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Predicting optimal deep brain stimulation
parameters for Parkinson’s disease using functional
MRI and machine learning
Alexandre Boutet 1,2,8, Radhika Madhavan3,8, Gavin J. B. Elias2, Suresh E. Joel4, Robert Gramer2,

Manish Ranjan 2, Vijayashankar Paramanandam5, David Xu2, Jurgen Germann 2, Aaron Loh2,

Suneil K. Kalia2, Mojgan Hodaie 2, Bryan Li1, Sreeram Prasad5, Ailish Coblentz1, Renato P. Munhoz5,

Jeffrey Ashe3, Walter Kucharczyk1, Alfonso Fasano 5,6,7 & Andres M. Lozano2,6,7✉

Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked

clinical benefits when optimized. However, assessing the large number of possible stimula-

tion settings (i.e., programming) requires numerous clinic visits. Here, we examine whether

functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation

settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an

observational trial in 67 PD patients using optimal and non-optimal stimulation settings.

Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked

by preferential engagement of the motor circuit. Then, we build a machine learning model

predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a

priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation

settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients.

We propose that fMRI brain responses to DBS stimulation in PD patients could represent an

objective biomarker of clinical response. Upon further validation with additional studies, these

findings may open the door to functional imaging-assisted DBS programming.
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Deep brain stimulation (DBS) has become a standard of
care therapy for movement disorders, particularly Par-
kinson’s disease (PD), essential tremor and dystonia, and

is being investigated in psychiatric and cognitive disorders
including major depressive disorder and Alzheimer’s disease1,2.
DBS involves placing an electrode to deliver electrical stimulation
within a dysfunctional neural circuit to suppress aberrant activity
and/or drive an underactive network. Despite its recognized
benefits, the therapeutic mechanism of action of DBS remains
incompletely understood1.

The subthalamic nucleus (STN), an integral hub in the motor
circuit, is the most common target in PD-DBS3. The success of
DBS is critically dependent on delivering the appropriate dose
of stimulation at the best location within the target region. DBS
programming, the process of individually titrating the dose of
electrical stimulation delivered to achieve maximal clinical
benefits, remains largely a trial-and-error process predicated on
immediate clinical observations and neurologist experience4,5.
Some clinical features respond rapidly to electrical stimulation
in PD-DBS, for example, rigidity and, less predictably, tremor.
For other impairments, including bradykinesia, abnormal
posture, and gait difficulties, where there can be slow and
progressive benefits but also deleterious effects, empirical pro-
gramming poses a significant challenge4. Beyond PD, pro-
gramming is particularly difficult in patients with DBS for
indications such as dystonia, depression, and Alzheimer’s dis-
ease, in which the response to DBS typically occurs in a delayed
fashion and may even be clinically occult for weeks to months
following parameter adjustment. In each case, DBS program-
ming requires multiple clinic visits (typically to tertiary health
centers) to test the vast number of possible parameters and
discover the setting that produces the greatest symptomatic
relief with the least side-effects4. This process imposes sig-
nificant time and financial stress upon patients and healthcare
systems6. Hence, there is a need for a physiological marker that
can rapidly and accurately predict clinical response to DBS
parameters and improve the efficiency and lessen the burden of
current programming practices4.

Advances in neuroimaging techniques have furthered our
understanding of the physiological effects of DBS on the activity
of brain circuits (Supplementary Table 1). Since MRI in patients
with DBS is subject to strict safety guidelines7, studies have
leveraged normative connectomes to retrospectively investigate
brain regions and networks whose modulation is associated with
clinical benefits8. Prospective functional magnetic resonance
imaging (fMRI) acquisition in this patient population has largely
been limited to studies using suboptimal MRI hardware due to
safety concerns7. However, recent advances have established
safety and feasibility of using a number of MRI sequences in
patients with DBS7,9 and have enabled a more detailed exam-
ination of the physiologic consequences of the application of
DBS on specific brain circuits. fMRI is now being studied to
probe the consequences of stimulation on brain networks10–13,
but it has not so far been used to predict optimal DBS stimu-
lation parameters nor to directly enhance DBS’s therapeutic
potential.

In this work, we show that prospective fMRI data can identify
brain activity patterns associated with clinical benefits in PD
patients, serving as a biomarker of DBS efficacy. We use fMRI to
(1) identify a reproducible pattern of brain response to optimal
DBS stimulation and (2) predict optimal DBS settings on the
basis of these brain response patterns with a machine learning
(ML) algorithm. This algorithm was trained on already optimized
PD patients and tested on two new datasets: an a priori clinically
defined stimulation-optimized PD patient group and a stimula-
tion-naïve PD patient cohort.

Results
Building on prior publications describing the safety and feasibility
of MRI in DBS patients7,9,14, 3 T fMRI data were prospectively
acquired over the course of 203 fMRI sessions (n= 67 PD-DBS
patients, Fig. 1, Table 1). Since STN is the most common target
for DBS in the management of PD, we primarily recruited STN-
DBS patients (n= 62). We also included patients with internal
globus pallidus (GPi) DBS (n= 5), which is a second commonly
used stimulation location, to assess whether different PD-DBS
targets could also contribute to the ML model (Table 1). Each
session was 6.5 min in duration and employed a 30 s DBS-ON/
OFF cycling paradigm repeated six times in which unilateral left
DBS stimulation was delivered at patient-specific, clinically
defined optimal and non-optimal contacts or voltages (Fig. 1C).
As previously reported15, this was done to differentiate between
the unilateral and contralateral BOLD signal changes, as well as to
attempt to mimic DBS programming, which usually entails
evaluating one electrode at a time. Acquired fMRI data were
preprocessed using an established pipeline that performed motion
and slice timing correction (Fig. 2). Blood-oxygen-level-
dependent (BOLD) signal was extracted from 16 motor and
non-motor regions-of-interests (ROIs) determined a priori based
on existing PET and SPECT literature16–19 and our experience
with adverse effects (e.g., speech issues and visual disturbances)
with non-optimal settings during DBS fMRI20. Given that fMRI
studies have been uncommonly performed due to safety concerns,
PET and SPECT have largely informed our ROIs choices. The
absolute t-values (BOLD changes) were normalized by mean
positive t-values in areas presumed to be involved in non-optimal
stimulation. This was done to compare t-values of BOLD-
response DBS-ON vs. DBS-OFF of each ROI across patients and
to account for adverse effects—a key consideration given that the
aim of DBS programming is to maximize motor benefits while
minimizing adverse effects. Normalized BOLD changes (features)
from 39 a priori clinically optimized patients (n= 35 STN-DBS
and n= 4 GPi-DBS) and their associated binary labeling (optimal
vs. non-optimal) were used as input to train the ML model
(Fig. 2, Table 1). Clinically optimal DBS settings were obtained
using published algorithms4,5. Subsequently, two unseen fMRI
datasets (n= 9 for each dataset)—acquired with different active
contacts or voltages—were fed into the trained ML model for
validation purposes. The model’s ability to determine whether a
DBS setting was optimal or non-optimal according to the cor-
responding fMRI pattern was assessed (Fig. 2).

Typical fMRI activation pattern with optimal stimulation. The
fMRI BOLD response maps and electrode locations in individual
PD patients with the left STN-DBS electrode turned ON at
clinically optimal and non-optimal contact settings (Fig. 3A,
Supplementary Fig. S1A, B) and optimal and non-optimal (i.e.,
subtherapeutic and supratherapeutic) voltage settings (Fig. 3B,
Supplementary Fig. S1C, D) are shown. Optimal left-sided STN-
DBS stimulation (i.e., contact and voltage) produced significant
BOLD signal changes in the motor circuit, including an increased
signal in the left (ipsilateral) thalamus and decreased signal in the
left (ipsilateral) primary motor cortex and right (contralateral)
anterior cerebellum (Fig. 3A, B). Stimulation at non-optimal
contacts (±3 or 6 mm center-to-center distance from optimal
contact (mapped to 0 mm)) generated a diminished magnitude
BOLD response in the primary motor cortex with associated
BOLD signal increases in non-motor regions (e.g., visual cortex)
(Fig. 3A). When using the optimal stimulation contact, decreasing
stimulation intensity from optimal to low (subtherapeutic) vol-
tage stimulation triggered a decrease in magnitude of the
BOLD changes but maintained the topographic pattern. High
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(supratherapeutic) voltages produced a relatively stronger BOLD
response in the left (ipsilateral) motor cortex and right (con-
tralateral) anterior cerebellum but was also accompanied by
increased BOLD signals in non-motor regions such as the inferior
frontal and occipital lobes (Fig. 3B). BOLD changes in the right
(contralateral) cerebral hemisphere were also seen with high
voltages.

Group-level spatial distribution and magnitude of BOLD
changes across optimal left unilateral stimulation in the training
data (n= 39 patients, Table 1) are shown in Fig. 4. DBS most
commonly triggered the largest BOLD increase in the left
(ipsilateral) thalamus and BOLD decrease in the left (ipsilateral)
motor cortex (Fig. 4A). Due to slight inter-patient electrode
location heterogeneity (introduced by subtle but notable differ-
ences in brain anatomy and operative lead placement from one
patient to the next), conventional group-level (i.e., second-level)
fMRI analyses were not optimal for our analysis. Indeed, the
individual optimal settings may be considered to engage similar
networks while non-optimal settings could recruit different
networks depending on electrode position and settings differences
across patients. Nevertheless, this type of analysis also showed left
(ipsilateral) motor cortex decrease in BOLD signal with optimal
stimulation whereas non-optimal stimulation recruited non-
motor areas predominantly in the frontal and parietal lobes
(Supplementary Fig. 2).

As a preliminary assessment of the effect of a third DBS
settings on fMRI patterns, we also performed bilateral DBS
stimulation in patients with clinically optimized low (n= 4,
60–80 Hz) and high (n= 6, 150–180 Hz) frequencies in reference
to the commonly used 130 Hz (Supplementary Fig. S3). Bilateral
stimulation was employed during fMRI to mimic programming

of frequency, in which bilateral electrodes are evaluated
simultaneously for clinical efficacy. As the frequency data was
acquired with a different paradigm than the contact and voltage
data (bilateral, rather than unilateral stimulation), it was not
incorporated into the ML model. Similar to optimal contacts and
voltages, the motor cortex and thalamus also demonstrated a
change in BOLD signal in these patients using low or high
optimal frequencies (Supplementary Fig. S3).

To further assess the meaning of the fMRI signal changes with
stimulation, we compared changes in BOLD signal when testing
stimulation at the electrode contact giving optimal and non-
optimal clinical benefits. Across all patients, the location of
optimal and non-optimal contacts was not significantly different
along the X and Y planes (p > 0.01, two-sided Wilcoxon’s rank
sum test), however, there was a significant difference in their
depth (Z plane) (p= 0.0016, two-sided Wilcoxon’s rank sum test)
(Supplementary Fig. S4). To permit comparison of the different
contacts tested across patients, each patient’s optimal contact was
defined as the origin (i.e., 0) and non-optimal contacts were
mapped by their relative distance (i.e., 3–9 mm) from the optimal
contact (Fig. 4B). Patients were grouped on this relative distance
scale. The magnitude of the motor circuit BOLD response clearly
scaled with stimulation’s proximity to the optimal contact. For
example, the decrease in BOLD response in the ipsilateral
primary motor cortex was significantly greater during stimulation
at optimal versus non-optimal contacts (p < 0.05, two-sided
Wilcoxon’s rank sum test, Fig. 4B, Supplementary Fig. S5A).
The contralateral posterior cerebellum also demonstrated sig-
nificantly greater BOLD signal with stimulation using optimal
versus non-optimal contact (p= 0.01, one-sided Wilcoxon’s rank
sum test) (Supplementary Fig. S6A). This BOLD activation

Fig. 1 Experimental design of 3 T fMRI imaging with DBS activation in PD patients. A DBS patient implanted with bilateral fully internalized and active
DBS electrodes targeting the STN. The DBS lead (Medtronic 3387) has four contacts (width= 1·5 mm) spaced 1.5 mm apart. Using the handheld DBS
programmer, DBS programming involves titrating the current delivered by adjusting multiple parameters (i.e., electrode contact, voltage, frequency, and
pulse-width) in order to provide the best symptom relief. B Coronal T1-weighted image demonstrating a PD patient with fully internalized and active DBS
electrodes (blue) implanted in the STN. C fMRI block design paradigm used during 3 T fMRI data acquisition. While the patient laid still in the scanner,
unilateral (left) DBS stimulation was cycled ON and OFF every 30 s for six cycles. The DBS ON/OFF cycling was manually synchronized to fMRI
acquisition. Each fMRI sequence was acquired at either optimal (green) or non-optimal (red) contacts or voltages. In this example, the four contacts were
screened with fMRI; the a priori clinically optimal contact (marked in green) and non-optimal contacts (marked in red) are shown. DBS deep brain
stimulation, fMRI functional magnetic resonance imaging, PD Parkinson’s disease.
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pattern was specific to particular regions in the motor circuit; the
response in the ipsilateral thalamus, for example, was not
significantly different between optimal and non-optimal contact
stimulation (Supplementary Figs. S5B, S6A–B, S7A).

We also compared BOLD changes in various brain regions at
different voltages. For voltage changes, the BOLD signal in
ipsilateral primary motor cortex could not significantly differ-
entiate the optimal from non-optimal voltage settings (p > 0.05,
two-sided Wilcoxon’s rank sum, Fig. 4C) whereas it significantly
differentiated the optimal from the subtherapeutic voltage
settings in the ipsilateral thalamus (p= 0.027, two-sided Wilcox-
on’s rank sum, Supplementary Fig. S7B). BOLD signal in the
ipsilateral pallidum could also distinguish the optimal voltage
(p < 0.05, two-sided Wilcoxon’s rank sum, Supplementary
Fig. S6C), indicating that the degree of fMRI response pattern
changes across multiple regions—rather than an individual region
—is more informative to gauge stimulation efficacy.

Prediction of optimal contact using ML. Given our finding of
differential fMRI response patterns produced as a function of
DBS stimulation site and voltage (Figs. 3 and 4), we next sought
to identify the brain regions whose activity would be most
informative in predicting clinical benefit. For each patient, nor-
malized mean t-values for activation and deactivation were cal-
culated from the statistical response maps for 16 ROIs
corresponding to motor areas and areas corresponding to known
side-effects of DBS (Fig. 2, see the “Methods” section). Features
from these 16 ROIs (n= 39, train data, Table 1) were used to
derive an ML model that classified a given setting as optimal or
non-optimal using linear discriminant analysis (LDA). Frequency
data (n= 10) were excluded from the ML analysis as it was
acquired with bilateral, rather than unilateral left DBS
stimulation.

Using a 5-fold cross-validation approach, the combined ML
model using both contact and voltage parameter variations
achieved 88% training accuracy for classifying optimal versus
non-optimal parameter settings (n= 39 total, n= 35 STN-DBS,
and n= 4 GPI-DBS; train data, Table 1, Fig. 2, Supplementary
Fig. S8). When only motor regions (thalamus, anterior cerebel-
lum, and primary motor cortex) were considered, the training
accuracy dropped to 67%, indicating that other regions, including
non-motor regions, contribute to optimal contact prediction.
Even though the pattern of BOLD signal response associated with
optimal GPi-DBS was different than the pattern associated with
STN-DBS (Supplementary Fig. S9), when the four GPi-DBS
patients were excluded from the train data, the training accuracy
decreased from 86% to 81%. This suggests that contributions of
BOLD signal patterns from non-optimal GPi stimulation in
particular, were beneficial to the algorithm’s accuracy.

The model was validated with two additional unseen datasets: a
priori clinically optimized and in stimulation naïve patients
(Table 1, Fig. 2, Supplementary Fig. S8). For the test dataset of a
priori clinically optimized patients (n= 9, Table 1), the combined
ML model using contact and voltage parameter variations yielded
the highest predictive accuracy for optimal settings (Fig. 5A, E)
with the lowest false positive rate (Fig. 5A). When only fMRI
patterns from contact parameter variations (n= 20, training data)
were used for training, test accuracy dropped to 63% (Fig. 5C);
conversely, training with only voltage parameter variations
(n= 19, training data) yielded 71% accuracy on the test set
(Fig. 5D). To further evaluate predictive validity, we also tested
the best-performing classifier (i.e., the combined contact and
voltage ML model) on an independent set of stimulation-naïve
patients (n= 9 total, n= 8 STN-DBS and n= 1 GPI-DBS;
Table 1, Supplementary Fig. S8). This cohort simulates real-T
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Fig. 2 Summary of the methods. (Top row) After DBS surgery, PD patients undergo fMRI with fully implanted and active DBS systems. Contacts or
voltages are screened and their associated fMRI patterns are fed into the machine learning model, which classifies the pattern as optimal or non-optimal.
(Middle row) Pipeline for fMRI data processing. (Bottom row) Machine learning model is built with a train dataset using linear discriminant analysis and 5-
fold cross validation. Then, unseen test datasets can serve as input to the model for validation. fMRI functional magnetic resonance imaging.
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time programming in patients who have not undergone
optimization. These patients subsequently underwent clinical
programming by a neurologist blinded to the DBS fMRI results.
Here, fMRI features obtained in <30 min of scanning time
correctly predicted which DBS settings were deemed clinically
optimal—as determined by the neurologist over many program-
ming sessions over ~1–1.5 years—with 76% accuracy (Fig. 5B, E),
validating the use of our ML model for patients not yet optimized.

Discussion
Following the satisfactory resolution of safety concerns in prior
studies7,9,14, we acquired a large cohort of prospective 3 T fMRI
in PD-DBS patients and demonstrated a characteristic pattern of
brain responses to clinically optimal stimulation. By contrasting
these patterns with those obtained during non-optimal

stimulation, we trained and validated a ML model to classify
whether a given stimulation setting could be considered clinically
optimal in terms of DBS contact and voltage (Fig. 5). For one
patient with multiple contact being used clinically (i.e., inter-
leaved, see the “Methods” section), the current binary classifier
also predicted multiple contacts as optimal. While there is general
agreement that the hot spot for stimulation can be engaged even
by a fraction of a contact and that multiple contacts are used to
lessen stimulation-induced side effects, it has also been argued
that stimulation at multiple levels and with fractions of contact
(i.e., directional leads) can provide additional effects such as
larger therapeutic windows21,22. Given the encouraging results in
this relatively small dataset, future classifiers will include more
data and incorporate confidence scores for each tested contact to
accommodate for less common settings using multiple contacts.

Fig. 3 Typical pattern of fMRI changes resulting from different settings. BOLD response maps associated with left DBS-STN stimulation at multiple DBS
lead A Contacts and B voltages for two a priori clinically optimized PD-STN patients. The fMRI BOLD signal changes at the optimal contact (A top row) and
voltage (B middle row) are shown. Brain regions with a significant increase (hot colors, positive t-values, DBS-ON >OFF) and decrease (cool colors,
negative t-value, DBS-ON <OFF) (p < 0.001, cluster size= 50) in BOLD response were identified. A The optimal contact showed changes in BOLD
response in the left (ipsilateral) motor cortex and thalamus, and right (contralateral) cerebellum. We considered the clinically optimal contact as the origin
(i.e., 0) and the non-optimal contacts were mapped as a function of distance in mm from the optimal contact. B When using the optimal stimulation
contact, decreasing stimulation amplitude from optimal to low (subtherapeutic) voltage stimulation triggered a decrease in magnitude of the BOLD
changes but maintained the topographic pattern. High (supratherapeutic) voltages produced a relatively stronger BOLD response in the left (ipsilateral)
motor cortex and right (contralateral) cerebellum but was also accompanied by increased BOLD signal in non-motor regions such as the inferior frontal and
occipital lobes. The subtherapeutic voltage was defined as 1.5 V below optimal voltage because a reduction of this magnitude yields a change in clinical
status for most PD patients. The supratherapeutic voltage was defined as the voltage just below the side effects threshold (i.e., highest tolerated voltage).
BOLD blood-oxygen-level-dependent, DBS deep brain stimulation, fMRI functional magnetic resonance imaging, PD Parkinson’s disease, STN subthalamic
nucleus.
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Consistent with previous studies, we found that left unilateral
stimulation at the optimal DBS contact or voltage reproducibly
engaged the motor circuit23–26, preferentially modulating BOLD
signal in the ipsilateral primary motor cortex, ipsilateral thalamus,
and contralateral cerebellum. Engagement of these areas was
maintained when stimulation at optimal contact, voltage, or fre-
quency was applied. A prominent finding was the decrease in
BOLD signal in the primary motor cortex seen with STN-DBS. In
line with our observations, several PET studies have reported
reduced cerebral blood flow in the primary and premotor cortices
during STN-DBS27,28. Moreover, STN-DBS has been suggested to
decrease pathological beta oscillations in the primary motor
cortex29. Still, other imaging studies have reported no changes30

or increased cerebral blood flow in the motor cortex16 during
STN-DBS. Reasons for these discrepancies may include (1)

different imaging modalities (i.e., MRI vs. PET), (2) the time of
scan data acquisition after surgery, and/or (3) resting state versus
task-based acquisition. Similar to our findings, thalamic, and
cerebellar brain activity changes have been reported upon acute
STN stimulation11,15,26,31. It is unclear whether the thalamic
BOLD signal changes are secondary to afferent/efferent thalamic
activation or contiguous spread from the STN stimulation target,
especially if the most dorsal contact was used. The mechanism of
action of the striking deactivation effect on the primary motor
cortex is not clear but could include a primary retrograde effect
on the motor cortex mediated via the hyperdirect pathway or an
anterograde effect mediated through direct and indirect basal
ganglia circuitry32. The prominent cerebellar effect is likely a
transynaptic circuit effect secondary to the changes in motor
cortex activity with STN DBS.

Fig. 4 Group analysis of fMRI responses to optimal DBS stimulation shows a specific response pattern. A Distribution of peak t-values overlaid on a
standard Montreal Neurological Institute (MNI) brain when the clinically optimal left DBS settings are used (n= 39 total, n= 35 STN-DBS and n= 4 GPI-
DBS, train data). Red circles reflect increased BOLD activity (DBS ON >OFF) whereas blue circles indicate decreased BOLD activity (DBS ON <OFF). Left
thalamic regions showed high overlap of peak activation t-values (DBS ON >OFF) across subjects and left motor regions showed peak deactivation t-
values (DBS ON <OFF) across subjects. B The optimal contact was considered the origin (i.e., 0) and the non-optimal contacts were labeled with distances
relative to the optimal contact. When the optimal contact was the most dorsal or ventral, the maximum distance to the furthest contact was 9mm.
Changes in BOLD signal in the ipsilateral primary motor cortex in response to stimulation at the optimal and non-optimal contacts on STN-DBS leads are
shown. Absolute values of t-values at the left primary motor cortex ROI (shaded red) were normalized by t-values in the visual and operculum ROIs (y-
axis). Mean normalized BOLD activity in the left primary motor cortex at the optimal contact was significantly different from the non-optimal contacts
3–9mm away from optimal location (inset, n= 20 (optimal), n= 22 (3mm), n= 13 (6 mm), n= 8 (9mm), train data contact with at least one non-optimal
contact, Table 1, two-sided Wilcoxon rank sum test). C Effects of varying voltage delivered at the optimal contact on BOLD signals are shown. Absolute
values of t-values at the left primary motor cortex ROI (shaded red) were normalized by t-values in the contralateral motor cortex ROIs (y-axis). The mean
normalized BOLD activity (t-values) in the left primary motor cortex (y-axis) were maximal at the left optimal contact, but not significantly different from
non-optimal voltages BOLD activity (n= 19 optimal voltage, n= 15 supra-therapeutic, and n= 16 sub-therapeutic voltage settings, train data voltage
(Table 1), two-sided Wilcoxon’s rank sum test). Error bars indicate SEM. Source data are provided as a Source Data file. BOLD blood-oxygen-level-
dependent, DBS deep brain stimulation, fMRI functional magnetic resonance imaging, ROI regions-of-interest, STN subthalamic nucleus.
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BOLD response maps associated with non-optimal stimulation
showed engagement of non-motor circuits, including the visual
cortices and operculum. The mechanisms underlying these effects
are not fully understood, but there are at least two possible
explanations: (1) STN is surrounded by several white matter

tracts33; (2) STN has associative and limbic territories beyond its
dorsolateral motor regions34. As the stimulated area moves fur-
ther from dorsolateral STN, off-target STN areas and tracts are
likely stimulated. This undesired recruitment of non-motor areas
could be considered “friendly fire” and be responsible for some of

Fig. 5 fMRI responses predict optimal DBS parameters. Confusion matrices depicting the performance of classifiers trained to identify optimal DBS
settings using features from A contact and voltage cohorts, C contact cohort alone, and D voltage cohort alone in an independent test set (n= 9 a priori
clinically optimized patients). B Confusion matrix depicting the performance of the classifier trained to identify optimal DBS settings using features from
contact and voltage cohorts in an independent test set (n= 9 stimulation naïve patients). E Summary of performance (overall accuracy) for classifiers in
A–D. Bars from dataset 1 depict classifier test accuracy on n= 9 a priori clinically optimized patients. Bars from dataset 2 depict classifier test accuracy on
n= 9 stimulation naïve patients. Dashed line indicates chance at 50% accuracy. Source data are provided as a Source Data file. DBS deep brain stimulation,
fMRI functional magnetic resonance imaging, NOpt non-optimal, Opt optimal.
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the adverse side-effects (e.g., muscle contractions, oculomotor
dysfunction, slurred speech, cognitive, psychiatric, and gait dis-
turbances) commonly observed with PD-DBS35.

Commonalities in neuroimaging findings suggest that clinical
benefits from various PD therapies are underpinned by a partially
overlapping neuroanatomical network. For example, levodopa
administration has also been shown to decrease primary motor
cortex activity36,37. Yet another study comparing metabolic
changes with STN-DBS and levodopa pharmacotherapy found
that both treatments increased activity in SMA and decreased
activity in the primary motor cortex. However, differences were
seen: increased putaminal metabolism was only seen with levo-
dopa whereas prefrontal areas showed increased metabolism with
STN-DBS and decreased metabolism with levodopa38. At the
network level, both DBS and levodopa appear to restore the
abnormal Parkinson’s disease-related spatial covariance pattern
(PDRP)18,39. It is also interesting that GPi-DBS studies was also
shown to normalize PDRP40.

DBS physicians often need numerous hours of clinical testing,
stretched over multiple hospital visits, to discern the optimal
contact. Even in PD patients, for whom immediate clinical
feedback is present, patients obtain largest clinical benefits after
~1 year of programming. This clinical assessment is especially
challenging when symptoms are mild (e.g., in patients without
rigidity) and/or when patients possess diminished communicative
faculties. At our institution, patients are initially followed up
weekly for one month with visits that may last 1–2 h4. Then,
patients are scheduled for monthly appointments (~1 h in dura-
tion) for the first year. The visits eventually become yearly to
provide continuous monitoring and adjustments. In the US, a
single programming visit is estimated to cost over 1000 USD41.
Additionally, the advent of more electrode contacts in newer DBS
leads, as in for example directional leads, introduces even more
programming possibilities and complexity. Time constraints and
patient fatigue make it impracticable to thoroughly assess a large
number of stimulation parameters via clinical means; this
restriction could possibly be mitigated by the fMRI-based method
presented here. Given the present results, it is conceivable that
both contact and voltage settings could be efficiently optimized
using an fMRI-based workflow (Supplementary Fig. 10). In this
theoretical scenario, patients would undergo fMRI screening to
identify the optimal electrode contacts followed by voltage
adjustments with further adjustments taking place as required.
Optimizing the contact (4 fMRI image acquisitions (1 per con-
tact) each lasting 6.5 min) and voltage (3 fMRI image acquisitions
(high, low, and intermediate voltages) each lasting 6.5 min) could
be done within a 1 h-long fMRI, requiring an MRI technologist
and a staff able to change DBS programming. We propose that
the fMRI-guided programming tool is an objective and indivi-
dualized measure of clinical benefits in PD patients with STN-
DBS. This in turn may streamline current DBS programming,
with the possibility of increasing the clinical benefits for PD
patients. Importantly, this fMRI tool provides direct insight into
brain responses to stimulation and does not rely on assumptions
such as estimation of volume of tissue activated (VTA)42. Pro-
spective trials comparing the utility and accuracy of this fMRI-
based programming tool with traditional empirical programming
would be the logical next step. Parameters to track might include
clinical benefits, time to stimulation optimization, number of
hospital visits, and cost-effectiveness analysis. Finally, it is con-
ceivable that this proof-of-concept method can be extrapolated to
both other DBS parameters, such as frequency and pulse width, as
well as to other DBS indications, in particular conditions without
much immediate clinical response to inform programming.

There are a number of limitations to our findings. The order in
which fMRI data were acquired order was not entirely

randomized (i.e., the clinically determined optimal contact was
usually assessed first). Furthermore, while we would have ideally
provided washout time between fMRI series, we chose to keep
scanning sessions as short as possible in light of the frailty
inherent to this patient population. However, the short total MRI
time required for our predictive model may be of value con-
sidering MRI availability and cost as well as patient tolerability.
The brain network responses to changes in frequency, pulse
width, and stimulation polarity remain to be examined. While
DBS Medtronic model 3387 (1.5 mm between DBS contacts) is
routinely used at our institution, future studies incorporating
other DBS hardware could build a more generalizable and robust
predictive model. Similarly, the recent designation of DBS sys-
tems as full-body eligible (and the use of body-transmit coils)
with 1.5 T MRI could enable more widespread use of this method
to map brain responses to DBS. While the use of 3 T MRI is
desirable for increased signal-to-noise ratio, we have also shown
that DBS at 1.5 T could also yield satisfactory fMRI data43. Fur-
ther, DBS in PD patients leads to an immediate change in clinical
state (e.g., decreased rigidity or tremor), introducing a possible
confound in BOLD signal interpretation. Changes in motor
cortex, thalamic, and cerebellar brain activity in DBS patients
with asymptomatic physical states at rest (i.e., anesthetized PD
and essential tremor patients11,44) as well as animal models45

suggest that our fMRI pattern is a direct DBS-driven effect and
not a consequence of clinical improvement. The changes in the
BOLD signal could also be due the normalization of abnormal
brain metabolism in PD patients18. Despite previous studies
reporting variability in the HRF across brain regions and across
individuals, we used the same canonical HRF (double gamma
function) to model the BOLD signals across all brain regions and
patients. Using different HRF would likely improve the sensitivity
of our data. Future analysis will include HRF determination as a
part of the analysis workflow. There are also limitations related to
the predictive modeling we chose. Typically, generalizable ML
models require large pools of data to avoid overfitting. Even with
the current data limitations in our study, we were able to achieve
>80% sensitivity for optimal parameter prediction indicating the
promise of fMRI-feature driven ML models for DBS parameter
optimization. The ML model used features from selected ROIs
based on previous literature and our experience (see the “Meth-
ods” section) but it did not exhaustively sample the entire brain.
Typically, in neuroimaging data, the number of features are much
greater than the number of independent samples, leading fre-
quently to model overfitting. Given limited patient data, we
overcame the overfitting by restricting the number of ROIs
included. With larger data samples, classifiers trained with fea-
tures from finer brain parcellations incorporating dimensionality
reduction techniques (like principal component analysis, recur-
sive feature elimination46, etc.) would lead to more robust pre-
dictive models. We also did not investigate whether the optimal
contact could also be predicted with stimulation location. How-
ever, the significant difference in the location of optimal and non-
optimal contacts in our study and the published relationship
between stimulation of “sweet spots” and clinical outcomes47

suggest the potential utility of using stimulation location in future
applications. Preceding the fMRI, the contact closest to the “sweet
spot” could be first determined, which could then guide the
contact screening with fMRI and potentially reduce the number
of sessions needed. Notwithstanding these limitations, the high
predictive accuracy of our ML model, coupled with the fact that
DBS surgeries were performed by three neurosurgeons and DBS
optimization by two neurologists increases the generalizability of
our findings.

Previous DBS fMRI studies have made a number of interesting
observations including (1) acute changes in brain activity with
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stimulation10,11,15,26,31,48, (2) connectivity changes associated
with beneficial stimulation13,30,49–53, or (3) restoring brain con-
nectivity based on stimulation overlap with DBS targets12. In
contrast to the work presented here, most of these studies have
used bipolar stimulation11,12,53 and have been conducted at lower
field strengths (1.5 T)10–13,26,31,48,50,53. To our knowledge, the
current study is nearly three times larger than any prospective
fMRI DBS study to date. We have shown that high-quality pro-
spective fMRI data can be translated into a potentially clinically
useful tool. The fMRI acquisitions we present here were done
with omnidirectional electrode contacts and open loop stimula-
tion based on careful safety testing7,9,14. As new electrodes and
stimulation technologies emerge and become more widespread,
including for example directional electrodes and closed loop DBS
systems, the attendant safety and the impact on functional ima-
ging with stimulation using these systems will also need to be
evaluated.

In conclusion, we present reproducible functional maps of
therapeutic DBS activity in the largest prospective cohort of
patients, derived using fMRI, as an objective clinical tool for DBS
programming. DBS patients attend numerous costly and lengthy
physician visits in order to repeatedly titrate stimulation para-
meters in pursuit of an optimal clinical result. Lack of immediate
clinical feedback in response to stimulation in non-PD DBS
patients (e.g., dystonia or depression), makes DBS programming
particularly challenging. Notably, poor programming has been
suggested as a possible contributing reason for the failure of
randomized control trials in DBS for depression54. Our results
show that fMRI can rapidly define the optimal DBS stimulation in
PD patients. Obtaining DBS-induced fMRI brain signatures
associated with optimal clinical benefits, will not only allow us to
obtain a better understanding of the mechanism of action of DBS,
but could also facilitate individualized medicine for our patients
and may represent a step towards the possibility of autonomous,
closed-loop DBS programming.

Methods
Participants. Following institutional research ethics board approval (University
Health Network, 14-8255), PD patients who had previously undergone DBS sur-
gery targeting STN or GPi at Toronto Western Hospital were enrolled in this study
as a part of an ongoing observational clinical trial (Table 1, Supplementary Fig. S11,
n= 67, Age= 62.9 ± 8, 41 males, 26 females; #NCT03153670, Responsible party:
Andres M. Lozano, University Health Network, Toronto). GPi is also a commonly
targeted structure in the management of PD1. Although both sites arguably provide
similar motor benefits, there are differences: STN contributes to medication intake
reduction whereas GPi may be better suited for PD patients with cognitive
impairment and medication-associated dyskinesias55,56. Yet, the afferent and
efferent circuitry for each target are different57. To assess whether different PD-
DBS targets could also contribute to the ML model, we explored the ML model
training accuracy with and without GPi-DBS patients (n= 4) (Supplementary
Fig. S8). While we recruited all patients within these inclusion criteria, patients
were invited to volunteer for the study and it is plausible that they may have
displayed similar characteristics, for example in terms of personality and inclication
to participate in trials.

DBS surgeries were performed by three neurosurgeons (A.M.L., S.K.K., M.H.).
The inclusion criteria were (1) participants receiving active STN- or GPi-DBS, (2)
ability to provide written informed consent, and (3) specific models of Medtronic
DBS hardware, including DBS leads (3387, 28 cm; Medtronic, Minneapolis, MN),
extension wire (37086, 60 cm; Medtronic, Minneapolis, MN) and IPG (Activa PC
37601, Activa RC 37612, Medtronic, Minneapolis, MN). Participants undergoing
3 T MRI were also required to have DBS hardware geometry similar to previous
phantoms7. The optimal fMRI data (3 T and body-transmit coil) were able to be
acquired outside vendor guidelines58 based on our unique experience with 3 T MRI
in DBS patients7,9,14. As recommended, a member of the clinical team was present
to monitor patients during the MRI session. Prior to MRI scanning, informed
consent for participation in the study was obtained. The protocols were approved
by the Research Ethics Board at the University Health Network. The current study
was further approved by the local ethics committee of the University Health
Network in accordance with the Declaration of Helsinki. On average, fMRI data
were acquired 18.4 months [1.4–73.3 months] after DBS surgery (Table 1).

All the patients that were recruited in this observational trial are reported in this
manuscript and had reached the endpoint time (i.e. optimal clinical programming

after surgery) to assess for fMRI brain changes with DBS (Supplementary Fig. S11).
Forty (out of the 67) patients included in the current study were included in a prior
study, which described the safety profile of 3 T MRI and DBS-associated artifact on
fMRI sequences14. The present data was used to investigate fMRI brain changes
associated with contacts and voltages. Data of future enrolled patients will investigate
changes with other DBS programming settings (i.e. frequencies and pulse widths).

Study design. We primarily recruited PD patients with STN-DBS (Table 1). To
assess the specificity of our results to STN, a small number of GPi-DBS PD patients
were also included (Table 1). Since contact and voltage selection are usually the first
DBS parameters to be assessed during post-operative programming, in this study
fMRI patterns of brain activation at the a priori clinically determined optimal
contacts or voltages were contrasted with those of non-optimal contacts or vol-
tages. As a preliminary assessment of the effect of a third DBS settings on fMRI
patterns, we also performed bilateral DBS stimulation in patients with clinically
optimized low (n= 4, 60–80 Hz) and high (n= 6, 150–180 Hz) frequencies in
reference to the commonly used 130 Hz (Supplementary Fig. S3). Bilateral sti-
mulation was employed during fMRI to mimic programming of frequency, in
which bilateral electrodes are evaluated simultaneously for clinical efficacy. As the
frequency data was acquired with a different paradigm than the contact and voltage
data (bilateral, rather than unilateral stimulation), it was not incorporated into the
ML model.

A 3 T MRI (GE HDx, Milwaukee, WI) and either a transmit-receive head coil
(GE Model 2376114) or a body-transmit coil (GE 2380637-2) were utilized to
acquire 6.5-min fMRI sessions using a 30 s DBS-ON/OFF cycling paradigm
(Supplementary Table 2, Fig. 1). To control for any potentially confounding signal
produced by PD medications, all patients were instructed to take their final
medication dose the night preceding MRI acquisition. Shortly before initiating MRI
scanning, the DBS system was turned off, with localizer and structural images being
acquired without stimulation prior to fMRI. Hence, at the start of fMRI acquisition,
the DBS system had been turned off for ~15 min. fMRI was acquired in 67 PD
patients for a total of 203 fMRI sessions. Fifty-nine of these patients had been
receiving chronic DBS stimulation and their stimulation at the time of the fMRI (or
the settings at 1 year after the surgery for those who underwent the fMRI before 1-
year post-op) were deemed clinically optimized (Table 1). Clinically optimal DBS
settings for these patients were obtained using published algorithms4,5. Nine
patients were stimulation-naïve patients who recently (<1 month of programming)
underwent DBS surgery (i.e., no clinically defined optimized DBS settings at the
time of the MRI, Table 1). They received clinical programming by a neurologist
blinded to the fMRI results. Two movement disorder neurologists, who previously
published programming algorithms4,5, were involved in the optimization of the
patients.

During fMRI acquisition, all patients were set to a 30 s DBS-ON/30 s DBS-OFF
cycling paradigm (Fig. 1). The cycling was manually synchronized to the fMRI
acquisition period. fMRI sequences were acquired using either different contacts
along the DBS electrode or different voltages. Contacts or voltages were a priori
categorized as optimal or non-optimal by a movement disorder neurologist for the
previously programmed patients (Table 1). Conversely, optimal settings were not
known at the time of the fMRI in the stimulation naïve patients, who subsequently
received clinical programming by a neurologist blinded to the fMRI results. During
the fMRI, the patients were blinded to the DBS settings.

Unilateral left DBS stimulation was delivered during fMRI acquisition of
contact and voltage data. As reported previously15, this was done to differentiate
the unilateral and contralateral BOLD signal changes, as well as to attempt to
mimic DBS programming, which usually entails evaluating one electrode at a time.
The order in which non-optimal contact or voltage stimulation was delivered was
randomized. For frequency data, bilateral stimulation was performed as DBS
programming for frequency is commonly evaluated using both electrodes
simulataneously.

Most DBS patients included in the study had a monopolar electrical
configuration (43/57 monopolar patients (Supplementary Table 3). Although only
bipolar stimulation during MRI acquisition is approved by the vendor guidelines58,
we specifically used the native stimulation settings (including monopolar
stimulation) because we have shown that conversion methods to bipolar
stimulation yield inconsistent fMRI patterns9. We have also shown that the fMRI
pattern of brain changes are largely reproducible9. Other programming parameters
(frequency and pulse-width) were kept constant throughout the fMRI acquisition
period to mimic the programming process during which contacts and voltages are
usually assessed first.

For patients in whom we tested different contacts, the highest tolerated voltage
was used when they could not tolerate the clinically prescribed optimal voltage at a
non-optimal contact. Most DBS patients in whom we tested different contacts had
a monopolar electrical configuration. Non-monopolar configurations (i.e., bipolar,
double monopolar, or interleaved, Supplementary Table 3) use more than one DBS
contact to deliver stimulation. For the few patients programmed with non-
monopolar configurations in whom we tested different contacts, we recorded
optimal stimulation using non-monopolar settings as clinically determined by their
programming neurologist. The remaining contacts were considered non-optimal
and tested individually as monopolar configurations. For the patients in whom we
tested different voltages, both low (subtherapeutic) and high (supratherapeutic)
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voltages were delivered. The subtherapeutic voltage was defined as 1.5 V below
optimal voltage because this decrease will yield a change in clinical status for most
PD patients. The supratherapeutic voltage was defined as the voltage immediately
below the side effects threshold (i.e., highest tolerated voltage).

As detailed in a previous study14, a complete neurological exam was performed
following scan completion and the acquired MR images were immediately reviewed
to detect any acute intracranial changes. In addition, the impedances of the DBS
contacts were recorded before and after scanning to assess for alterations in
electrical circuit integrity and peri-electrode tissue changes (e.g., edema and
hemorrhage).

fMRI analysis. Exploratory fMRI analyses were performed to establish a repro-
ducible fMRI pattern of brain activation by contrasting optimal and non-optimal
contacts and optimal and non-optimal voltages. Then, these fMRI brain response
patterns were used to build an ML model capable of predicting the optimal,
patient-specific contact setting (Fig. 2). The ML model was trained on 39 a priori
clinically optimized patients (n= 35 STN-DBS and n= 4 GPi-DBS) and subse-
quently tested on two unseen datasets: nine a priori clinically optimized patients
(Table 1) and nine stimulation-naïve patients who had recently undergone surgery
(Table 1).

Single subject analysis. All fMRI data were slice time corrected, motion corrected,
rigidly registered to a T1-weighted image, non-linearly registered to a standard
space MNI brain, and spatially smoothed using a FWHM 6mm gaussian kernel in
SPM12 (http://www.fil.ion.ucl.ac.uk) (Fig. 2) and MATLAB (Mathworks, Natick,
MA, USA). To account for artifacts due to head motion in PD patients, we used the
Art toolbox (https://www.nitrc.org/projects/artifact_detect)59 to detect and remove
volumes with motion >1.5 mm. Overall, for any given patient, this resulted in the
removal of a maximum of 6 volumes (3.3%) from the total volumes acquired. The
estimated parameters for 6-degrees of motion were used as regressors to the design
matrix used for calculating statistical parametric maps. To ascertain that the
observed changes were not related to head-motion related to DBS stimulation
paradigm, we correlated 6-degrees of motion parameters with DBS ON/OFF block
design. There was no significant correlation between motion parameters and DBS
ON/OFF block design (Supplementary Fig. 12). Statistical parametric maps
(functional response t-maps) were estimated using a 30 s DBS-ON/OFF block
design with the canonical double gamma function for modeling the hemodynamic
response function (HRF). The absolute t-values (BOLD changes) were normalized
by mean positive t-values in areas presumed to be involved in non-optimal sti-
mulation. For contact patients, absolute t-values were normalized by the t-value in
the visual cortex and operculum ROIs whereas for voltage patients, the right motor
cortex t-values were used for normalization. These areas for normalization were
chosen based on initial data exploration: non-optimal contact stimulation tended
to recruit side effects areas such as the visual cortex and supratherapeutic voltage
triggered contralateral brain changes in our data. Functional response maps were
corrected for multiple comparisons using a p-value of 0.001, with cluster level
thresholding of 50 voxels, to give an overall p-value of <0.05 for visualization.
While the cluster threshold is used for visualization purposes, the ML model was
constructed using unthresholded t-values to retain the full spectrum of the data.

Group-level analysis. Given small but notable inter-patient deviations in electrode
contact location, which were attributable to subtle disparities in both patient-
specific anatomy and technical electrode placement, conventional fMRI second-
level analysis was not optimal. We favored exploration of the differences in fMRI
activity changes between optimal and non-optimal settings in the train data
(n= 39) and frequency data (n= 10) by showing the spatial distribution and
magnitude of BOLD changes. However, for completeness, we also performed
conventional fMRI second-level analysis on the train data (n= 39 total, n= 35
STN-DBS and n= 4 GPi-DBS). A general linear model (GLM) was applied to the
contrast maps of normalized t-values from each subject at the second level. For
patients in whom we tested different contacts, BOLD changes as a function of
distance from the optimal contact were then assessed (Fig. 4B, Supplementary
Fig. 7A). The optimal contact was considered the origin (i.e., 0) and the non-
optimal contacts were labeled with distances relative to the optimal contact. For
patients in whom we tested different voltages, BOLD changes as a function of
voltage were assessed (Fig. 4C, Supplementary Fig. 7B).

Hemodynamic response function (HRF) estimation. BOLD signal is presumed
to follow a predictable response over time and can be represented by a function
called the HRF. The HRF represents the BOLD signal fluctuation over time and can
be approximated with different models. Despite previous studies reporting varia-
bility in the HRF across brain regions and across individuals60, we used the same
canonical HRF (double gamma function) to model the BOLD signals across all
brain regions and patients. To validate the use of the canonical HRF, we estimated
the HRF for DBS and compared it to the canonical double gamma function. The
canonical HRF used in the analysis was found to be similar across multiple brain
areas including the primary motor cortex, in which the observed BOLD signal was
significantly correlated with the canonical HRF (r=−0.7) (Supplementary

Fig. S13). Because of this similarity between the canonical double gamma function
and the HRF, we used this function across all brain regions.

ML model. PET and SPECT studies, and to a lesser extent fMRI experiments, in
DBS patients have informed the region-based analysis. Prospective fMRI studies in
DBS patients remain few and far between due to safety concerns. PET and SPECT
conducted in PD patients have confirmed distributed motor circuit engagement for
STN and GPi. Acute changes with stimulation consistently engaged the motor hubs
of the CSTC circuit including the precentral gyrus, thalamus, STN, and to a lesser
extent the pallidum, supplementary motor area, and cerebellum16–19. Other regions
such as the operculum and visual cortex were included to account for speech issues
and visual disturbances experienced with non-optimal settings. Thus, to perform a
region-based analysis for each patient, average t-values were determined for 16
ROIs including the thalamus, pallidum, primary motor cortex, anterior cerebellum,
and supplementary motor area. These were derived from a functional atlas61

(Fig. 2). ROIs included regions in the thalamic-motor circuit such as the thalamus,
pallidum, primary motor cortex, anterior cerebellum, and supplementary motor
area. Additionally, ROIs from other areas that could be related to common adverse
effects (e.g., speech and gait disturbances) observed in PD-DBS patients at non-
optimal contacts and voltages during our MRI sessions were included in the
analysis. As a result, primary and secondary visual cortex, operculum, and pos-
terior cerebellum were also included. This resulted in 32 features for each contact
or voltage tested (16 positive and 16 negative t-values corresponding to increase
and decrease of BOLD signal from 16 ROIs). The mean t-values were then nor-
malized by mean positive t-values in the visual cortex and operculum ROIs
(contact patients) and right (contralateral) motor cortex (voltage patients). This
was done to compare t-values of each ROI across patients and to account for the
adverse effects given that the aim of DBS tuning is to maximize motor benefits
while minimizing adverse effects.

ML model: training. Using 39 patients a priori clinical optimized (n= 39 total,
n= 35 STN-DBS and n= 4 GPi-DBS; train data, Table 1, Supplementary Fig. S8),
normalized mean t-values extracted from 16 ROIs (32 features for each patient)
were used to classify the optimal and non-optimal contacts and voltages using a
linear-discriminant analysis (LDA) within a 5-fold cross validation framework
(MATLAB, Mathworks, Natick, MA, USA). Note that a priori clinical optimized
patients were randomly assigned to the train and test datasets.

To explore the robustness of our model, additional train datasets were
considered (Supplementary Fig. S8). First, to investigate the importance of other
non-motor and sensory regions, the model was trained only with features from
thalamus, motor and cerebellum ROIs (n= 39 patients). This resulted in 9 ROIs
(18 features) instead of 16 ROIs described above. Then, only patients with contact
parameter variations (n= 20, Table 1) or only patients with voltage parameter
variations (n= 19, Table 1) were used to train the model. Further, to ascertain the
influence of GPi-DBS patients on the model, a model was trained excluding the 4
GPi-DBS patients. As the frequency data were acquired with a different paradigm
than the contact and voltage data (bilateral, rather than unilateral stimulation), it
was not incorporated into the ML model.

ML model: testing. The validity of the LDA ML classifier model was assessed by
testing it on two groups of unseen, independent data sets (n= 18, Table 1, Sup-
plementary Fig. S8: 9 patients a priori clinically optimized by the neurologist (n= 9
STN-DBS) and 9 (n= 8 STN-DBS and n= 1 GPi-DBS) stimulation-naïve patients
prior to initiation of programming. Each patient’s fMRI response maps were fed to
the ML model to prospectively predict the optimal DBS setting (Fig. 2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The fMRI datasets analyzed are not publicly available due to data privacy regulations of
patient data. Upon reasonable request, the study protocol and individual de-identified
participants’ raw fMRI data will be available to investigators from the corresponding
author using private online cloud storage for reproducibility analyses. The analyzed fMRI
data used for Fig. 3A and B and Supplementary Fig. S2 are publicly available at Github
(https://github.com/radhika-madhavan/fMRI-DBS) and Zenodo (https://doi.org/
10.5281/zenodo.4633710). Source data are provided with this paper.

Code availability
The custom code that supports the central findings of this study are publicly available at
Github (https://github.com/radhika-madhavan/fMRI-DBS) and Zenodo (https://doi.org/
10.5281/zenodo.4633710).
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