMK cells at ~80% confluency, cells were 

supplied with fresh media, and two to three hours thereafter the media was aspirated and 

metabolism immediately quenched by adding −80°C 80% methanol to the culture dishes. 

Extraction continued for 20 minutes at −20°C, and metabolite extracts were collected into 

Eppendorf tubes after thoroughly washing the filters (E. coli and yeast) and detaching the 

cells from the culture plates using cell lifters (iBMK cells). The extracts were centrifuged at 

4°C. The supernatants were dried under nitrogen gas and reconstituted in HPLC-grade water 

for LC-MS analysis. OD600 (E. coli and S. cerevisiae) and packed cell volume (iBMK cells) 

at the time of quenching were measured and later used in calculating cellular metabolite 

concentrations.

For absolute metabolite quantitation, cells were grown in [U-13C6] glucose (and also 

[U-13C5] glutamine for the mammalian cells) but otherwise the same media as above and 

extracted with solvents containing known concentrations of authenticated standards12. E. 
coli was cultured atop filters from OD600 0.03 to 0.3 with the labeled media diffusing 

through agarose and filters until extraction12. The metabolomes of E. coli filter culture and 

liquid culture are similar (Supplementary Fig. 3). To measure cellular concentrations of 
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amino acids that are present in DMEM, we cultured iBMK cells in standard unlabeled 

DMEM and used [U-13C, 15N] amino acids as internal standards. In this case, cells were 

washed with warm PBS twice to remove exogenous amino acids prior to adding the 

extraction solvent. Nucleotides, nucleosides, and bases in E. coli as well as NADH and 

NADPH in E. coli, yeast, and mammalian cells were measured using acidic extraction 

solvents (0.1 M formic acid46). The extracts were neutralized with 15% NH4HCO3 prior to 

centrifugation.

Samples were analyzed by reversed-phase ion-pairing liquid chromatography coupled to a 

high-resolution orbitrap mass spectrometer by electrospray ionization operating in negative 

ion mode (Exactive, Thermo)9,22. Cysteine was measured after derivatization with S-methyl 

methanethiosulfonate (MMTS) on an LC-MS/MS instrument performing hydrophilic 

interaction liquid chromatography (HILIC) coupled to tandem MS in positive ion mode 

(Quantum Ultra; Thermo)47. Resulting mass spectra and chromatograms were processed 

using the Metabolomic Analysis and Visualization Engine (MAVEN)48 and corrected for 

natural 13C abundance as well as incomplete labeling due to 12C impurities (and also CO2 

incorporation for absolute metabolite quantitation). Many LC-MS ion-specific 

chromatograms were complicated by multiple peaks (e.g. for glucose-6-phosphate, due to its 

isomers; for fumarate due to an ion of identical molecular formula being produced by in-

source degradation of malate). Care was taken to pick the peak at the correct retention time 

as validated by standard injection, not simply the largest peak of the correct exact mass. To 

provide additional constraints for flux analysis, some metabolite functional group labeling 

fractions were computed via the inverse Cauchy product of other measured metabolites (e.g. 

the acetyl group labeling in acetyl-CoA can be computed given the labeling of both acetyl-

CoA and CoA).

 Uptake and secretion rate measurements

Nutrient uptake and product secretion rates were determined by the rates of disappearance 

and appearance of metabolites in the media after accounting for the amount of cells and their 

growth rate. E. coli and yeast media samples were analyzed by proton nuclear magnetic 

resonance (1H-NMR) spectroscopy. To convert media concentration changes to cellular 

fluxes, we used the following conversion factors: for E. coli, 1.0 OD600 = 0.47 gCDW/L, 

3×10−13 gCDW/cell, and 7×10−16 L aqueous volume/cell; and for yeast, 1.0 OD600 = 0.62 

gCDW/L, 1.9×10−11 gCDW/cell and 5.6×10−14 L aqueous volume/cell49. For iBMK cells, 

the rates of glucose, glutamine, and serine uptake as well as pyruvate, lactate, alanine, and 

ammonia excretion and fatty acid biosynthesis were previously reported50, and we assumed 

that 70% of packed cell volume was aqueous volume. Organism-specific biomass precursor 

effluxes were calculated using the measured growth rates and biomass composition 

incorporated in respective genome-scale models51.

 Organism-specific metabolic models

Organism-specific metabolic networks and carbon mappings were manually curated based 

on genome-scale metabolic reconstructions51, the BioCyc database collection (e.g. 

HumanCyc, EcoCyc, YeastCyc), and standard textbooks. The full set of reactions included 

in the flux modeling is shown in Supplementary Table 6. Care was taken to avoid reaction 
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inclusion bias by considering all known routes to and from experimentally measureable 

metabolites and their neighboring compounds in the networks. Reactions and metabolites 

included in the networks were mapped to their corresponding identification numbers in the 

Kyoto Encyclopedia of Genes and Genomes (KEGG)52, BRaunschweig ENzyme DAtabase 

(BRENDA)26, and a Biochemical Genetic and Genomic Knowledgebase (BiGG)51 to 

facilitate integration among these existing databases.

 Metabolic flux analysis including determination of flux ratios with confidence intervals

Using the carbon mapping networks and 13CFLUX2 (www.13cflux.net) package53, we 

obtained cumulated isotopomer models54 for further analysis in Matlab (MathWorks). Under 

net flux balance constraint, optimal balanced flux distributions (a vector with two entries per 

reaction, one for the net flux and another for exchange flux; the exchange flux was 

constrained to be negligible for known strongly thermodynamically forward-driven 

reactions) were obtained by minimizing the variance-weighted sum of squared residuals 

between the simulated and experimental i) isotope distributions and ii) uptake and excretion 

rates using the interior-point algorithm:

ν is flux, iso(ν) is simulated labeling, and s is the measurement standard deviation. Each flux 

distribution simulated all isotope tracer studies simultaneously for individual organisms. To 

account for other potential local minima, the non-convex optimization problem was solved 

starting from over a thousand initial flux sets until similar flux sets that best simulated the 

experimental data were obtained repeatedly.

To determine confidence intervals, i) the net and the exchange flux for each reaction were 

each, one-by-one, successively increased or decreased, ii) the other fluxes were again 

optimized with that one flux fixed, iii) any balanced flux sets where the variance weighted 

sum of squared residuals did not increase by more than a fixed value (χ2) were accepted55, 

and iv) for those accepted flux sets, forward fluxes, backward fluxes, and their ratios for all 

reactions were calculated from the resulting net and exchange fluxes. To obtain 95% 

confidence intervals, the χ2 cutoff (1 degree of freedom) was 3.84. Maximum and minimum 

values (among the accepted flux distributions) of each individual flux and of the forward-to-

backward flux ratios are reported as the 95% confidence intervals. The algorithm was 

scripted in Matlab to run in parallel on Linux clusters and is available as open-source code at 

https://github.com/PrincetonUniversity/flux-ratio-based-gibbs-energy.

 Standard Gibbs free energy

Component contribution23 was performed in Matlab to calculate standard Gibbs free energy 

of formation (ΔfG°′) and reaction (ΔG°′) at physiological ionic strength, pH, and electric 

potential. Based on extended Debye-Hückel theory, determination of ΔG°′ at physiological 

ionic strength serves to incorporate the activity coefficients of reactants and products into 

ΔG°′, thereby allowing calculation of Q based on concentrations not activities. For example, 

component contribution takes into account the effect of [Mg2+] on the ΔG°′ of ATP 
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hydrolysis by using the data from the NIST Thermodynamics of Enzyme-Catalyzed 

Reactions database regarding the ATP hydrolysis equilibrium constant at typical cellular 

[Mg2+]. Compartment-specific values for ionic strength, pH, and electric potential were 

employed, where ‘c’ stands for cytosol, ‘e’ for extra-organism, ‘p’ for periplasm, ‘m’ for 

mitochondria: for E. coli15, compartment=[‘c’; ‘e’; ‘p’], pH=[7.7; 7.2; 7.2], ionic strength 

(M)=[0.25; 0.25; 0.25], electric potential relative to cytosol (mV)=[0; 90; 90]56; for yeast, 

compartment=[‘c’; ‘e’; ‘m’], pH=[7.2; 5.4; 7.5], ionic strength (M)=[0.14;0.14;0.14], 

electric potential relative to cytosol (mV)=[0; 128; −155]5; and for iBMK cells, 

compartment=[‘c’; ‘e’; ‘m’], pH=[7.2; 7.4; 8.0], ionic strength (M)=[0.15;0.15;0.15], 

electric potential relative to cytosol (mV)=[0; 30; −155]57. The sensitivity of ΔG°′ on pH 

and ionic strength, and the standard error of ΔG°′ are shown in Supplementary Tables 7 and 

8. The uncertainties were generally greater than the perturbations of ΔG°′ resulting from 

changes up to ±0.4 pH and ±0.1 M ionic strength, and therefore, the impact of pH and ionic 

strength variation within these ranges should minimally affect the subsequent integrative 

analysis.

 Integration of metabolite concentrations and Gibbs free energies

The set of metabolite concentrations ([met]) and reaction free energies (ΔG) associated with 

central carbon metabolism (CCM; see Supplementary Fig. 4) that best matched i) the 

directly observed concentrations for measured metabolites ([met]exp) and ii) the observed 

cellular ΔG for measured reactions (ΔGexp) were computed. An important consideration in 

this calculation is that literature values for ΔG°′ may themselves contain error. In addition, 

these ΔG°′ values are interrelated, such that ΔG°′ for any sequence of metabolic reactions 

must be given by the sum of the formation energies of the products minus the formation 

energies of the reactants. Accordingly, we set out to optimize both metabolite concentrations 

and formation energies so as to maximize consistency with prior estimates of ΔfG°′ based on 

the component contribution method (which itself incorporates prior literature data on ΔG°′) 

and our experimental observations of metabolite concentrations and cellular reaction free 

energies. To this end, a quadratic programming problem was formulated with independent 

variables ln[met] and ΔfG°′, with the optimization objective of minimizing the departure 

from the expected ΔfG°′ and measured ln[met] and ΔG:

where ΔG = ST(ΔfG°′ + RT ln[met]),

subject to ln[met] ∈ [ln[met]exp − 2 smet, ln[met]exp + 2 smet],

,

and ΔG ∈ [ΔGexp − 2 sΔG, ΔGexp + 2 sΔG]

S is the stoichiometric matrix with rows and columns representing individual metabolites 

and reactions, respectively. ΔG, ΔfG°′, and ln[met] are vectors of free energy of reaction, 
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standard free energy of formation, and log-concentrations. s refer to the standard errors of 

the measurements or component contribution estimates. , and  are the 

number of input metabolite formation energies, experimentally measured metabolite 

concentrations and ΔG.

For reactions whose ΔG were not precisely determined, ΔG was constrained to be negative 

in the direction of net flux. For the eukaryotic cells, ΔfG°′ of TCA metabolites depended on 

whether they are in cytosol or mitochondria due to pH difference across compartments, and 

the values of ΔfG°′ calculated for mitochondria were used. Inorganic phosphate 

concentrations were input as follows: 20 mM in E. coli58; 50 mM in yeast5; and 5 mM in 

mammalian iBMK cells59. Mitochondrial coenzyme A concentration was input as 5 mM60. 

The inorganic phosphate and coenzyme A concentrations were allowed to vary within 20% 

of these values.

 Confidence intervals of metabolite concentrations and reaction free energies

The lower and upper bounds for individual metabolite concentrations were determined by 

searching within the experimentally measured metabolite concentration 95% confidence 

interval for the minimum and maximum concentrations that also resulted in ΔG falling 

within its measured 95% confidence interval. Since ΔG is linear with respect to ln[met], 

concentration lower bounds were obtained by solving the following linear programming 

problem17:

subject to ln[met] ∈ [ln[met]exp − 2 smet, ln[met]exp + 2 smet],

and ΔG ∈ [ΔGexp − 2 sΔG, ΔGexp + 2 sΔG],

where ΔG = ST(ΔfG°′ + RT ln[met])

For upper bound calculation,  was solved with the same set of 

constraints.

Similarly, reaction free energy lower bounds were obtained by solving:

where ΔG = ST(ΔfG°′ + RT ln[met]),

subject to ln[met] ∈ [ln[met]exp − 2 smet, ln[met]exp + 2 smet],

and ΔG ∈ [ΔGexp − 2 sΔG, ΔGexp + 2 sΔG]

For upper bound calculation,  was solved with the same set of constraints. 

The linear programming problem was solved using Matlab linprog function (interior point 

algorithm).
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 Michaelis and inhibitor dissociation constants, Km and Ki

The Python implementation of the Simple Object Access Protocol (SOAPpy) was employed 

to extract the Km and Ki values in E. coli, S. cerevisiae, Mus musculus, and Homo sapiens 
from BRENDA26. The exported data were further processed to filter out entries for mutant 

enzymes. The parameters for mammalian cells are from enzymes in Mus musculus 
whenever possible, but otherwise in Homo sapiens. When multiple entries for the same 

enzyme-metabolite pair were available, its Km or Ki was represented by their geometric 

mean.

 Code availability

The code used for flux and flux ratio calculation, metabolite concentration and Gibbs energy 

integration, and confidence interval determination as well as the SOAPpy script, the carbon 

mapping, and cumulated isotopomer models are available on the GitHub public repository: 

https://github.com/PrincetonUniversity/flux-ratio-based-gibbs-energy

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tracing forward-to-backward flux through triose phosphate isomerase (TPI)
(a) The free energy of cellular reactions (ΔG) is independently determined by i) the reaction 

standard free energy adjusted for substrate and product concentrations and ii) the ratio of 

forward-to-backward fluxes. The integration of experimental measurements of forward-to-

backward reaction fluxes and of metabolite concentrations results in more coherent and 

precise determination of both concentrations and ΔG. (b) [1,2-13C]-glucose (red atom: 13C) 

yields [1,2-13C]-fructose-1,6-bisphosphate (FBP), the parent molecule of dihydroxyacetone 

phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). FBP carbons 1–3 form DHAP. 

Thus, in the absence of backwards flux through triose phosphate isomerase (TPI), all DHAP 

molecules would be labeled (M+2). Reverse flux through TPI results in the appearance of 

unlabeled DHAP. (c) To verify that we can measure different extents of reversibility, we 

knocked out in E. coli the chromosomal TPI and introduced a plasmid containing TPI under 

the control of inducer IPTG. The fraction of unlabeled DHAP progressively increased with 

IPTG addition. The extent of DHAP labeling at pseudo-steady state was used to determine 

the ratio of forward-to-backward TPI flux by isotopomer balancing. The flux ratio then 

yields ΔG as per (a). Labeling fraction error bars represent standard deviations (n=3) and 

calculated ΔG errors represent 95% confidence intervals.
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Figure 2. Metabolic flux distributions in mammalian iBMK cells, yeast, and E. coli
Fluxes were determined by integrating direct nutrient uptake and waste secretion rate 

measurements and data from multiple isotope tracers by metabolic flux analysis. (a) Net 

fluxes. Arrow widths indicate absolute magnitudes of fluxes, normalized to glucose uptake, 

as per the legend. Absolute magnitude of glucose uptake is shown for each organism. Grey, 

glycolysis; blue, pentose phosphate pathway; orange, TCA cycle; black, other. (b) 
Comparison of normalized net fluxes across organisms. Fluxes were normalized to the 

organism’s glucose uptake rate. Plotted data are restricted to linearly independent fluxes 

(e.g., lower glycolysis is shown once per graph, not repeatedly for each pathway enzyme).
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Figure 3. Reaction free energy determined with isotope tracers in mammalian iBMK cells, yeast, 
and E. coli
Flux reversibility and ΔG were determined from forward and backward fluxes. Blue, 

equilibrium (ΔG ≈ 0 kJ/mol); red, substantially forward driven (ΔG ≤ −5 kJ/mol); grey, not 

measured based solely on isotope tracer data (for reversibility of glycolytic reactions 

inferred from combined flux and concentration data, see Fig. 4b).
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Figure 4. Integration of flux and concentration measurements via ΔG
(a) The absolute concentrations of those metabolites involved in reactions with ΔG 

determined from reaction reversibility (Fig. 3b) were refined by combining confidence 

intervals from direct LC-MS measurement of their concentrations (blue) with 

thermodynamic constraints to obtained more precise values (orange). For example, the 

concentration of fumarate is informed also by that of malate, in combination with the 

reversibility of fumarase. (b) ΔG for glycolysis based on integration of metabolite 

concentrations and reaction reversibilities. Blue and white bars depict negative and positive 

ΔG, respectively. Whiskers show 95% confidence limits (see Methods). (c) An unexpected 

finding from the thermodynamic analysis in (b) is partial reversibility of pyruvate kinase. To 

demonstrate directly this reversibility, [U-13C]-pyruvate (0.45 mM) was added to the media 

of growing iBMK cells for 20 min and upstream and downstream metabolites were analyzed 

for labeling. Error bars represent standard errors of the means (n=3). (d) Comparison of ΔG 

across organisms. Plotted data are for all measured reactions with ΔG < −0.1 kJ/mol.
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Figure 5. Conservation of absolute metabolite concentrations
(a) Pie chart showing fractional contribution of each measured metabolite in each organism. 

Concentrations were obtained by the integrative analysis as per Fig. 4a. Names are shown 

for metabolites whose fractional concentration exceeds 1%. (b) Comparison of absolute 

metabolite concentrations across organisms. Plotted data are for all measured metabolites.
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Figure 6. Comparison of absolute concentrations to enzyme binding site affinities for substrates 
and for inhibitors
(a, b) Comparison of absolute metabolite concentrations (Y-axis) to enzyme binding site 

affinities (X-axis). The fraction of concentrations exceeding Km or Ki (i.e., data points above 

the line of unity) is shown in the top left of each graph. (c) Enzyme active sites are in 

general more saturated than inhibitor sites (p-values are from the Kolmogorov-Smirnov test).
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