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Abstract

A didactic model is presented to illustrate how the effect of macromolecular crowding on protein folding and association is
modeled using current analytical theory and discrete molecular dynamics. While analytical treatments of crowding may
consider the effect as a potential of average force acting to compress a polypeptide chain into a compact state, the use of
simulations enables the presence of crowding reagents to be treated explicitly. Using an analytically solvable toy model for
protein folding, an approximate statistical thermodynamic method is directly compared to simulation in order to gauge the
effectiveness of current analytical crowding descriptions. Both methodologies are in quantitative agreement under most
conditions, indication that both current theory and simulation methods are capable of recapitulating aspects of protein
folding even by utilizing a simplistic protein model.
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Introduction

Current information about the relative stability of native and

non-native conformations of proteins is derived largely from

experiments carried out on dilute solutions of protein subjected to

variations in temperature and pH, or addition of chaotropic agents

or osmolytes [1,2,3]. Yet most proteins exist in vivo within local

environments containing a high total weight to volume concen-

tration of proteins and other macromolecules [4,5]. Such excluded

volume environments can directly affect and alter a protein’s

function by inducing conformational changes [6,7,8], or poten-

tially enhance the formation of aggregate species [9].

Thermodynamic considerations dictate that the stability of a

particular protein in dilute solution is directly linked to the

difference between the respective free energies of nonspecific

interaction of the native and non-native conformations of the

selected protein and the macromolecular constituents of the

surrounding medium [10,11]. Although such interactions may be

of any kind, in the present work we focus upon intermolecular

excluded volume interactions, or steric repulsions. Such interac-

tions are ubiquitous in highly volume-occupied physiological fluid

media, and result in significant size- and shape-dependent

repulsive contributions to the chemical potential of each

macromolecular species that tend to stabilize more compact

conformations relative to less-compact conformations [12,13]. In

this context we shall refer to macromolecules in the environment

interacting with target protein via steric exclusion as ‘‘crowders’’.

Previous studies of the effect of volume exclusion upon protein

stability have fallen into one of two categories: (1) In statistical

thermodynamic models [14,15,16,17] the effect of volume

exclusion is treated as a conformation-dependent potential of

mean force acting between crowding molecules (or equivalent

hard particles) and the tracer molecule in either native or non-

native conformations; (2) In atomic or coarse-grained simulations

[18,19,20], volume exclusion is incorporated explicitly into the

simulated system, which consists of a single tracer molecule

capable of undergoing conformational transitions and a substantial

number of rigid crowder molecules (or hard particles) occupying a

specified fraction of total volume. Monte-Carlo or Brownian

Dynamics simulations are then performed to elucidate the

equilibrium and time-dependent behavior of the system.

Although statistical-thermodynamic models offer quantitative

estimation of the effect of crowding on protein stability,

descriptions of the potential of mean force acting between a rigid

crowding particle and a flexible non-native protein conformation

remain highly approximate, and the estimates of the magnitude of

crowding effects on conformational equilibria vary widely [15,21].

Molecular dynamics simulations permit studies of currently

theoretically-untreatable systems, such as a solution containing

multiple species of crowding molecules that interact with each

other via non-additive potentials of mean force, and testing of

theoretical approximations [22]. Recent efforts to expedite

calculation times have utilized trajectories derived from proteins

simulated with molecular dynamics to calculate its chemical

potential from an analytically derived distribution of hard spheres

[23,24]. However, conventional molecular or atomic-level Brow-

nian dynamics calculations are at present too computationally-

intensive to permit thorough exploration of the effects of numerous
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variables. The use of coarse-grained models have served as a useful

alternative in simplifying computation times while yielding new

insights into crowding effects at the residue-level [25,26,27].

Coarse-grained models have become even more sophisticated with

the emergence of virtual cytoplasms simulating the presence of

many different protein species [28,29].

Discrete molecular dynamics (DMD) has recently been used as

another alternative for studying the effect of macromolecular

crowding on conformational equilibria [30,31]. DMD is a rapid

method of simulation in which interactions between particles are

described by step-wise or ‘‘histogram’’ potentials. In DMD,

simulations proceed according to ballistic equations of motion

and velocity-modifying events are sorted through use of a search

algorithm. The combined usage of simplified models and the

intrinsic DMD algorithm has led to simulations at biologically-

relevant timescales with reduced simulation times [32]. Other uses

of DMD encompass studies in protein folding [33] and

aggregation [34], as well as RNA [35], protein-DNA complexes

[36], and lipids [37].

At its most fundamental level, protein folding is a process

whereby different parts of a heteropolymeric chain that are

initially separated in space come together to form a highly

compact specific structure that could be described as a condensed

microphase. The interaction between two chain elements (amino

acids) consists of two parts: a short-ranged direct interaction, such

as an electrostatic, hydrophobic or hydrogen bonding interaction

between two side chains, and a longer range indirect interaction

imposed by the covalent linkage between the two amino acid

residues. We propose as a didactic aid to understanding the

interplay between these contributions the simplest possible model

that contains both types of interactions, and investigate the effects

of its folding equilibria upon the addition of crowders.

In this model, a ‘‘protein’’ consists of two rigid spherical

subunits interacting by a one-dimensional potential that is the sum

of direct and indirect contributions. The direct interaction is

represented by a very short-ranged square well potential, the depth

of which is parameterized to vary with the concentration of a

chaotropic agent, urea, so as to mimic the experimentally

measured dependence of the two state unfolding of a simple

protein upon urea concentration. The indirect interaction is

represented by a longer ranged empirical function of inter-subunit

distance, parameterized to mimic the distribution of radii of

gyration of an unfolded protein calculated from a detailed atomic-

level simulation. Thus this primitive model exhibits certain

features of the behavior of actual proteins while retaining

simplicity of calculation that allows its properties to be explored

in depth, both analytically and with the aid of dynamic simulation.

In the following section we describe the model. Next, we present

the statistical-thermodynamic description of the model, followed

by details of the DMD simulations. Then results of each method of

calculation are presented and compared. We find that the two

approaches are in semi-quantitative agreement under most

conditions.

Methods

One-dimensional model for two-state protein folding at
constant temperature in the presence of varying
concentrations of urea

A ‘‘protein’’ consists of two hard spherical ‘‘subunits’’ of radius

13 Å (subsequently referred to as subunit spheres) interacting via a

potential, specified in Table 1 and plotted in Fig. 1, that depends

only upon the distance between the centers of the two subunit

spheres, denoted by r. In this model, the radius of gyration of the

protein, denoted by rg, is simply r/2. The potential consists of three

parts: a hard repulsive core defining the distance of close contact

between the two subunit spheres, a urea-dependent short-ranged

potential (bin 1) representing the compact native conformation of

the protein, and a longer-ranged urea-independent potential (bins

2–6) representing the manifold of non-native conformations.

This potential was designed to emulate certain properties of

ribonuclease A, namely: (a) The size of the two protein subunit

spheres was chosen so that the radius of gyration of two tangent

subunit spheres (the ‘‘native’’ state) matches that of native

ribonuclease A [38]. (b) The non-native potentials were chosen

to provide an equilibrium distribution of rg (calculated as described

below) qualitatively resembling that calculated for unfolded
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Figure 1. Histogram potential for one-dimensional toy model.
Solid curves: discretized potential acting between two isolated spherical
protein ‘‘subunits’’ as a function of the distance between sphere centers
(r = rg/2). Solid line: potential in the presence of 4 M urea. Dashed lines:
attractive potential in bin 1 (see Table 1) calculated for curea = 1, 2 and
3 M. Dotted curve: continuous potential of mean force as a function of
Rg, derived from the distribution of Rg of unfolded states of
ribonuclease A calculated by Goldenberg [38] as described in Minton
[15].
doi:10.1371/journal.pone.0011936.g001

Table 1. Specification of potential of average force U0 acting
between spherical protein ‘‘subunits’’ in the absence of
crowding particles.

Bin r U0/kT Conformation

,r0 ‘ inaccessible

1 r0–r1 210.8+3.3 curea ‘‘Native’’

2 r1–r2 4 ‘‘Non-native’’

3 r2–r3 0

4 r3–r4 1

5 r4–r5 3

6 r5–r6 6

.r6 ‘ inaccessible

The boundaries between histogram bins are situated at the following values of
r (Å): r0 = 26, r1 = 28.6, r2 = 41.6, r3 = 57.2, r4 = 72.8, r5 = 88.4, r6 = 104.
doi:10.1371/journal.pone.0011936.t001
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ribonuclease A by Goldenberg [38]. (c) The dependence of the

contact potential upon urea concentration was chosen so that the

resulting dependence of the equilibrium fraction of natively folded

protein upon urea concentration, as calculated in the model in the

absence of crowder, would resemble that observed experimentally

for ribonuclease A [39].

Statistical thermodynamic calculation of the equilibrium
properties of the one-dimensional protein model

The equilibrium probability of occurrence of the state with

r = r* at temperature T is given by

P(r�)~
r�2exp½{U(r�)=kT �

Q
ð1Þ

where

Q:
ðr6

r0

r2 exp½{U(r)=kT �dr ð2Þ

and the equilibrium fraction of protein residing in the ith bin (as

defined in Table 1) is given by

fi~

Ðri

ri{1

r�2 exp½{U(r�)=kT �dr�

Q
ð3Þ

The fraction of model protein in the ‘‘native’’ state (i.e., bin 1) then

becomes

fnative~

Ðr1

r0

r�2 exp {U r�ð Þ=kT½ �dr�

Q
ð4Þ

Statistical-thermodynamic model for crowding by hard
spheres

The statistical-thermodynamic model for protein stability

described above is generalized to include the potential of average

force acting upon the two subunit spheres in a fluid of hard

spherical particles:

U(r)~Uo(r)zUcrowd (r) ð5Þ

where

Ucrowd (r)~W2(r){2W1 ð6Þ

Here W1 is the work (in units of kT) associated with the insertion of

a single hard sphere of radius r1 into a hard sphere fluid containing

a volume fraction Q of hard spheres of radius rc, and W2(r) is the

work of insertion of a doublet of hard spheres of radius r1
separated by distance r into the same fluid.

The scaled particle theory (SPT) initially developed by Reiss

and coworkers [40] provides an approximate yet realistic means

for calculating the free energy of creating a convex cavity with the

dimensions of the particle to be inserted that contains no part of

any other particle in the fluid. Thus SPT provides a direct means

for evaluation of W1 [41]. When the distance between the two

subunit spheres exceeds a characteristic isolation distance

ri = 2r1+2rc, the excess work of inserting two spheres is assumed

to be twice the work required to insert a single sphere, because the

cavities in the fluid required for insertion of both spheres do not

overlap. However, when r,ri, SPT can no longer be used, since

the cavities fuse and the joint cavity cannot be treated as a convex

body [42]. We can, however, calculate the leading term in the

expansion

W2(r)=kT~B2c(r)wzO(w2) ::: ð7Þ

from the statistical-thermodynamic relation

B2c(r)~
V2c(r)

Vc

ð8Þ

where V2c(r) denotes the volume excluded by the two ‘‘protein’’

spheres with centers separated by distance r to the center of mass

of the crowding sphere, and Vc denotes the volume of the crowding

sphere [43]. For rƒri,

V2c(r)~V1 2(1zRc)3{
1

2
1zRc{

R

2

� �2

2z2Rcz
R

2

� �" #
ð9Þ

where V1 denotes the volume of a single ‘‘protein’’ sphere, and Rc

denotes the ratio rc=r1, and R denotes the ratio r/r1.

We assume that for the purpose of calculating the work of cavity

formation in a fluid of spherical crowders via SPT, the doublet of

subunit spheres with rƒri may be approximated by a single

equivalent spherocylinder with diameter 2r1 and a cylindrical

length/diameter ratio Lequiv(r) such that the co-volume of the

equivalent spherocylinder with spherical crowder, denoted by Vsc,

is identical to that of the doublet of subunit spheres with separation

r. Since

Vsc~V1 (1zRc)3z
3

2
(1zRc)2Lequiv

� �
ð10Þ

the approximation of equal co-volumes leads to the relationship

Lequiv(R)~
2(1zRc)3{(1zRc{R

�
2)2(2z2RczR=2)

3(1zRc)2
ð11Þ

where R denotes the ratio r/r1, over the range 0ƒRƒ2+Rc. Given

the dimensions of the equivalent spherocylinder, the value of

W2(R) may be estimated via the SPT expression for the work of

insertion of a single spherocylinder into a fluid of hard spheres

[44,45]:

W2(R)=kT~A0zA1ZzA2Z2zA3Z3 ð12aÞ

where

Z~
w

1{w
ð12bÞ

A0~{ln(1{w) ð12cÞ
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A1~(R�3z3R�2z3R�)zL�(1:5R�3z3R�2z1:5R�) ð12dÞ

A2~3R�3z4:5R�2z4:5L�(R�3zR�2) ð12eÞ

A3~3R�3z4:5L�R�3 ð12fÞ

R�~r1=rc~1=Rc ð12gÞ

L�~Lequiv(R)
�

Rc ð12hÞ

Note that W1 = W2(R = 0), and in that limit, Eq. 12 is exact for all

w. Moreover, due to the assumption embodied in Eq. 11, Eq. 12 is

exact for all Rƒ2+2Rc in the limit w%1.

Discrete Molecular Dynamics
Discrete molecular dynamics differs from traditional simulation

methods in that calculation of forces is discretized into intervals as

opposed to the continuous calculation of forces [46,47]. To

accommodate the discontinuous nature of DMD simulations, step-

wise potentials are used so that forces remain constant until two

particles encounter a step in the potential [31,32,48]. Here we use

the term event to denote an instance where two particles are

within a defined interaction range. Simulations in DMD proceed

as a series of two-body interactions, where the velocities of all

particles in the system are evaluated within time intervals.

Let us consider a system of particles, including two particles i

and j both of mass m that occupy initial positions of ri0 and rj0 with

initial velocities of vi and vj. For simplicity we discuss a scenario

where the interaction potential consists of one step, otherwise

known as a square well potential, defined as

Uij~

?, rvs1

{e, s1vrvs2

0, rws2

8><
>: ð13Þ

The variable sa defines an interaction distance, where a = 1 refers

to the hard sphere repulsion and a = 2 is the attractive interaction.

During a simulation, a table is generated by calculating event

times for each pair of particles. The time interval in which an

event may occur between two particles is

t
að Þ

ij ~
{bij+ b2

ij{v2
ij r2

ij{s2
a

� �h i1=2

v2
ij

ð14aÞ

where

rij~ri0{rj0 ð14bÞ

vij~vi{vj ð14cÞ

bij~rij
:vij ð14dÞ

and the plus-minus sign refers to two particles either approaching

or receding from each other, respectively. The trajectory of

particle i is evaluated with respect to time as

ri tztuð Þ~ri tð Þzvi tð Þtu ð15Þ

where the time unit tu is determined by comparing the shortest

event time to the maximum allowed time interval tm. If t
(a)
ij is

greater than tm, then the particles are only permitted to move for tm
and a new table is subsequently generated. Otherwise the shortest

event time is the first considered, and the velocity changes

according to the conservation laws of energy and momentum.

When particles i and j are determined to interact at t
að Þ

ij , the

squared difference in the particles’ positions is compared to the

squared interaction distance prior to a change in the potential (i.e.,

before r2
ij{s2

a~0). There are three possible scenarios for our one-

step potential as the two particles approach one another. During

an attractive encounter, if r2
ijws2

2 then the magnitude of

separation between the particles decreases and the change in

velocities will be

Dvi~{Dvj~
{rij

2s2
2

bijz b2
ij{

4s2
2e

m

� �1=2
" #

ð16Þ

However if r2
ijvs2

2, then the two particles increase their magnitude

of separation and the change in velocities will be

Dvi~{Dvj~
{rij

2s2
2

bij{ b2
ijz

4s2
2e

m

� �1=2
" #

ð17Þ

In the case of hard sphere repulsions, the change in velocities is

simply

Dvi~{Dvj~
{rijbij

2s2
1

ð18Þ

After each event, we remove from the table events that were

calculated with the previous two particles since their velocities and

positions have changed. The number of possible events with these

two particles are then recalculated and sorted within the table.

Simulations then proceed through the table, where particles are

allowed to move between time intervals, until either t
að Þ

ij ,tm or the

table of events is depleted.

We incorporate the Andersen thermostat to simulate under

canonical (constant N, V, T) conditions [49]. Temperature is

maintained constant by surrounding the system of particles with a

heat bath. The heat bath itself is comprised of imaginary ghost

particles [31,50] with number density rg that undergo stochastic

collisions with the system via a Poisson process

P tð Þ~q exp {qt½ � ð19Þ

Here P(t) represents the probability that a randomly chosen

particle within the system undergoes a collision with a ghost

particle at time t. The constant q represents the rate at which

system particles undergo collision with the ghost particles. This

may also be referred to as the heat exchange rate, which is

Macromolecular Crowding
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determined by

q~rgs2
1

16pkT

m

� �1=2

ð20Þ

The momentum of a particle after collision with a ghost particle at

tu is selected randomly from a Boltzmann distribution of values at

temperature T.

Calculation of the equilibrium properties of the one-
dimensional protein model using DMD

Since the protein model introduced here is described by a step-

wise potential, its implementation is straightforward given the

nature of DMD. We examine the effect of macromolecular

crowding in DMD by inserting crowders that are purely modeled

as repulsive hard sphere potentials. The hard sphere repulsion

distance between a crowder and protein ‘‘subunit’’ is modeled as

s1,c~rczr ð21Þ

The radius of the spherical protein subunit is defined as 13 Å for

all simulations. Values for the crowder radius (rc) were determined

according to a specified ratio relative to the size of the subunit and

remain fixed throughout a given simulation.

All simulations are carried out using an Andersen thermostat

[49] set at a reduced temperature of 1.0 e/k with ghost particles

that account for less than 1% of the occupied volume [31]. Prior to

the equilibrium simulations, a relaxation step is performed to

introduce crowding reagents into the system while alleviating

potential clashes. The relaxation step employs a temporary soft

potential that steadily increases the distance between crowders and

the protein until the hard sphere repulsive distance is reached. To

ensure adequate sampling of each system, all equilibrium

simulations are run for 16106 time units.

For a given simulation of n trajectories, the fraction of model

protein in the native state is

fnative~
D rg : rgƒ

r1
2

	 

D

n
ð22Þ

where the numerator represents the number of elements in the set

of rg in which rg is equal to or less than half of r1. Histograms were

generated to determine equilibrium values of P(r).

Results

Stability of the protein model as a function of urea
concentration in dilute solution

The dependence of fnative upon urea concentration calculated

using Eq. 4 with U = Uo, and calculated using DMD, are plotted in

Fig. 2. For comparison, the experimentally measured fraction of

native ribonuclease A is also plotted as a function of urea

concentration [39].

Distributions of r, calculated as a function of curea according to

Eq. 1 with U = Uo (Fig. 3 A) and calculated using DMD (Fig. 3 B),

are plotted on a logarithmic scale. Generally good agreement is

obtained between the calculated probabilities for P.0.001. It is

likely that states with P,,0.001 are relatively rarely observed

during the DMD simulation and subject to stochastic errors of

estimate. However, since such low probability states contribute

little to the equilibrium average properties of the system,

significant fractional errors of estimate of the probability of these

states (which are magnified on the logarithmic scale) do not result

in substantial errors in calculated equilibrium properties.

Effect of hard sphere crowding upon stability of protein
model

The crowding-induced potential of mean force, Ucrowd(r),

calculated as described above, is plotted for Rc = 0.7 and various

values of fractional volume occupancy w in the top panel of Fig. 4.

Corresponding values of U(r) are plotted in the lower panel. It may

be seen that the crowding-induced potential is short-ranged, has

the largest influence on the potential in bin 1, a smaller effect on

the potential in bin 2, and essentially no effect on the potentials in

bins 3–6. Comparing Figs. 1 and 4, it appears that the major effect

of adding crowder to the solution is to lower the potential in bin 1

in a fashion that, to a first approximation, counteracts the effect of

urea in raising this potential. We thus expect added crowder to

stabilize the native state with respect to urea-induced unfolding.

The dependence of the fraction of native state upon urea

concentration, as calculated according to the statistical-thermody-

namic model and according to DMD simulations, are plotted in

Fig. 5 for two different values of relative crowder size and different

values of w. The magnitude of the overall effect of crowding may

be quantified by the parameter c50, the urea concentration

required to induce half of the protein to unfold at equilibrium. The

dependence of c50 upon w, calculated according to the statistical-

thermodynamic model and DMD simulations is plotted in Fig. 6

for all values of Rc at which DMD simulations were carried out.

Generally good agreement between the approximate theory and

the simulations is obtained.

Discussion

Although the discretized one-dimensional potential of average

force specified in Table 1 was designed to qualitatively imitate

features of a real protein, ribonuclease A, as shown in Figs. 1 and

2, we emphasize that this model is not meant to physically

represent the actual process of protein folding. The purpose of the
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Figure 2. Equilibrium fraction of native conformation plotted
as a function of curea. Solid circles: Calculated using DMD. Open
squares: calculated using Eq. 4 with U = Uo. Triangles: experimentally
measured dependence for Ribonuclease A, as reported by Tokuriki et al
[39].
doi:10.1371/journal.pone.0011936.g002
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model is to attain insight into the effect of crowding on the

intramolecular associations underlying conformational isomeriza-

tion in a model protein using a simplified theory and DMD

simulations. Our model provides didactic value such that the most

fundamental elements of protein folding, namely the interplay

between short-ranged and long-ranged interactions, are retained

at a simplistic level to enable exploration of the features of

macromolecular crowding using statistical thermodynamic theory.

From this model, we find that results obtained from analytical

treatment of the system are quantitatively similar to DMD results.

Both the analytical solution and the simulation indicate that the

degree of stabilization of the native state of the protein afforded by

the presence of a given volume fraction of inert hard particle

crowder is strongly dependent upon the ratio of the size of the

‘‘protein’’ to the size of the crowder, increasing as crowder size

decreases. This conclusion follows qualitatively from simple

principles of volume exclusion [12,13,51], has been predicted on

the basis of earlier excluded volume treatments [14,15,52], and

demonstrated experimentally [53]. The model presented here

provides another quantitative estimate of the magnitude of the

effect of crowder size, which will be characterized more fully in a

subsequent study using a more detailed protein model.

It has been observed that the magnitude of the crowding effect

on an isomerization reaction (such as protein folding) increases

with extent of isomerization-linked change in the ratio of co-solute

accessible surface to volume [12]. Thus the effect of crowding

upon the present one-dimensional model, in which folding is

represented by tangential contact between two spheres, is expected

to be smaller than the effect of crowding on a real protein folding

reaction, since the latter would resemble a unimolecular

condensation of an extended polypeptide chain, corresponding

to a much larger fractional reduction in co-solute accessible

surface area.

The dependence of the stability of our simplified protein model

upon urea concentration that is predicted by the analytical model

agrees reasonably well with that obtained from the DMD

simulation except at the lowest values of Rc and the highest values

of w. This overall agreement arises because within the context of

the two-state model, protein stability is determined by the relative

free energies of the ‘‘native state’’ (i.e., configurations in bin 1) and

the ‘‘non-native state’’ (i.e. configurations in bins 2–6). The

analytically calculated crowding potential is in good agreement

with the PMF obtained from the DMD simulation at distances

close to the contact distance, that is, within bin 1. However, it

underestimates the magnitude of the crowding potential at larger

distances, and so leads to an underestimate of the relative stability
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Figure 3. Equilibrium values of P(r) at different urea concentrations. Plotted as a function of r according to Eq. 1 (A) and DMD (B). curea = 1 M
(black), 2 M (red), 2.5 M (green), 3 M (blue), 4 M (magenta).
doi:10.1371/journal.pone.0011936.g003

Figure 4. Effect of potential of average force exerted by
crowders on the total potential. Ucrowd [upper panel] and Utot

[lower panel] plotted as a function of r, calculated for curea = 3 M and
Rc = 0.7 as described in text, for w = 0 (large dotted line), 0.1 (dashed
line), 0.2 (dot-dashed line), 0.3 (small dotted line), and 0.4 (solid line).
doi:10.1371/journal.pone.0011936.g004

Macromolecular Crowding

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e11936



of conformations in bin 2 most strongly and to a lesser extent in

bin 3. However, since conformations in bin 2 are defined as

intrinsically high energy (Uo = 4 kT) and hence extremely poorly

populated in the absence of crowding (see Fig. 3), only a very large

lowering of the free energy of these conformations (greater than

about 3–4 kT) will increase the equilibrium population of

conformations in these bins to the point at which they contribute

significantly to the total Boltzmann-weighted average free-energy

of the ‘‘non-native’’ state.

The model presented in this study enables a quantitative

comparison of modeling the effect of chaotropes on protein folding

using either explicit crowders via simulations or modeling implicit
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Figure 5. Urea denaturation curves for different crowder sizes. fnative plotted as a function of curea using DMD (circles) and the statistical-
thermodynamic model (squares) for Rc = 1 (panels A,B,C) and 0.46 (panels A9,B9,C9), and w = 0 (panels A, A9), 0.2 (panels B, B9), 0.3 (panel C9), and 0.4
(panel C).
doi:10.1371/journal.pone.0011936.g005

Figure 6. Half-denaturation urea concentration plotted as a function of w. Calculated using DMD simulations (circles) and the statistical-
thermodynamic model (diamonds) for Rc = 2.1, 1.4, 1, 0.7, and 0.46.
doi:10.1371/journal.pone.0011936.g006
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crowders as a potential of mean force. Here it is demonstrated that

quantitative agreement can be obtained between scaled particle

theory and DMD simulations, at least to the extent that such

equilibria may be modeled as intramolecular association reactions.

Furthermore, the simple model presented provides didactic value

in that even by reducing protein folding to its most basic elements,

we can gauge the effect of crowders on promoting isomerization.
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