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Alzheimer’s disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive
neurodegenerative disorder, Alzheimer’s causes the structural change in the brain, thereby affecting behavior, cognition, emotions,
and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls
(HC). Efficient early classification of AD and mild cognitive impairment (MCI) from HC is imperative as early preventive care
could help to mitigate risk factors. Magnetic resonance imaging (MRI), a noninvasive biomarker, displays morphometric
differences and cerebral structural changes. A novel approach for distinguishing AD from HC using dual-tree complex wavelet
transforms (DTCWT), principal coefficients from the transaxial slices of MRI images, linear discriminant analysis, and twin
support vector machine is proposed here. The prediction accuracy of the proposed method yielded up to 92.65± 1.18 over the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, with a specificity of 92.19± 1.56 and sensitivity of 93.11± 1.29,
and 96.68± 1.44 over the Open Access Series of Imaging Studies (OASIS) dataset, with a sensitivity of 97.72± 2.34 and
specificity of 95.61± 1.67. The accuracy, sensitivity, and specificity achieved using the proposed method are comparable or
superior to those obtained by various conventional AD prediction methods.

1. Introduction

Alzheimer’s disease (AD) is the most familiar cause of
dementia, with patients comprising 50%–80% of all dementia
sufferers. The disease affects memory, cognition, and behav-
ior. As AD is a neurodegenerative condition, several types of
atrophy occur in the hippocampus and other areas of the
brain. Despite being the 6th leading cause of death in the
USA, it is not a common disease. Currently, there is no cure;
however, some preventive measures can be taken to mitigate
risk factors and slow the degenerative process. An estimated
$605 billion globally and $220 billion in USA is spent annu-
ally on diagnosing AD. Many people suffer from AD world-
wide, and demands on researchers are growing rapidly.
MRI is an effective medical image construction technique,

as it has the proven potential to view structural changes in
the human brain, internal organs, and other tissues.

MRI produces high-quality structural images, providing
distinctive tissue information, which enhances both the accu-
racy of brain pathology diagnosis and quality of treatment. A
key advantage of this technique is its noninvasiveness. Many
studies have been conducted using multivariate analysis algo-
rithms and structural/functional MRI to classify neurological
diseases [1–3]. A primary focus of these studies was the large
dimensionality of extracted features and the identification of
disease signatures among them where the most discrimina-
tive information of the said diseases exists. Results showed
significant cerebral structural changes in several brain ROIs,
particularly in the hippocampus and entorhinal cortex [4].
Global and internal intensity-based features, [3, 5], as well
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as geometric- and surface-based features [6, 7], have been
used in earlier studies for classifying disease. The authors
presented an electroencephalogram (EEG) coherence study
of Alzheimer’s disease using a probabilistic neural network
(PNN) and showed significant accuracy in distinguishing
true AD from the control groups [8]. Chaplot et al. [9] strat-
ified AD using discrete wavelet coefficients as a feature for
training and testing Support Vector Machines (SVMs) and
neural network classifiers. Extracting essential discrimina-
tory features from MRI brain images is imperative for com-
petent analysis of disease diagnosis. The preferred feature
extraction methods, amongst those most frequently used,
are independent component analysis [10], wavelet transform
[11], and Fourier transform [12]. This study has been con-
ducted using discrete wavelet features and the k-nearest
neighbor algorithm (k-NN) [11] on an artificial neural
network (ANN) [11, 13]. Zhang and Wang [14] ran AD
prediction models using displacement field estimation
between AD and healthy controls using an SVM, twin sup-
port vector machine (TWSVM), and generalized eigenvalue
proximal SVM (GEPSVM) as classifiers. Tomar and Agarwal
[15] reviewed several types of twin SVM algorithms, their
optimization problems, and their applications.

The biomarkers used in our proposed method are MRI
images from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) and Open Access Series of Imaging Studies
(OASIS) datasets. Our primary reason for using DTCWT
over DWT is its effective representation of singularities
(curves and lines), even though DWT has the advantage of
representing the functions in multiscale and compressed
forms. In DTCWT, shifts in magnitude variance can be
achieved to a higher degree [16]. In our proposed method,
DTCWT coefficient-based AD classification has been pro-
posed using principal component analysis and linear
discriminant analysis of extracted coefficients; a TWSVM
was utilized as a supervising technique. Classification perfor-
mance is documented regarding accuracy, sensitivity, and
specificity, after applying 10-fold cross validation and
running the program 10–20 times. Our method produced
superior results when compared with several conventional
AD classification methods.

2. Material and Methods

A total of 172 subjects from the ADNI dataset were used—86
AD and 86 HC. In addition, we used 95 subjects from the
OASIS dataset—44 HC and 51 subjects suffering from very
mild to mild AD.

2.1. Overview of Experimental Data. Data used in the prepa-
ration of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private part-
nership led by Principal Investigator Michael W. Weiner,
MD. The primary goal of the ADNI is to test whether serial
MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and

early-onset Alzheimer’s disease AD. For up-to-date informa-
tion, visit www.adni-info.org. The demographic details of
data used from the ADNI are shown in Table 1.

In addition, we utilized MRI images downloaded from
the OASIS dataset. OASIS is a database designed to compile
MRI datasets and make them freely accessible to the scientific
community. OASIS compiles two types of data: cross-
sectional MRI data and longitudinal MRI data. Our study
utilized cross-sectional MRI data, as our aims are to develop
an automatic system for detecting AD, for which longitudinal
MRI data is not optimal.

The OASIS dataset consists of 416 subjects aged between
18 and 96 years. Our study included 51 AD patients (35 with
CDR=0.5 and 16 with CDR=1) out of 100 having dementia
and 44 HC out of 98 normal subjects. Table 2 shows the
demographic details of the subjects used in our study. Both
men and women are included and all subjects are right
handed. The scale of the CDR is listed in Table 3.

2.2. ProposedApproach.Theproposed approach ismade up of
4 phases: preprocessing and slice extraction, feature extrac-
tion, projection of features into lower dimension, and efficient
classification of the disease. Figure 1 shows all phases in detail.

2.2.1. Preprocessing and Slice Extraction. All MRI images
used for training and testing the TSVM of our proposed
approach are viewed using the ONIS toolbox and exported

Table 1: Summary of subject’s demographics status.

AD Normal

Number of subjects

86 86

43 males 46 males

43 females 40 females

Average age 77.30 76.05

Average education points 14.65 15.93

MMSE 23.48 29.08

Table 2: Statistical OASIS data details used in our learning.

Factors Normal Very mild & mild AD

Number of patients 44 51

Age 84.40 (76–96) 82.11 (76–96)

Education 3.34 (1–5) 3.13 (1–5)

Socioeconomic status 2.31 (1–5) 2.82 (1–5)

CDR (0.5/1) 0 35/16

MMSE 28.72 (25–30) 24.82 (18–30)

Table 3: Clinical dementia scale.

CDR Rank

0.5 Very mild dementia

1 Mild

2 Moderate

3 Severe
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as 2D MRI image slices. All images are in PNG format, and
the dimensions of OASIS image slices are 176× 208; the
dimensions of the ADNI image slices are 256× 166. The
range of selection of those slices was performed manually
from the tissue center for information clarity. The images
are resized to 256× 256 for further processing. A sample of
a brain image slice is depicted in Figure 2. LibSVM toolbox
was used for kernel SVM simulation in MATLAB.

2.2.2. Dual-Tree Complex Wavelet Transform.Wavelet trans-
form (WT) is one of the most frequently used feature extrac-
tion techniques for MR images. For our proposed approach,
we extract the DTCWT [16] coefficients from the input MRI
images. The features of the 5th resolution scale were used as
they produced higher classification performance when com-
pared with other resolution levels. DTCWT has a multireso-
lution representation, as with CWT. For efficient disease
classification, it is preferable to use a few intermediate scales
of the extracted coefficients as input to a classifier, as the low-
est resolution scales lose fine details and high-resolution
scales contain mostly noise. Thus, we prefer to choose a few
intermediate scales of DTCWT coefficients. These coeffi-
cients were sent as input for principal component analysis
(PCA). CWT can be represented as complex-valued scaling

functions and complex-valued wavelets. DTCWT engages
two real DWTs, which provide the real and imaginary com-
ponents of the wavelet transform, respectively. In addition,
two filter bank types are set: analysis filter banks and synthe-
sis filter banks. These filter banks are used for implementing
DTCWT to ensure that overall transformation becomes
almost analytic, as shown in Figure 3.

The DTCWT can be denoted in matrix form as

D = DhDg , 1

where Dh and Dg are rectangular matrices.
For the input image x, complex wavelet coefficients can

be represented as

Th + jTg, 2

where Th =Dh
∗x is the real component and Tg =Dg

∗x is the
imaginary part.

The DTCWT coefficients of input images are shift invari-
ant; they do not change when an image is shifted in time or
space. In addition, DTCWT employs segregation of 6 diverse
directions (±15, ±30, and ±45) for 2D images and 28 different
directions for 3D images, while conventional DWT only
allows for isolation of horizontal and vertical directions. For

Dual Tree Complex
wavelet transform

Axial slice image

Principal
Component

Analysis Analysis

Twin SVM

AD/NC

Linear
discriminant

Figure 1: Flowchart of DTCWT-based classification performance of AD from HC.

(a) Normal (b) Alzheimer

Figure 2: MR image slice sample (axial slice view after preprocessing).
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each 2D slice subject image, we extracted 5-level DTCWT
coefficients from one scale.

2.2.3. Principal Component Analysis. Principal component
analysis (PCA) [17] is a dimensionality reduction technique
that is applied to map features onto lower dimensional space.
This data transformation may be linear or nonlinear. One of
most frequently used linear transformation is PCA, which is
an orthogonal transformation used to convert possibly corre-
lated samples to linearly uncorrelated variables. The number
of principal components is lower than or equal to the number
of original variables. The PCA conversion process is shown
in Figure 4.

The PCA is summarized as follows:

(i) Calculating the mean of the data and zero mean data

(ii) Constructing the covariance matrix

(iii) Acquiring the eigenvalue and the eigenvector

(iv) Projecting the data matrix with eigenvectors corre-
sponding to the highest to lowest eigenvalues.

2.2.4. Linear Discriminant Analysis. A generalized Fisher
linear discriminant [18] is used for the linear projection of
features to separate two or more classes. To make effective
and discriminative projected features, PCA coefficients can
be projected on to a new LDA projection axis.

To find the class separation projection axis, it is neces-
sary to determine between-class scatter and within-class
variability.

The between class variable matrix can be denominated by
sample variance as

SB =
1
c
〠
c

j=1
mj −m mj −m T 3

Within class variance matrix can be expressed as

Sw = 〠
c

j=1
〠
zk∈wi

zk −mi zk −mi
T , 4

where zk is kth sample variable belonging to a class.
The generalized Rayleigh coefficient is

J w =
WtSBW

WtSwW
, 5

where W is the matrix for LDA coefficients. This can be
characterized using the generalized eigenvalue problem as

SBW = λSwW, 6

where λ is the eigenvalue.
If Sw is singular matrix, (6) can be simplified as

Sw
−1SBW = λW, 7

where the eigenvectors of Sw
−1SB will be W. The eigenvector

matrix will be WLDA,

WLDA = W1W2W3⋯Wk , k ∈ Z 8

The PCA coefficients can be projected onto l lower
dimensional LDA projection termed by eigenvectors corre-
sponding nonzero higher energy eigenvalues,

WLDA′ = W1W2W3⋯Wl , l ∈ Z, 9

where l ≤ k.
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Figure 3: Block diagram for a 3-level DTCWT.
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The final feature matrix F is evaluated as

F = WLDA′
T
⋅ ψ x pc 10

2.2.5. Twin Support Vector Machine. Jayadeva and Chandra
[19] proposed a novel dual hyperplane-based variant twin
SVM. The concepts of generalized eigenvalues proximal
support vector machine (GEPSVM) are applied here, which
require two nonparallel optimum hyperplanes for each class.
There are two quadratic programming (QP) problems
optimized as TSVM pairs, as in a typical SVM.

Mathematically, the TSVM primal problem can be opti-
mized by solving the following two quadratic programming
problems:

min
w1,b1,q

1
2

X1w1 + o1b1
T X1w1 + o1b1 + C1o2

Tξ1

s t − X2w1 + o2b1 + ξ1 ≥ o2, ξ1 ≥ 0,
11

min
w1,b1,q

1
2

X2w2 + o2b2
T X2w2 + o2b2 + C2o1

Tξ2

s t − X1w2 + o1b2 + ξ2 ≥ o1, ξ2 ≥ 0
12

Here, Xi i = 1, 2 are input features, wi i = 1, 2 are the
normal hyperplane vectors, bi i = 1, 2 are bias terms,

Ci i = 1, 2 are the vectors of positive penalty parameters,
oi i = 1, 2 are the suitable dimensional matrices of ones,
and ξi i = 1, 2 are the slack variables. Hence, the TSVM
finds two hyperplanes, each of which is nearer to the data
sample of one class than to that of another. Therefore, mini-
mizing (11) and (12) will compel the hyperplanes to approx-
imate the data of each class and enhance the classification
rate. The optimization problem can be solved in the Lagrange
duality principle [15].

3. Results and Discussions

3.1. Background. In this article, our proposed approach is
presented using Fisher linear discriminant analysis of
DTCWT principal components. The details of our proposed
method are shown in Figure 1. The advantage of WT over
FT is its multiple-scaled representations and frequency com-
ponents with spatial domain information. Fourier coeffi-
cients only produce image frequency information, whereas
wavelets contain powerful observations of the spatial and
frequency domain in a multiscaled format. In addition,
wavelet representation is spatially localized; Fourier func-
tions are not spatially localized as they consist only of image
frequency components. MRI images can be represented and
processed at numerous resolutions and can therefore be used
as an incisive framework for processing multiresolution
images. Finally, DWT coefficients can be extracted by using
arrays of low and high pass filter banks.

However, there are multiple drawbacks to conventional
wavelet transform. These include drift in wavelet coefficient
oscillation towards positive and negative around singulari-
ties, shift variance of signal (which may cause oscillation of
wavelet coefficient samples around singularities), substantial
aliasing of amply spaced wavelet coefficient patterns, and lack
of directional selectivity perturbs to process and model geo-
metric image features (such as edges and ridges). In these
cases, flaws regarding conventional DWT are not experi-
enced by Fourier transform. Inspired by Fourier transform,
our improved DTCWT is used to overcome these drawbacks.
Previous studies have shown that DTCWT feature-based AD
disease detection performs better than typical DWT-based
feature extraction [20]. Furthermore, DTCWT produces
superior singularities of line and curve representation. Thus,
discriminative feature can be extracted comparatively, which
is crucial for any pattern classification problem.

Misclassification rates and higher dimensionality of
features present problems concerning pattern classification.
For smooth classification, dimensionality reduction tech-
niques are employed to transform data from higher to
lower dimensional spaces. PCA is the most frequently
applied linear transformation and addresses these concerns.
Extracted features are analyzed using PCA for feature
reduction. For each MRI image from the OASIS and ADNI
datasets, there are 49,152 (1536× 32) features. After apply-
ing PCA, this is reduced to 95× 94 for OASIS data and
172× 171 for ADNI data.

After PCA, the classification may still not be sufficient, as
PCA does not account for variability of features within a class
or between classes. To ensure that the PCs are more

Input feature matrix (M⁎N)
M: number of dimension of features

N: number of features

Transform to zero mean matrix

Compute the covariance matrix
(d⁎d)

Select f eigenvector corresponding
to f  largest eigenvalues (m⁎d)

Compute the projected data (f⁎N)
such that m < n

Figure 4: PCA implementation for feature reduction.
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separable, it is needed to transform data onto another space
combining directions that will find axes, which will maximize
the gap between different classes. Thus, LDA is applied to
project PCs onto new projection axes for more effective
disease classification.

TSVM is an emerging efficient pattern classification
and regression algorithm in machine learning. Numerous
studies have shown that TSVM is highly effective in terms
of classification, regression performance, and time complexity
[19, 21–23]. Hence, we have applied TSVM using linear dis-
criminant DTCWT principal components as input features.

All programs are executed in MATLAB 2015b installed
on an Intel (R) Core (TM) i3-4160 CPU system. The time
complexity of the extraction of DTCWT and DWT coeffi-
cients from a 2D MRI image slice are 0.5148 and 0.5109,
respectively. There is no significant difference in CPU-
elapsed time when comparing transform methods. As a
dimensionality reduction technique, we used PCA to omit
higher dimensional input features.

In addition, it is not feasible to train and test a classifier
with higher dimensional features due to elapsed time. The
CPU-elapsed time to achieve TSVM classification perfor-
mance was approximately 88.40 seconds without reducing
dimensions. The time required for our proposed method is
approximately 15.74 seconds—faster than the methods that
do not employ fisher discriminant analysis.

3.2. Performance Evaluation. The performance of a binary
classifier can be visualized using a confusion matrix, as
shown in Table 4. The number of examples correctly pre-
dicted by the classifier is located on the diagonal. These
may be divided into true positives (TP), representing cor-
rectly identified patients, and true negatives (TN), represent-
ing correctly identified controls. The number of examples
wrongly stratified by the classifier may be divided into false
positives (FP), representing controls incorrectly classified as
patients, and false negatives (FN), representing patients
incorrectly classified as controls.

Accuracy is determined measuring the proportion of
examples that are correctly labeled by a classifier:

Accuracy = TP + TN
TP + TN + FP + FN

13

This may not be an ideal performance metric if the class
distribution of the dataset is unbalanced.

For example, if class C1 is much larger than C2, a high
accuracy value could be obtained by a classifier that labels
all examples as belonging to class C1. Sensitivity is the rate
of true positives (TP), and specificity is the rate of true nega-
tives (TN). Sensitivity and specificity are defined as

sensitivity =
TP

TP + FN
,

specif icity =
TN

TN + FP

14

Sensitivity measures the proportion of correctly identi-
fied patients, and specificity measures the proportion of cor-
rectly identified controls. Additionally, some other frequently
used statistical performance evaluation measures such as
precision, recall, f measure, and gmean are also calculated.

These measures are defined as

Recall = sensitivity,

Precision =
TP

TP + FP
,

f measure = 2∗
precision∗recall
precision + recall

,

gmean = sqrt TP rate∗TN rate

15

The previous measures are likely to provide an efficient
overall performance assessment of a classifier.

3.3. Performance of Classification. In this study, the proposed
hybrid method has been used for OASIS and ADNI data
to distinguish control subjects from AD subjects. The
recorded classification performance regarding accuracy
(acc), sensitivity (sens), and specificity (spec) has been
shown in a bar diagram in Figure 5 and in Figure 6. Per-
formance varies depending on the principal components
used for training and testing, as shown in Figure 7 for
ADNI data. After testing with different PC values for both
datasets, it was concluded that optimal classification per-
formance was achieved with PC=20. To run a strict

Table 4: Confusion matrix for a binary classifier to distinguish
between two classes (S1 and S2).

True class
Predicted class

S1 (patients) S2 (controls)

S1 (patients) TP FN

S2 (controls) FP TN
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Figure 5: Bar chart of DTCWT-based classification performance of
AD from HC over ADNI dataset.
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statistical analysis, stratified cross validation (SCV) is
applied. We have applied 5-fold CV to OASIS data and
10-fold CV to ADNI data, as the number of subjects in
the OASIS dataset is lower than that of the ADNI dataset.
5-fold CV divides the dataset into five folds, whereas the
10-fold CV divides the dataset into ten folds.

The accuracies, sensitivities, specificities, and other
statistical performance measures obtained with 10–20
runs of 10-fold SCV and 5-fold SCV are shown in
Tables 5 and 6, respectively.

Although comparison with conventional methods can
be difficult, we have compared our approach with some
recent conventional disease detection algorithms using
both datasets.

To analyze the performance over the ADNI dataset, the
classification performance has been documented with both
run-wise fold-wise classification, as shown in Tables 7 and 8.
Table 8 shows the classification performance where linear dis-
criminant analysis is not used. Individual columns and rows
represent the classification accuracy of the corresponding
runs and folds. Consequently, accuracy is calculated taking
the average of all folds and runs. The classification perfor-
mance in all 10 or 5 folds of each run can be analyzed
with that.

We have compared several recently used sets of algo-
rithms and methods [11, 13, 24], using the same datasets
as in this article. We have obtained a 92.65± 1.18%
accuracy, which outperforms the DWT-based method

95

100

90

85

80

75

Pe
rfo

rm
an

ce
 re

su
lt 

(%
)

70

65

60
Accuracy Sensitivity Specificity

Proposed
DTCWT + PCA 
+ TSVM
DWT + PCA + 
LDA + TSVM
DWT + PCA 
+ TSVM
DTCWT + PCA 
+ LDA + ANN
DTCWT + PCA 
+ LDA + KNN
DTCWT + PCA + LDA 
+ AdaBoost (Tree)
BRC + IG + SVM [26]

BRC + IG + Bayes [26]
BRC + IG + VFI [26]

VBM + RF [28]

DF + PCA + SVM [14]

EB + WTT + SVM + Pol [29]

EB + WTT + SVM + RBF [29]

Curvelet + PCA + KNN [27]
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proposed by El-Dahshan et al. [11] and Zhang et al., [13]
as shown in Table 9 and Figure 5. The proposed method was
also executed applying conventional DWT principal coeffi-
cients. We have seen that the DTCWT-based method outper-
forms DWT-based method. In addition, performance is
documented without using LDA for both types of feature.

However, classification performance has become more effi-
cient when LDA-projected features are considered, as shown
in Tables 5 and 9 and Figure 5. Our method has been distin-
guished from the volumetric feature-based research study
proposed by Schmitter et al. [24], and it outperforms the
results thereof, as shown in Figure 5. Additionally, our results

Table 5: Performance evaluation over ADNI dataset.

Methods Accuracy Sensitivity Specificity Precision Recall f_measure gmean

Proposed 92.65± 1.18 93.11± 1.29 92.19± 1.56 92.78± 1.27 93.11± 1.29 92.63± 1.19 92.46± 1.24
DTCWT+PCA+TSVM 91.77± 0.85 92.48± 0.89 91.13± 1.31 91.73± 0.95 92.48± 0.89 91.72± 0.77 91.57± 0.91

Table 6: Performance evaluation over OASIS dataset.

Methods Accuracy Sensitivity Specificity Precision Recall f_measure gmean

Proposed 96.68± 1.44 97.72± 2.34 95.61± 1.67 96.13± 1.57 97.72± 2.34 96.76± 1.51 96.56± 1.44
DTCWT+PCA+TSVM 95.46± 1.35 97.55± 1.26 93.36± 2.39 94.14± 2.01 97.55± 1.26 95.61± 1.28 95.29± 1.42

Table 7: Run- and fold-wise classification performance of proposed approach over ADNI dataset.

Folds Runs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 94.44 100 100 100 94.44 88.8889 100 87.5 94.44 100

Average accuracy
92.659

Fold 2 100 94.117 100 88.23 82.35 94.11 81.25 94.11 94.44 88.88

Fold 3 94.117 94.117 94.11 88.88 100 82.35 100 100 88.88 88.23

Fold 4 94.117 88.235 88.88 94.11 100 93.75 94.117 94.11 100 82.35

Fold 5 87.5 88.888 88.88 94.11 88.23 100 93.75 100 87.5 94.44

Fold 6 100 94.117 87.5 88.88 100 76.47 88.23 77.77 94.11 94.44

Fold 7 87.5 94.117 87.5 93.75 100 83.33 100 94.11 82.35 93.75

Fold 8 87.5 100 100 88.88 100 94.44 100 83.33 87.5 94.11

Fold 9 94.444 100 94.44 94.11 88.88 94.11 100 88.235 88.888 87.5

Fold 10 94.444 83.333 83.33 94.11 82.35 100 88.88 94.117 100 100

Fold-wise
accuracy

93.406 93.692 92.46 92.512 93.62 90.747 94.624 91.3317 91.813 92.37

Table 8: Run- and fold-wise classification performance of the DTCWT+PCA+TSVM method over ADNI dataset.

Folds Runs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 88.88 94.11 94.11 87.5 87.5 77.77 75 100 82.35 88.88

Average accuracy
91.77

Fold 2 94.11 100 100 94.44 100 94.44 88.88 94.11 88.23 87.5

Fold 3 94.11 87.5 88.23 93.75 94.11 94.11 88.88 88.23 93.75 76.47

Fold 4 93.75 82.35 88.23 88.23 100 94.11 94.11 88.23 76.47 100

Fold 5 88.88 94.11 94.11 83.33 82.35 94.11 82.35 88.88 94.44 100

Fold 6 94.11 82.35 94.44 100 100 100 87.5 94.11 88.88 88.88

Fold 7 83.33 94.44 100 100 83.33 87.5 100 88.23 100 100

Fold 8 87.5 94.44 83.33 82.35 88.23 93.75 94.44 88.23 93.75 83.33

Fold 9 94.44 100 94.44 88.88 100 88.23 100 82.35 88.88 100

Fold 10 94.11 94.11 88.23 88.23 94.11 100 100 100 100 100

Fold-wise
accuracy

91.32 92.34 92.51 90.67 92.96 92.40 91.11 91.24 90.67 92.50
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were compared with kernel SVM-based classification and
produced superior performance.

Likewise, to analyze and stratify OASIS dataset, identical
methods have been used, namely run-wise and fold-wise
classifications, as depicted in Tables 10 and 11.

We observed, as shown in Tables 6 and 12 and Figure 6,
that our method yielded an accuracy of 96.68± 1.44, a sensi-
tivity of 97.72± 2.34, and a specificity of 95.61± 1.67. This
classification performance has also been documented
without using LDA; however, results improve when LDA is
applied on principal dual-tree complex wavelet transform
coefficients or principal DWT coefficients and TSVM is
used as a classifier. The result is efficient when DTCWT
principal coefficients are used over DWT method.

To further verify the efficacy of the proposed method, we
compared it with 12 state-of-the-art approaches, as shown in
Table 12, which utilized different statistical settings.

The results show that US+ SVD-PCA+SVM-DT [25]
yielded an accuracy of 90%, a sensitivity of 94%, and a spec-
ificity of 71%; BRC+ IG+SVM [26] achieved an accuracy of
90.00%, a sensitivity of 96.88%, and a specificity of 77.78%;
and curvelet +PCA+KNN [27] obtained stratification an
accuracy of 89.47%, a sensitivity of 94.12%, and a specificity
of 84.09%. We observed that these methods have lower spec-
ificity compared to the other methods mentioned previously.
In contrast, BRC+ IG+Bayes [26] yielded higher specificity.

Similarly, BRC+ IG+VFI [26] yielded a classification
accuracy of 78%, sensitivity of 65.63%, and specificity of

Table 9: Classification performance of AD from HC over ADNI data.

Methods Accuracy Sensitivity Specificity

Proposed 92.65± 1.18 93.11± 1.29 92.19± 1.56
DTCWT+PCA+TSVM 91.77± 0.85 92.48± 0.89 91.13± 1.31
DTCWT+PCA+LDA+Kernel SVM 90.181± 0.97 90.276± 1.60 90.101± 1.23
DTCWT+PCA+Kernel SVM 82.74± 1.24 84.43± 1.51 81.18± 1.85
DWT+PCA+LDA+TSVM 86.75± 1.69 89.32± 1.43 84.23± 2.21
DWT+PCA+TSVM 85.88± 1.16 88.93± 1.61 88.93± 2.02
DTCWT+PCA+LDA+ANN 86.97± 1.30 86.25± 1.78 87.72± 3.51
DTCWT+PCA+LDA+KNN 83.89± 0.75 81.41± 1.33 86.34± 1.08
DTCWT+PCA+LDA+AdaBoost (tree) 84.48 83.72 85.26

DWT+PCA+ANN [13] 80.05± 0.72 81.538± 1.41 78.974± 1.09
DWT+PCA+KNN [11] 79.964± 1.19 78.771± 2.37 81.08± 1.67
[24] 85 82 88

Table 10: Run- and fold-wise classification performance of the proposed approach over OASIS dataset.

Folds Runs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 94.44 94.44 100 88.23 100 100 100 94.11 100 100

Average accuracy
96.58

Fold 2 94.11 100 88.23 88.88 88.88 100 94.11 100 88.88 93.75

Fold 3 94.44 94.11 100 94.11 100 94.44 100 94.11 100 100

Fold 4 100 100 100 94.44 100 94.44 100 100 100 100

Fold 5 100 88.88 100 100 94.44 100 94.11 100 94.11 94.44

Fold-wise
accuracy

96.60 95.49 97.64 93.13 96.66 97.77 97.64 97.64 96.60 97.63

Table 11: Run- and fold-wise classification performance of the DTCWT+PCA+TSVM method over OASIS dataset.

Folds Runs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 100 94.11 94.44 100 94.44 94.44 94.11 94.44 88.8 94.44

Average accuracy
95.46

Fold 2 100 100 88.23 94.44 94.44 100 94.11 94.44 100 94.44

Fold 3 94.44 83.33 94.44 94.11 100 94.44 94.44 94.11 94.44 100

Fold 4 94.44 100 94.44 94.11 94.44 88.88 100 100 100 88.88

Fold 5 94.11 100 94.11 94.44 100 87.5 100 94.44 100 100

Fold-wise
accuracy

96.60 95.49 93.13 95.42 96.66 93.05 96.53 95.49 96.66 95.55
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100%. Although it yielded high specificity, accuracy and
sensitivity yielded by this algorithmwere comparatively poor.

All other methods achieved satisfying results. VBM+RF
[28] obtained an accuracy of 89.0± 0.7%, a sensitivity of
87.9± 1.2%, and a specificity of 90.0± 1.1. These promising
results were achieved largely due to voxel-based
morphometry (VBM).

DF+PCA+SVM [14] yielded an accuracy of 88.27±
1.89%, a sensitivity of 84.93± 1.21%, and a specificity of
89.21± 1.63%. This method is based on a novel approach
called displacement field (DF).

EB+WTT+SVM+RBF [29] obtained an accuracy of
86.71± 1.93%, a sensitivity of 85.71± 1.91%, and a specificity
of 86.99± 2.30%; however, EB+WTT+SVM+Pol [29]
yields better classification performance.

In addition, MGM+PEC+SVM [30], GEODAN+
BD+SVM [30], and TJM+WTT+SVM [30] achieved
approximately 92% accuracy with similarly high sensi-
tivity and precision; specificity was not calculated for
these methods.

Finally, taking classification performance into consider-
ation, our approach outperforms all other methods analyzed
here. We have also produced promising performance metrics
for sensitivity and specificity. Hence, we submit that our
results are either superior or comparable to the other
compared methods.

4. Conclusions

Our proposed experiment uses LDA on the principal compo-
nents of DTCWT coefficients and TSVM to stratify AD. Our
proposed detection method for the ADNI dataset yielded an
accuracy of 92.65± 1.18% with high sensitivity and

specificity. Our proposed method also outperforms those of
Zhang et al. [13] and El-Dahshan et al. [11] and the volumet-
ric feature-based classification proposed by Schmitter et al.
[24]. In addition, the classification performance of our pro-
posed experiment for OASIS data performs better when
compared with the several state-of-the-art approaches speci-
fied in this paper—yielding an accuracy of 96.68± 1.44 with
similarly high sensitivity and specificity.

In the future, we will carry forward our research focusing
on the following: (i) 3D DTCWT-based feature extraction
with multiresolution analysis and classification and (ii) con-
volutional neural network- (CNN-) based classification using
3D MRI.

Additional Points

Data Access. Data used in reparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu). A
complete listing of ADNI investigators can be found at
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf.

Disclosure

The investigators within the ADNI contributed to the
design and implementation of ADNI and/or provided
data but did not participate in the analysis or writing
of this report.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Table 12: Algorithm performance comparison over OASIS MRI data.

Algorithm Accuracy Sensitivity Specificity Precision

Proposed 96.68± 1.44 97.72± 2.34 95.61± 1.67 96.13± 1.57

DTCWT+PCA+TSVM 95.46± 1.35 97.55± 1.26 93.36± 2.39 94.15± 2.01
DWT+PCA+LDA+TSVM 87.23± 1.65 89.61± 2.25 84.85± 1.66 86.66± 1.99
DWT+PCA+TSVM 86.19± 1.50 88.83± 1.98 83.5± 1.87 85.66± 1.84
DTCWT+PCA+LDA+ANN 88.59 + 2.08 88.75 + 2.75 89.55 + 3.96 NA

DTCWT+PCA+LDA+KNN 83.69 + 1.57 85.7 + 1.94 81.8 + 1.45 NA

DTCWT+PCA+LDA+AdaBoost (tree) 87.45 88.59 86.26 NA

BRC+ IG+ SVM [26] 90.00 (77.41, 96.26) 96.88 (82.01, 99.84) 77.78 (51.92, 92.63) NA

BRC+ IG+Bayes [26] 92.00 (79.89, 97.41) 93.75 (77.78, 98.27) 88.89 (63.93, 98.05) NA

BRC+ IG+VFI [26] 78.00 (63.67, 88.01) 65.63 (46.78, 80.83) 100.00 (78.12, 100) NA

MGM+PEC+ SVM [30] 92.07± 1.12 86.67± 4.71 N/A 95.83± 5.89
GEODAN+BD+ SVM [30] 92.09± 2.60 80.00± 4.00 NA 88.09± 5.33
TJM+WTT+ SVM [30] 92.83± 0.91 86.33± 3.73 N/A 85.62± 0.85
VBM+RF [28] 89.0± 0.7 87.9± 1.2 90.0± 1.1 NA

DF+PCA+ SVM [14] 88.27± 1.9 84.93± 1.21 89.21± 1.6 69.30± 1.91
EB+WTT+ SVM+RBF [29] 86.71± 1.93 85.71± 1.91 86.99± 2.30 66.12± 4.16
EB+WTT+ SVM+Pol [29] 92.36± 0.94 83.48± 3.27 94.90± 1.09 82.28± 2.78
Curvelet + PCA+KNN [27] 89.47 94.12 84.09 NA

US+ SVDPCA+ SVM-DT [25] 90 94 71 NA
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