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ABSTRACT
The number of dengue fever incidence and its distribution has increased considerably in 
recent years in Africa. However, due to inadequate research at the continental level, there is a 
limited understanding regarding the current and future spatial distribution of the main 
vector, the mosquitoAedes aegypti, and the associated dengue risk due to climate change. 
To fill this gap we used reported dengue fever incidences, the presence of Ae. aegypti, and 
bioclimatic variables in a species distribution model to assess the current and future (2050 
and 2070) climatically suitable areas. High temperatures and with high moisture levels are 
climatically suitable for the distribution of Ae. aegypti related to dengue fever. Under the 
current climate scenario indicated that 15.2% of the continent is highly suitable for dengue 
fever outbreaks. We predict that climatically suitable areas for Ae. aegypti related to dengue 
fever incidences in eastern, central and western part of Africa will increase in the future and 
will expand further towards higher elevations. Our projections provide evidence for the 
changing continental threat of vector-borne diseases and can guide public health policy 
decisions in Africa to better prepare for and respond to future changes in dengue fever risk.
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Introduction

Dengue fever incidence is the greatest public health 
problem for more than half of the population glob
ally. The disease is the foremost cause of illness and 
mortality, mainly in endemic areas [1]. Recent litera
tures suggested that around 3.9 billion people are 
under risk of dengue fever, with about 390 million 
infections per year, resulting in over 100 million 
symptomatic cases, and 10,000 deaths [2–4]. The 
disease burden has increased 30-times over the past 
five decades [5,6], and the number of endemic coun
tries for the disease increased from 9 to 125 over the 
last four decades [5]. The geographic distribution of 
dengue fever incidence is predicted to expand in the 
future due to climate change [7,8].

By the end the 21st century, the mean global tem
perature is predicted to increase between 1.8°C (low 
scenario) and 4°C (high scenario) [9]. Africa is 
a highly vulnerable to climate change. Overall, in 
Africa the temperature has increased by 0.7°C over 
the 20th century and is predicted to increase further 
with 0.2°C (low scenario) to 0.5°C (high scenario) per 
decade [9,10]. Precipitation patterns are also uneven 
in Africa; however, records from 1951 to 2010 
showed that there has been an increase in rainfall in 
parts of southern, eastern and central Africa and 
a decrease in western Africa and parts of southern 
Africa, particularly Zimbabwe and Zambia [11]. 

Under the high emission scenario, annual precipita
tion is expected to increase in many parts of eastern 
Africa by 5 to 75%, while it is predicted to decrease 
across parts of southern Africa by 15–45% and wes
tern Africa up to 15% by 2100 [12]. Thus, knowing 
the relationships between climate changes and cli
mate-sensitive infectious diseases, such as dengue 
fever in Africa, where disease prevention measures 
are minimal, is crucial for improving public health 
and for early preparedness.

Dengue fever incidence is driven by climate factors 
as part of the different stages that the virus has to go 
through in the mosquito vector during the transmis
sion of the disease [2,5,13]. The life cycle of Ae. 
aegypti is directly influenced by climate changes 
[3,14–16]. Increased temperature can increase the 
dengue fever epidemic by increasing availability of 
habitat suitable for mosquito development and by 
decreasing the virus incubation time, and thereby 
increasing the transmission rate [2,4,17,18]. 
However, very high temperatures may also lead to 
increased mosquito mortality and thus decrease den
gue fever incidence risk (Ebi and Nealon, 2016; Sonia 
et al., 2013). Rainfall can have contrasting effects on 
dengue fever incidence [2,17]. Heavy rainfall may 
flush out eggs, larvae, and pupae [19,20]. However, 
in Africa, people store water in containers in the dry 
season, which can offer suitable breeding sites for Ae. 
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aegypti [6,15,16,19]. Thus, climatic variability may 
affect the virus and/or the vector directly and indir
ectly. Climate change can therefore also trigger lati
tudinal and altitudinal shifts in the distribution of 
vector-borne infectious diseases [2]. However, 
empirical relationships between climate variables, 
dengue fever incidence, and the distribution of Ae. 
aegypti, the main vector for dengue fever in Africa, 
have not been strongly established for the African 
context. Thus, understanding how the changing cli
mate may influence the geographic expansion of Ae. 
aegypti and dengue fever incidence into new areas is 
vital to support the ongoing dengue management 
strategies and to improve further surveillance and 
interventions.

Species distribution models (SDMs) offer an 
empirical tool for understanding and simulating the 
spatial distributions of species, assessing the potential 
responses of species to climate changes, and establish
ing the environmental factors that determine 
a species’ niche dimensions [21]. These models have 
been used by several studies (Acharya et al. 2018; 
Mweya et al. 2016; Kraemer et al. 2015), and are 
able to increased our knowledge not only on the 
current distribution of dengue fever and Ae. aegypti, 
but also on possible impact of expected climate 
changes [19]. Although many studies have been con
ducted to examine the effect of climate variability on 
Ae. aegypti distribution, most of the studies have 
focused on either a global scale [7,8,19,22], or have 
been limited to a smaller geographical area in Africa 
[16,17]. More studies are required to better under
stand the impact of current environmental conditions 
on Ae. aegypti distribution and dengue fever inci
dence, and on the role of future climatic conditions 
in determining potential risk areas at the continental 
level. Moreover, currently, there is no treatment for 
dengue fever. The most commonly used methods to 
control dengue fever all start with regular monitoring 
and surveillance of vectors [5]. Thus, information on 
how changing climatic conditions affect the spatial 
distribution and geographic expansion of Ae. aegypti 
related to dengue fever incidence is required. This, 
together with the identification of high risk areas, will 
support public health authorities in setting up effec
tive surveillance programs and control strategies. The 
aim of this study was to explore the current and 
future climatically suitable ranges for A. aegypti in 
relation to dengue fever incidence in Africa, as well as 
to identify the most important predictor variables.

Materials and methods

Occurrence data collection

Continental presence records of Ae. aegypti were 
retrieved from the Global Biodiversity Information 

Facility (GBIF; www.gbif.org/), VectorMap and scien
tific publications [3]. Continental sites or areas where 
dengue was reported were extracted from Simo et al 
[3] and Messina et al [4]. Several studies only use 
vector data, i.e. presence/absence of a vector, to 
model and predict the spatial heterogeneity in disease 
risk [22], whereas other studies only use epidemiolo
gical data, i.e. the presence/absence data on disease 
cases [4,23,24]. However, World Health Organization 
(WHO) recommends to integrate epidemiological 
and entomological information for the analyses of 
vector-borne diseases [25]. Thus, we integrated epi
demiological and entomological data to model the 
suitability of Ae. aegypti. In the first step, the loca
tions with dengue fever incidences were mapped 
using ArcGis 10.8, and then presence records of Ae. 
aegypti were overlaid. In the second step, Ae. aegypti 
presence records were selected in the areas where 
dengue was reported, and these locations were used 
for constructing the model. This generated a total of 
753 records of Ae. aegypti related to 62 records of 
dengue fever incidence.

Predictor variables

Nineteen bioclimatic variables from1950 to 2000 with 
a 10arc-min spatial resolution were obtained from the 
WorldClim database (http://www.worldclim.org) to 
represent the current climatic conditions. The 
improved fifth version of the atmosphere-ocean 
General Circulation Model (GCM), from the Model 
for Interdisciplinary Research on Climate (MIROC) 
from the Worldclim database was used for projection 
of the continental future climate. GCM is one of the 
most frequently used models to examine the impact 
of climate on species distribution (Phillips et al., 
2006). Currently, it is not clear which future climate 
change scenario provides the best predictions for 
species [26], thus we used two Representative 
Concentration Pathways-RCP4.5 and RCP8.5 for the 
greenhouse gas concentration trajectories of 2050 and 
2070. RCP 4.5 represents a stabilization scenario, 
while RCP8.5 represents a worst case scenario with 
very high greenhouse gas emissions, atmospheric 
concentrations, air pollutant emissions and large 
land use changes. Thus, we used both RCP4.5 and 
RCP8.5 climate change scenarios in our analysis.

Bioclimatic variables were selected based on three 
criteria [18]: those that (1) are statistically important 
in predicting Aedes presence data, (2) are biologically 
relevant for Aedes mosquito survival, and (3) do not 
show collinearity with other variables. Using 
Variance Inflation Factors (VIF), we tested collinear
ity among predictors. We used a stepwise procedure 
to remove predictor variables with VIF larger than 3. 
Finally, seven non-correlated bioclimatic variables 
were used as model input variables (Table 1). 

2 D. W. SINTAYEHU ET AL.

http://www.gbif.org/
http://www.worldclim.org


Further, we assessed the contribution of the variables 
by using the area under the curve (AUC).

Species distribution model

Several algorithms are available for species distribu
tion modelling, and performances of these algorithms 
vary considerably [27]. The predictive power of 
a single model is low, thus, an ensemble of several 
models is recommended to produce accurate species 
distribution model [28]. Thus, our modelling frame
work was based on five modelling algorithms imple
mented in the sdm package in R; (1) generalized 
linear model (GLM), (2) a random forest algorithm 
(RF), (3) multivariate adaptive regression splines 
(MARS), (4) boosted regression trees (BRT), and (5) 
support vector machine (SVM). We combined those 
five modelling algorithms into an ‘ensemble’ by aver
aging the models with a true skill statistic (Allouche 
et al. 2006; Acharya et al. 2018) larger than 0.8 to 
produce a ‘consensus model’. The consensus model is 
important to reduce the predictive uncertainty of 
single-models, since modelling approaches to predict 
species distributions vary significantly. Indeed, 
ensemble prediction generates a more robust model 
that overcomes the uncertainties obtained from indi
vidual models [28].

Evaluating model performance

We randomly split our occurrence data into training 
(70%) for model calibration, and validation datasets 
(30%) to evaluate the performance of the model [29] 
****. We randomly obtained pseudo-absence points 
outside the areas where both dengue virus and Ae. 
aegypti were not reported, as suggested by Allouche 
et alv [21] and Elith et al ([27]. Model performance 
was assessed based on the threshold-independent 
area under the receiver operating characteristic 
curve (AUC; Liu et al., 2005) and the threshold- 
dependent true skill statistic (TSS0 [21]. The AUC 
values range between 0–1, where values >0.9, 0.7–0.9, 
0.5–0.7 and <0.5 are considered as high performance, 
moderate performance, low performance and no bet
ter than random, respectively [30]. TSS values range 
from −1 to 1, where value close to 1 indicates better 
performance, and values below zero indicate no 

better than random [29]. Calibrated models, using 
the current conditions of predictor variables, were 
then used to predict future distributions using the 
RCP 4.5 and RCP 8.5 climate change scenario for 
2050 and 2070. All modelling analyses were per
formed using the sdm package for R.

Results

Predictors and model performance

The bio6 accounted for the largest relative contribu
tion to the model, with 27.4%, followed by bio7 
(23.2%) and bio13 (11.8%). Bio14 was also an impor
tant predictor with a mean contribution of 11.6% 
(Figure 1).

The mean AUC of the model was 0.96, indicating 
that the model had a high performance. MARS 
received the highest AUC score, whereas a GLM 
received the lowest AUC score (Table 2). The mean 
TSS values (0.83) were roughly in line with AUC 
values, indicating a good reliability of model predic
tions. The RF had the highest TSS score, and the 
GLM received the lowest among the 5 SDMs.

Predicted current and future risk areas

Model prediction under the current climate scenario 
indicated that the total highly and moderately suita
ble areas for Ae. aegypti in relation to dengue fever 
incidence are 15.2% and 11.2%, respectively. Low 
suitable area for the species is 14.2%, whereas the 
majority of Africa (59.3%) is not suitable for Ae. 
aegypti (Table 3)

Future scenario model projections revealed possi
ble increase in the potential distribution of Ae. 
aegypti. Under RCP4.5 and RCP8.5 climate scenarios, 
in 2050 s, the highly suitable area for Ae. aegypti is 
predicted to increase by 21.8% and 23.3%, respec
tively, while the moderately suitable area is expected 

Table 1. List of bioclimatic variables used for modelling the 
distribution of Ae. aegypti and dengue occurrence.

Label Variable Units

bio1 Annual mean temperature Degree Celsius
bio5 Maximum temperature of warmest month Degree Celsius
bio6 Minimum temperature of coldest month Degree Celsius
bio7 Annual temperature range (Bio05–Bio06) Degree Celsius
bio12 Annual precipitation Millimetre
bio13 Precipitation of wettest month Millimetre
bio14 Precipitation of driest month Millimetre

Figure 1. Variable importance (bio1 = annual mean tempera
ture, bio5 = maximum temperature of warmest month, 
bio6 = minimum temperature of coldest month, bio7 = annual 
temperature range (Bio05–Bio06), bio12 = annual precipita
tion, bio13 = precipitation of wettest month, and bio14 = pre
cipitation of driest month).

INFECTION ECOLOGY & EPIDEMIOLOGY 3



to increase by 21.8% and 28.0%, respectively. The 
areas covered by low suitable habitat decreased by 
13.6 and 19.2% in 2050 under these two scenarios 
(Table 4). The total non suitable areas would decrease 
by 11.9% and 14.3% under RCP4.5 and RCP8.5, 
respectively, in 2050 s.

Compared to the current climatic condition, in 
2070, the highly suitable areas for Ae. aegypti is pro
jected to increase by 40.1% and 55.8%, under RCP4.5 
and RCP8.5 scenarios, respectively while the moder
ately suitable area is projected to increase by 30.7% 
and 35.1%, under RCP4.5 and RCP8.5 climate sce
nario, respectively. In the same period, the total low 
suitable area for Ae. aegypti under RCP4.5 and 
RCP8.5 scenarios is projected to decrease with 9.4% 
and 11.5%, respectively (Table 4). Overall, areas con
sidered with non suitable in Africa would decrease by 
13.8% and 18.2% compared to the current climatic 
condition under RCP4.5 and RCP8.5 scenarios in 
2070, respectively (Table 4).

Based upon the current climatic conditions, we 
found that the areas with low climatic suitable for 
Ae. aegypti in relation to dengue fever incidence were 
mainly found in northern and southern Africa, while 
high to moderate suitability areas were predicted for 
western and part of central Africa (Figure 2). Under 

the predicted future climatic scenarios (Figure 3), 
African countries with the highest to moderate sui
table for infectious Ae. aegypti in relation to dengue 
fever incidence are Kenya, Ethiopia, Tanzania, South 
Sudan, Somalia and Uganda for eastern Africa and 
Nigeria, Cameroon, Equatorial Guinea, Gabon, 
Benin, Togo, Ghana, Burkina Faso, Cote-d’Ivoire 
and Sierra Leone from western Africa. On the other 
hand, countries with unsuitable or low suitable habi
tat for Ae. aegypti and dengue outbreaks are Egypt, 
Libya, Algeria and Morocco from northern, Mali and 
Mauritania from western, and South Africa, 
Botswana, Zimbabwe, Angola and Zambia for south
ern Africa.

Predicted risk maps for the years 2050 and 2070 
under both climate scenarios (RCP4.5 and RCP8.5) 
showed an increase in risk of dengue fever incidence 
compared to current climatic conditions. Under these 
two RCP emission scenarios, the ensemble model 

Table 2. Accuracy assessments (AUC and TSS) of five models 
used for predicting current and future habitat suitability for 
Ae. aegypti in Africa.

Performance indicator GLM SVM MARS BRT RF

AUC 0.94 0.95 0.99 0.96 0.95
TSS 0.8 0.81 0.82 0.81 0.9

AUC: area under curve; TSS: true skill statistic; GLM: generalized linear 
model; SVM: support vector machine; MARS: multivariate adaptive 
regression splines; BRT: boosted regression trees; RF: random forest 
algorithm. 

Table 3. Percentage of coverage by the 4 classes of habitat 
suitability under the current and future (2050 and 2070) 
climate scenarios (RCP4.5 and RCP8.5) for Ae. aegypti in 
relation to dengue fever incidence in Africa.

Total suitability (%)

Decade Scenarios Not suitable Low Moderate High

Current - 59.3 14.2 11.2 15.2
2050 RCP4.5 52.2 12.3 13.7 21.8

RCP8.5 50.8 11.5 14.4 23.3
2070 RCP4.5 51.1 12.9 14.7 21.3

RCP8.5 48.5 12.6 15.2 23.7

Table 4. Percentage of % change of habitat suitability in 
2050 and 2070 climate scenarios (RCP4.5 and RCP8.5) for 
Ae. aegypti compared to the current climatic condition.

Decade Scenarios

Change (%) compared to current suitability

Not suitable Low Moderate High

- - - -
Current - −11.9 −13.6 21.8 43.3
2050 RCP4.5 −14.3 −19.2 28.0 53.2

RCP8.5 −13.8 −9.4 30.7 40.1
2070 RCP4.5 −18.2 −11.5 35.1 55.8

Figure 2. Map showing the current habitat suitability for Ae. 
aegypti in relation to dengue fever incidences in Africa. Grey 
to green colours illustrate gradients of habitat suitability from 
low to high.

Figure 3. Future continental suitability for Ae. aegypti asso
ciated with dengue fever incidences in Africa by 2050 under 
RCP4.5 (A) and RCP 8.5 (B) and by 2070 under RCP4.5 (C) and 
RCP 8.5 (D). Grey to green colours illustrate the gradient of 
suitability from low to high.
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predicted an increase in the high suitability classes by 
the year 2050, and a further increase in 2070 (Figure 
3). In both periods, the projected increases in suitable 
areas (moderate to high) for Ae. aegypti in relation to 
dengue epidemic was predicted to increase particu
larly in central, eastern and south-eastern Africa. In 
contrast, in south-western and northern Africa, range 
losses were projected to be greater than range gains 
(Figure 3). African countries such as Kenya, Ethiopia, 
Angola, Madagascar, Mozambique, Chad, South 
Sudan, Niger and Guinea will become more suitable 
for infectious Ae. aegypti in relation to dengue fever 
incidence in the future due to climate change.

Discussion

Climate change is a major factor determining vector- 
borne diseases epidemics [3,6,14,31,32]. Thus, in this 
study, we used species distribution model to identify 
current and future continental suitability for Ae. 
aegypti related to dengue fever incidence in Africa. 
Previous studies demonstrated that climate changes 
have increased the burden of many vector-borne dis
eases [18,31,33,34]. Studies indicating that the risk of 
dengue fever incidence is expected to increase glob
ally under future climate change predictions 
[6,31,35]. Similarly, our findings demonstrated that 
climatic suitability for Ae. aegypti in relation to den
gue fever incidence will increase in the future in 
Africa, which is in agreement with other studies 
[4,7,8,19].WHO also stated that the endemicity of 
dengue fever incidence will increase, and outbreak 
could occur in areas where they are currently 
unknown due to climate changes [36].

Changes in temperature have been predicted to 
determine mosquito-borne disease occurrence, pri
marily through changes in mosquito reproduction, 
development and survival, and pathogen incubation 
rates and survival [2,6,14,17,37,38]. Our study identi
fied that temperature is the most important climatic 
variable, which collectively determined 70.8% of the 
potential distribution of Ae. aegypti in relation to 
dengue fever incidence in Africa. Similarly, other 
studies also found that in areas with higher tempera
tures the rate of larval development will increase, 
which can boost mosquito populations, and increase 
the probability of eggs being hatched, and thereby 
increase the dengue fever incidence risk 
[3,4,6,8,17,19,20,28,39]. At high temperature, the 
feeding behaviour of the mosquito is also expected 
to increase, further increasing dengue fever incidence 
risk [6]. Precipitation is also vital for creating suitable 
habitat for the aquatic stages in the mosquito life 
cycle, and strongly influences vector distribution 
[6,17,20]. Therefore, the two bioclimatic factors, tem
perature and precipitation, largely determine the suit
ability of the areas for Ae. aegypti in relation to 

dengue fever incidence through their influence on 
the distribution, abundance, and behaviour of the 
vector (SI-Figure 1).

Tun-Lin et al [40] experimental study showed that 
the suitable temperature range for the survival of Ae. 
aegypti is between 20°C and 30°C. According to other 
studies, optimal Ae. aegypti development and survi
val, including suitable sites for egg deposition, occurs 
in habitat with at least 500 mm of annual rainfall and 
a temperature between 25°C and 30°C [32,35,41], 
which is consistent with the results of our study, 
which indicated that countries with similar ranges 
for rainfall and temperature were highly to moder
ately suitable for infectious Ae. aegypti under current 
and future climatic conditions (SI-Figure 1). On the 
other hand, high temperatures with low moisture can 
increase mosquito mortality and decrease the incuba
tion time for the virus, and thereby decrease the risks 
of dengue fever incidence [5]. Similarly we found that 
no to low climatic suitable habitat for infectious Ae. 
aegypti were areas with higher temperatures and low 
levels of precipitation, and areas with low tempera
tures and high levels of precipitation (SI-Figure 1). 
Thus, the expected gradual increasing temperature 
and precipitation in the continent caused by global 
warming could promote Ae. aegypti development and 
survival, which could increase the successful propaga
tion of dengue fever incidence in the future. 
Therefore the results of our study also indicate that 
we should be alert for an epidemic of dengue fever as 
precipitation and temperatures continue to increase.

We observed that high and moderate suitable 
areas under the current climate conditions were 
found in low elevation areas. The projected results 
showed that in the future (2050 and 2070) under 
both climate scenarios (RCP4.5 and RCP8.5), the 
expected range expansion for infectious Ae. aegypti 
would be primarily in higher elevation areas along 
the edges of the current distribution (SI-Figure 1). 
Low and moderately suitable areas would be pre
dicted to change into moderate and highly suitable 
areas, respectively. This indicates that the possibility 
of large and frequent dengue outbreaks in high eleva
tion areas can be anticipated in the future. Ae. aegypti 
range shift towards high elevation related to dengue 
fever incidence is generally similar with other studies, 
which reported that the vector might move toward 
higher elevations in response to climate 
change [2,17].

Conclusions

It is now widely accepted that climate change will 
affect our health through a variety of pathways. Africa 
is a highly vulnerable to climate variability. Due to 
climate change, dengue fever incidences are expected 
to increase in eastern, central and western Africa. The 
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suitable range for Ae. aegypti would shift towards 
high elevation, where large numbers of human popu
lation live. Thus understanding the spatial suitability 
for Ae. aegypti in relation to the human risk of 
exposure to dengue fever is crucial for improving 
early detection and the application of proactive vector 
control measures. The results of this study may also 
help in assisting public health policy makers in prior
itizing sites for surveillance and control of Ae. 
aegypti. Moreover knowledge on the basic spatial 
risk patterns can also be used to raise awareness of 
vector-borne disease risk among public health com
munities and the general public in an effort to reduce 
dengue related mortality. These research findings also 
call for regional coordination of active monitoring 
and surveillance programs of vectors, and cross- 
border collaboration with neighbouring countries to 
reduce the dengue exposure risk.
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