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Stroke is one of the leading causes of death and disability worldwide. Reducing this
disease burden through drug discovery and evaluation of stroke patient outcomes
requires broader characterization of stroke pathophysiology, yet the underlying biologic
and genetic factors contributing to outcomes are largely unknown. Remedying this
critical knowledge gap requires deeper phenotyping, including large-scale integration
of demographic, clinical, genomic, and imaging features. Such big data approaches will
be facilitated by developing and running processing pipelines to extract stroke-related
phenotypes at large scale. Millions of stroke patients undergo routine brain imaging
each year, capturing a rich set of data on stroke-related injury and outcomes. The
Stroke Neuroimaging Phenotype Repository (SNIPR) was developed as a multi-center
centralized imaging repository of clinical computed tomography (CT) and magnetic
resonance imaging (MRI) scans from stroke patients worldwide, based on the open
source XNAT imaging informatics platform. The aims of this repository are to: (i)
store, manage, process, and facilitate sharing of high-value stroke imaging data
sets, (ii) implement containerized automated computational methods to extract image
characteristics and disease-specific features from contributed images, (iii) facilitate
integration of imaging, genomic, and clinical data to perform large-scale analysis of
complications after stroke; and (iv) develop SNIPR as a collaborative platform aimed at
both data scientists and clinical investigators. Currently, SNIPR hosts research projects
encompassing ischemic and hemorrhagic stroke, with data from 2,246 subjects, and
6,149 imaging sessions from Washington University’s clinical image archive as well as
contributions from collaborators in different countries, including Finland, Poland, and
Spain. Moreover, we have extended the XNAT data model to include relevant clinical
features, including subject demographics, stroke severity (NIH Stroke Scale), stroke
subtype (using TOAST classification), and outcome [modified Rankin Scale (mRS)].
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Image processing pipelines are deployed on SNIPR using containerized modules, which
facilitate replicability at a large scale. The first such pipeline identifies axial brain CT scans
from DICOM header data and image data using a meta deep learning scan classifier,
registers serial scans to an atlas, segments tissue compartments, and calculates CSF
volume. The resulting volume can be used to quantify the progression of cerebral edema
after ischemic stroke. SNIPR thus enables the development and validation of pipelines
to automatically extract imaging phenotypes and couple them with clinical data with the
overarching aim of enabling a broad understanding of stroke progression and outcomes.

Keywords: big data, containerized pipeline, deep learning, informatics, phenotype repository, stroke
neuroimaging, XNAT

INTRODUCTION

Stroke is the second leading cause of death throughout
the world, and the leading cause of long-term disability
(George et al., 2017). The management of acute stroke
is now a time-sensitive emergency that requires organized
multidisciplinary care. The early hours after stroke onset
frequently map the trajectory of subsequent neurologic disability,
complications, and outcomes. Big data analyses can provide
an opportunity to implement precision medicine approaches
to stroke (Liebeskind, 2018). Pooling of multi-center data
sets can advance our understanding of the clinical and
biologic factors contributing to outcomes. This has led to
a surge of interest and effort to collaborate on stroke
research by combining clinical and genomic databases to
better understand the biology of stroke and its complications.
One of the largest such collaborations [the International
Stroke Genetics Consortium (ISGC)] has integrated data on
stroke incidence and recovery with genetic data on over
60,000 cases to provide further novel insights into stroke
biology (Malik, 2018). There has been special interest in acute
stroke phenotypes and outcomes, leading to collaborations
within the ISGC and the formation of the Genetics of
Neurological Instability after Ischemic Stroke (GENISIS) multi-
center study (Heitsch et al., 2021). GENESIS has acquired
extensive clinical and genomic data on over 6,000 acute
stroke patients.

Brain imaging has a key role in providing further insights
about complications after stroke. Indeed, most stroke patients
have at least one brain imaging study performed during their
acute hospitalization, primarily for diagnostic purposes on
presentation. Follow-up scans are often obtained to evaluate
the size of infarction and to exclude the development of
hemorrhagic transformation. An endeavor is underway to
describe the design and rationale for the genetic analysis of
acute and chronic cerebrovascular neuroimaging phenotypes
detected on clinical magnetic resonance imaging (MRI) in
patients with acute ischemic stroke within the scope of
the MRI-GENetics Interface Exploration (MRI-GENIE) study
(Giese et al., 2017, 2020). Another similar effort with focus
on MRI data is Enhancing Neuroimaging Genetics through
Meta-Analysis (ENIGMA) Stroke Recovery repository which
tries to understand brain and behavior relationships using

well-powered meta- and mega-analytic approaches. ENIGMA
Stroke Recovery has data from over 2,100 stroke patients
collected across 39 research studies and 10 countries around
the world (Liew et al., 2020). Although MRI can provide
detailed anatomic information, it is challenging to obtain
in the acute setting so there is not enough sample which
makes knowledge discovery and practical applications limited.
Computed tomography (CT) is the most frequently employed
modality for acute stroke imaging due to its widespread
availability, lower cost, and greater speed of scanning (especially
important in acutely unstable patients where “time is brain”)
(Tong et al., 2014). Thus, many millions of CT exams of
stroke patients with information on stroke location, infarct
size, development of edema, and hemorrhagic transformation
are available globally. The evaluation of these parameters is
not scalable by human raters when leveraging imaging data
from thousands of patients. As a result, a big data approach
is required to assess images at scale, including identifying
quantitative image features and developing automated tools to
extract them. This imaging analysis can then be coupled with
analysis of clinical and genomics data from these subjects,
facilitating large-scale genomic analysis of acute complications
after stroke that are best represented by imaging features
(Dhar et al., 2018).

Given the potential of imaging to advance our understanding
of stroke and its complications, the GENISIS study endeavored to
share all clinically performed brain imaging on enrolled subjects.
The Stroke Neuroimaging Phenotype Repository (SNIPR) was
created as a stroke-focused medical imaging repository that
could serve as a platform for this and other stroke-related
research. SNIPR is based on the open source XNAT imaging
informatics platform, developed at Washington University
in St. Louis (WUSTL) (Marcus, 2007). SNIPR provides an
environment to securely host and share clinical data and
imaging scans from large international stroke cohorts. It also
allows the development and deployment of image processing
pipelines to extract imaging biomarkers from these stroke scans.
SNIPR is deployed on a high-performance computing system
that enables these pipelines to be executed as containerized
applications at massive scale. SNIPR enables coupling the
imaging results with clinical data, with the overarching aim
of enabling a broad understanding of stroke progression
and outcomes.
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MATERIALS AND METHODS

Stroke Neuroimaging Phenotype Repository was initiated in
2018 to manage the imaging data from the GENISIS multi-
center acute stroke genetics study. SNIPR is a modified
instantiation of XNAT, an extensible open source imaging

informatics platform. The SNIPR image repository is built
primarily to support images in DICOM format, the medical
imaging industry standard (Pianykh, 2009). Users have multiple
paths to importing such images into SNIPR (Figure 1). Exams
obtained in the Washington University in St. Louis School of
Medicine (WUSTL)-affiliated hospital system can be imported

FIGURE 1 | Imaging data can be extracted from picture archiving and communication system (PACS) using DICOM interfaces implemented in XNAT. Alternatively,
users can upload DICOM image files using a desktop application. SNIPR automatically removes patient identifying information from DICOM metadata. Clinical
attributes can be downloaded from Electronic Data Collection (EDC) systems in spreadsheet format and uploaded into SNIPR via spreadsheets or entered into
web-based form. XNAT automatically links the clinical and image data to enable searching and aggregation across domains.

FIGURE 2 | SNIPR uses XNAT’s standard project management mechanism which gives project owners flexible control over access to their data. Projects can be set
to public, protected, or private. Protected project data are only accessible to users who have been explicitly granted access to the project.
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directly from the clinical image repository or Picture Archiving
and Communication System (PACS) using XNAT’s PACS query
interface, which extracts the images from PACS, anonymizes
them, and stores them to the SNIPR file repository. Users can
also upload image sessions using the XNAT desktop application,
which anonymizes images locally prior to transferring to SNIPR.
To guarantee secure transmission of data, outside institutions
are restricted to upload through the SNIPR website rather
than over the DICOM network protocol, which lacks support
for user authentication and authorization. SNIPR’s DICOM
anonymization service automatically removes sensitive patient
metadata from the file headers following an anonymization
profile approved by the WUSTL Institutional Review Board and
Department of Radiology Clinical Informatics Section. Once
uploaded to SNIPR, relevant DICOM metadata are extracted
into the SNIPR database, allowing users to identify and search
for data sets via specific acquisition parameters. Each research
institution has protected access to its project data, which are
only accessible to users who have been explicitly granted access
to it. SNIPR uses XNAT’s standard user management, project
and data organization, and data access controls. XNAT’s standard
project management mechanism provides project owners with
flexible control over access to their data (Marcus, 2013; Gurney
et al., 2017). Projects can be set to public, protected, or private
(Figure 2). Protected project data are only accessible to users who
have been explicitly granted access to the project but descriptive
project metadata (title, investigator name, and keywords) are
accessible to all users. SNIPR can offer a variety of informatics and
computational services to support multi-center projects. Access
to data can be restricted by site for study coordinators and site
investigators, while the overall investigator and administrative
core are provided with a pooled view of all the sites’ data.
To create projects, upload data, and access non-public data,

an individual must create a password- protected user account
and login each time they visit the site. Accounts are enabled
by system administrators after verification of the submitted
credentials. User requests for access to specific data sets are
administered by the investigators of the contributed studies, and
the data use terms may vary across data sets. SNIPR provides
forms for users to request access to data and for investigators
to review and approve or reject requests. To further control
access, project owners can use the XNAT sharing feature to
expose subsets of project data into a secondary project. When
users are granted access to a project, they can use a variety
of mechanisms to download the data. Imaging sessions can be
downloaded as a zip-formatted file or straight to a directory.
SNIPR provides a single-session zip downloader, a multi-session
bulk downloader through the website, and an interface to
download data via a REST programming interface. The multi-
session bulk downloader provides support to stop and resume
downloads and is able to restart interrupted downloads from
previous sessions. All other data in SNIPR such as clinical and
image processing results are most typically downloaded by the
website into a CSV file. The XNAT REST interface enables users
to also download non-imaging data in different formats such as
CSV, HTML, XML, and JavaScript Object Notation (JSON). Users
can also use the XNAT Advanced Search capability to create their
own custom data sets for download.

Additional data types such as imaging and clinical phenotypes
can also be added by specifying new data type plugins which are
based on XNAT’s standard XML Schema extension mechanism.
Indeed, this capability to introduce additional data types
empowers SNIPR to support managing multimodal data under a
common research subject identifier. When research identifiers are
determined by a project owner, then image studies can be directly
pulled from PACS and anonymized during import, but clinical

TABLE 1 | SNIPR can pull stroke’s clinical data from REDCap and manage these data at subject level.

Subject level EHR Values

Entered from image review

Lesion location (stroke/ICH) Cortical/lobar, Subcortical, Both, Lacunar stroke, Cerebellar, Brainstem Acute,

Stroke territory: MCA involved (non-lacunar) Acute, Subacute only, Chronic only

Stroke territory: ACA involved Acute, Subacute only, Chronic only

Stroke territory: PCA involved Acute, Subacute only, Chronic only

Hemorrhagic transformation (ischemic stroke, from all scans) None, HI-1, HI-2, PH-1, PH-2 (within infarct), Remote PH (or IVH), SAH or SDH

Cerebral edema grading (ischemic stroke) 0 = No edema, 1 = Edema < 1/3 hemisphere (no MLS), 2 = Edema > 2/3 hemisphere (no
MLS), 3 = Edema with mid-line shift, 9 = unable to assess

Global cerebral edema (for SAH only) No, Yes

Imported from REDCap

Disease type Ischemic stroke, Intracerebral, hemorrhage, Subarachnoid hemorrhage, Traumatic brain
injury, Other, no abnormality seen

Modified Rankin Scale (mRS) 0 = No symptoms at all, 1 = No significant disability despite symptoms, 2 = Slight disability,
unable to carry out all of previous activities, 3 = Moderate disability, 4 = Moderately severe
disability, 5 = Severe disability, 9 = Unknown/Missing data

Trial of Org 10172 in Acute Stroke Treatment (TOAST) 0 = Large artery atherosclerosis, 1 = Cardioembolism, 2- Small vessel disease, 3 = Stroke
of other determined etiology, 4 = Stroke of undetermined etiology

NIH Stroke Scale/Score (NIHSS) 0–42

Imported from REDCap or entered from image review

Stroke Side Right, Left, Both, No stroke seen, Unknown (FU imaging not available at/beyond 24 h)
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TABLE 2 | SNIPR can pull stroke’s clinical data from REDCap and manage these
data at session level.

Session level EHR Values

Entered from image review

Hyperdense vessel sign No, Yes (MCA), Yes (ICA), Yes (Other)

ASPECTS score 1, 2, 3,. . . , 10, Unable to score,
Missing/blank

Infarct present No, Yes

Midline shift User defined value in mm

Hemorrhagic transformation None, HI-1, HI-2, PH-1, PH-2 (within
infarct), Remote PH(±

IVH), SAH or SDH

Intraventricular hemorrhage (for No, Yes

SAH and ICH)

Imported from REDCap or entered from image review

Decompressive craniectomy No, Yes

Ventriculostomy No, Yes

Old (non-lacunar) stroke present No, Yes

data can be downloaded from Electronic Data Collection (EDC)
systems in spreadsheet format and uploaded into SNIPR. These
anonymized data can be stored under a common research subject
identifier in SNIPR so as to support subject level study for various

stroke phenotyping at large scale. SNIPR manages subject-level
clinical and derived radiological data (Table 1) and session level
clinical and derived radiological data (Table 2). The clinical fields
in SNIPR reflect measurements widely used in stroke research
and are readily expanded to accommodate future studies. These
measurements include, but are not limited to, the NIH Stroke
Scale/Score (NIHSS) which quantifies stroke severity based on
weighted evaluation findings, the Modified Rankin Scale (mRS)
which measures degree of disability/dependence after a stroke
and the Trial of Org 10172 in Acute Stroke Treatment (TOAST)
which denotes five subtypes of ischemic stroke. Assessment of
cerebral edema and hemorrhagic transformation after ischemic
stroke also follow established grading systems (Larrue et al., 2001;
Strbian et al., 2013). Users can use their spreadsheet to upload
these clinical data for thousands of subjects at any time and edit
these data manually and enter derived radiological data manually
after image review.

Automated imaging data analysis is implemented in SNIPR
using XNAT’s Container Service. The Container Service uses a
containerized computing architecture to encapsulate applications
in portable structures that are readily distributed and deployed
to large-scale compute clusters (Di Tommaso et al., 2015; Ismail
et al., 2015; Zheng and Thain, 2015; Pienaar et al., 2017). The
Container service manages the process of loading container
images from public or private repositories (e.g., Docker Hub) to

FIGURE 3 | SNIPR is equipped with a container service plugin to manage cluster of containers with Docker swarm on computing cluster attached. Containers used
in SNIPR pipelines such as CT scan classifier, DICOM to NIFTI, preregistration, registration, and segmentation are pushed to and pulled from Docker image hub.

FIGURE 4 | Outline of stroke edema image processing pipeline to analyze CSF volumes from large cohorts of stroke patients.
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FIGURE 5 | SNIPR hosts eight study cohorts and 2,246 subjects now. SNIPR provides project owners with flexible control over access to their data.

TABLE 3 | SNIPR now manages CT and MR data of 2,246 stroke patients with different disease types such as ischemic stroke, large vessel occlusion stroke, and
subarachnoid hemorrhage.

Disease Projects Access Number of
study patients

Number of imaging
sessions

Imaging
modalities

Ischemic stroke Krakow, Barcelona, Helsinki, WashU, Private 1,947 4,577 CT, MR

Ischemic stroke-large vessel
occlusion

WashU Perfusion, Barnes-Jewish
Hospital LVO Strokes, Ohio State

Private 355 873 CT, MR

Subarachnoid SAH Private 291 1,526 CT

Hemorrhage

SNIPR’s Docker cluster, provides a user interface for configuring
execution parameters and launching container instances to
process specific data, and orchestrates execution of containers
on the Docker server (Figure 3). SNIPR currently includes
containerized applications to perform various tasks such as
CT scan type classifier, image format conversion, image pre-
registration for skull stripping, longitudinal image-registration,
and brain image segmentation. When a containerized application
is launched by a user, the container service mounts the necessary
data from the SNIPR database in a directory on the container
file system from which the containerized application can read
and write data. At the conclusion of execution, any files
written by the application are exported to the SNIPR database.
SNIPR’s automation service can be configured to automatically
execute containerized applications when images are uploaded to
the database.

Stroke Neuroimaging Phenotype Repository supports
development and execution of automated and semi-automated
processing pipelines. As an example, a containerized stroke

edema pipeline was developed to automate image segmentation
and measurement of CSF volume in serial CT scans in stroke
patients (Figure 4). The pipeline includes five containerized
modules, including neural network-based labeling of image
acquisition type (Szegedy et al., 2015; Mohammadian
Foroushani et al., 2020a), DICOM to NIfTI conversion (Li,
2016), FSL-based preregistration for skull stripping (Jenkinson,
2011), ANTS-based registration of longitudinal brain masks
(Avants et al., 2009), U-Net-based segmentation of CSF (Chen
et al., 2016), and its volumetric calculation (Dhar et al., 2020).
This parallels the recent recommendations for processing
head CT data (Muschelli, 2019). After finishing the process,
each executed container uses XNAT’s web-based application
programming interface (API) to store its output back into
SNIPR. The SNIPR user interface provides tools to monitor
pipeline progress and review pipeline output, enabling an
interactive workflow to check output quality, tune parameters,
and relaunch pipeline steps. The pipeline is being used in the
large SNIPR patient cohorts to study how dynamic change
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FIGURE 6 | SNIPR can manage clinical data and imaging CT session studies for each subject. Each patient has a subject page where user can have access to
patient’s imaging visits and also patient’s clinical data in subject summary table.

FIGURE 7 | SNIPR can manage clinical data and imaging CT scan studies for all imaging session studies of a patient. Each patient has several visits, each of which
has a session page where users can have access to different imaging CT studies and also radiological information particular to that visit.
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in brain volumetric values can predict trajectory of edema
(Mohammadian Foroushan et al., 2020b).

RESULTS

As shown in Figure 5, SNIPR currently hosts nine projects with
2,406 subjects. Of the 6,149 imaging sessions on SNIPR, 6,122 are
CT and 85 are MRI. A small number of CT angiography and
CT perfusion scans have also been contributed. Each research
institution has protected access to its project data, which is
only accessible to users who have been explicitly granted access
to that project, but all users can see titles of all projects.
Table 3 shows summary statistic of all imaging data in SNIPR.
Accordingly, SNIPR users have different access levels to projects
and SNIPR hosts imaging data of different stroke types such as
ischemic, including those with stroke large vessel occlusion and
subarachnoid hemorrhage.

Web-based reports provide user-friendly access to the
demographic, clinical, and imaging attributes captured in SNIPR.
As listed in Table 1, researchers can get an overall view of
the patient’s stroke complexity such as disease type, stroke
side, and lesion location in Subject Summary Field table in
patient’s webpages along with having access to their different
CT session studies. Figure 6 shows a sample stroke patient
whose overall stroke complexity is shown in a table along with
list of imaging session studies. So, the researchers can get an
overview of stroke complexity for this patient based on this table,
and then review imaging sessions for further investigation. As
listed in Table 2, SNIPR can also manage session level clinical
and derived radiological data. Figure 7 shows a sample session
webpage which incorporates various session level clinical and
derived radiological data along with each imaging study for
this stroke patient. Researchers can get a detailed summary of
radiological data such as history of surgery, midline shift, and so
on in Radiological Data Fields table and have access to different
imaging scans in that specific session study webpage.

DISCUSSION

SNIPR was developed as a central repository to host and
provide secure access to anonymized stroke imaging and
associated clinical data, and to serve as a sandbox environment
for developing computational pipelines to perform large-scale
quantitative analysis. Data type plugins were added to XNAT
to extend its support for stroke-related phenotype data type
generated by these pipelines and extracted from the electronic
medical record. To support scalable computing, advanced
containerization tools, including Docker Swarm, were deployed
along with a custom Docker scheduling plugin for XNAT. An
automated processing pipeline to extract CSF volume in serial CT
images was developed and subsequently deployed as a pipeline on
SNIPR for use by other projects.

While other repositories such as ENIGMA and MRI-GENIE
are critically built with the focus on research MRI with
limited longitudinal data, SNIPR offers longitudinal clinical CT
(and MRI) which offers much larger numbers and broader

representation of available imaging. Also, other repositories
have focused on a variety of all neurological and psychiatric
disorders or principally on stroke recovery, while SNIPR focuses
on stroke-specific data, and it targets acute imaging and relevant
acute phenotypes like edema and hemorrhagic transformation.
Accordingly, SNIPR can equip researchers to launch processing
pipelines at scale to study any stroke phenotype and its trajectory
over time to study stroke and its dynamics effectively.

Stroke Neuroimaging Phenotype Repository development is
ongoing, with a particular focus on development of additional
imaging biomarkers, including predictors of hemorrhagic
transformation, measurements of collateral flow, and support
of large-scale multicenter clinical studies to integrate different
stroke phenotypic studies at massive scale and validate our new
discoveries on various populations. The XNAT-based SNIPR
database and IT infrastructure will be expanded further to
support large-scale data contributions by external collaborators.
Data structures will be developed to capture all stroke imaging
modalities and multimodal phenotypes. Workflows will be
implemented to upload and document data from all data
contributors such as anonymization of image metadata, detection
and removal of alphanumeric characters in images, and obscuring
of identifying facial features. A suite of image quality control
pipelines will be implemented to automatically assign quality
metrics to uploaded images. A standardized imaging derived
disease phenotype, including intracranial compartment, CSF, and
infarct volumes, will also be generated for each patient exam and
it will be integrated with associated clinical data. New algorithms
will be deployed onto SNIPR using XNAT’s Docker container
service to enable scalable reproducible processing and validation.
A data dashboard will also be implemented as an information
management tool that will visually track, integrate, analyze, and
display demographic information and processing results for each
subject and across all subjects in each project.
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