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Abstract

Tumor growth is an evolutionary process involving accumulation of mutations, copy number

alterations, and cancer stem cell (CSC) division and differentiation. As direct observation of

this process is impossible, inference regarding when mutations occur and how stem cells

divide is difficult. However, this ancestral information is encoded within the tumor itself, in

the form of intratumoral heterogeneity of the tumor cell genomes. Here we present a frame-

work that allows simulation of these processes and estimation of mutation rates at the vari-

ous stages of tumor development and CSC division patterns for single-gland sequencing

data from colorectal tumors. We parameterize the mutation rate and the CSC division pat-

tern, and successfully retrieve their posterior distributions based on DNA sequence level

data. Our approach exploits Approximate Bayesian Computation (ABC), a method that is

becoming widely-used for problems of ancestral inference.

Introduction

Tumorigenesis is the process by which normal cells transform to ultimately become malignant

and experience uncontrolled growth. During this process, numerous genomic and epigenomic

events take place. The normal spontaneous DNA mutation rate ranges from 10−10 to 10−9 per

base per cell division due to replication error [1,2], which means the overall mutation rate is

between 0.3 and 3 mutations per cell division in the whole genome, and 0.003–0.03 mutations

per cell division per exome. In tumors, the point mutation rate is ~5×10−10 per base per divi-

sion, which is within the ranges for normal cells, based on sequencing and microarray results

from pooled DNA [3–5]. The accuracy of these estimates relies on reliable detection of muta-

tions and estimation of the number of divisions the tumor has experienced. However, the tech-

nology typically used does not detect all mutations since the probability of detection depends

upon depth of sequencing and subclone size. Neither do we typically observe the number of

generations through which the tumor has passed during its existence.
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In this paper we seek to better estimate point mutation rates in tumors, and to then under-

stand how they might vary during the lifetime of the tumor. A recent study has proposed a

“big bang” model of colorectal tumor growth, such that after transformation the tumor grows

as a single terminal expansion in the absence of stringent selection [6]. Furthermore, it is pro-

posed that most detectable mutational intratumor heterogeneity observed in genomic data

originates largely from the first few divisions [6–8]. An open question is whether the mutation

rate during those first few divisions was elevated, resulting in a “mutation burst” at the very

beginning of the tumor development, or whether the rate was constant during tumor develop-

ment. Colorectal tumors provide an exceptional advantage when investigating this issue,

because of their glandular structure. In this paper we exploit “single-gland” tumor sequencing

data for a number of single glands from a tumor. Such data is currently rare, but is expected to

become more common. Each gland within the tumor is a relatively pure cell population, and

mutations that originate early in the tumors history will typically be present in all cells within a

gland (this kind of mutation is therefore called a “fixed” mutation in this manuscript) [8]. It is

the prevalence of such fixed mutations, relative to that of the non-fixed mutations that will be

informative regarding the existence of an initial mutation burst. Therefore, profiling single

glands, and looking for this signal, for example, using exome sequencing, will provide us with

unprecedented information regarding the initial mutation burst. On the contrary, traditional

bulk tissue sampling that consists of thousands of glands loses this power, since both structural

information and the ability to determine that a mutation is fixed within one or more glands is

obscured. In this paper we develop the methodology to permit analysis of single-gland data,

and present an exemplar analysis of an early example of such data: new single-gland exome

sequencing data from one tumor, tumor U previously studied by Sottoriva et al., 2015 [6].

Stem cells are undifferentiated cells that reside in multicellular organisms. They are capable

of making more stem cells, a process called self-renewal, as well as generating other types of

cells, a process known as differentiation. Stem cell division, through which the stem cells self-

renew and differentiate, has been extensively studied in simple organisms, for example, C. ele-

gans [9], as well as in higher organisms, such as humans [10]. Two types of stem cell division

have been discovered: asymmetric and symmetric. A stem cell that is undergoing asymmetric

cell division produces one daughter cell that is itself a stem cell, and one daughter cell that

loses stem cell properties and differentiates [11,12]. One of the advantages of this asymmetric

division is that it maintains and constrains the cell population while it produces two different

cells. This advantage is also its disadvantage under certain circumstances; for example if the

stem cell population needs to expand. In contrast, in symmetric cell division, a stem cell

divides into two daughter cells that are destined to have identical fate—in other words, both

are cells that differentiate or both are stem cells. Symmetric cell division is essential for popula-

tion expansion of stem cells during the initial stages of embryo development and during

wound healing and regeneration [13–15].

Asymmetric cell division has been extensively studied in model systems and many pro-

cesses are involved in regulating asymmetric division [16–20]. Abnormality in these pathways

results in disruption of asymmetric cell division and eventually causes development of cancers

[16,21]. Therefore, equilibrium between asymmetric division and symmetric division is crucial

to organisms. If the equilibrium is disturbed, abnormal growth will take place and tumors will

typically arise. Several studies have shown that some protein markers for asymmetric division

are still present during cancer cell division, suggesting that asymmetric cell division is not

totally lost in cancers [22].

The partial loss of asymmetric division in cancers suggests a way to study the regenerative

ability of a cancer. It may, therefore, be useful to understand to what extent each tumor has

lost asymmetric division. Currently, there is no technique that can measure the proportion of
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stem cells that undergo asymmetric division or predict the probability that a given stem cell

will divide asymmetrically. However, these two different division mechanisms change the

probability that mutations carried by a cancer stem cell (CSC) will survive into the next gener-

ation. For example, if a CSC with a unique mutation undergoes symmetric division and gives

birth to two non-stem cells, this mutation will vanish in the stem cell population (and ulti-

mately will vanish from the tumor itself, since differentiated cells have relatively short life-

spans). In this paper we propose a simulation-based method that can be used to estimate both

the mutation rate and asymmetric division rate of CSCs, and can in addition infer whether a

mutation burst occurred in that tumor. More specifically, our tumor simulation framework,

which includes the exploitation of next-generation sequencing (NGS) data for single tumor

glands, provides researchers with more detailed information on the genomic landscape of a

tumor.

Data, model and methods

Tumor growth model and DNA mutation embedding

Our analysis models possible scenarios for tumor growth. The model supposes that any given

tumor contains a particular number of CSCs. Our simulation model begins with repeated divi-

sion of the first transformed cell until the number of cells reaches the number of CSCs existing

in that tumor. This results in the formation of the first gland (assumed to contain ~10,000

cells). Once the first gland forms, we model a gland fission process. Initially, the tumor experi-

ences an ‘exponential growth’ stage, in which the glands double in number every generation

(see Fig 1A), for 19 generations, to ultimately number ~500,000 glands and ~4 billion cells,

which is approximately the size of a 4 cm3 colon tumor. Then the tumor enters a ‘constant

size’ phase, in which the gland fission process stops. During the constant size phase, the cell

population in each gland, which consists of both CSCs and non-cancer stem cells (non-CSCs),

is maintained by the division of CSCs and the death of non-CSCs. As discussed earlier, a CSC

can undergo two types of division: asymmetric and symmetric (see Fig 1B). The probability of

asymmetric division, r, is a parameter to be estimated in our model: with probability r, a given

CSC will undergo asymmetric division, in which only one of the progeny is a CSC. Otherwise,

(so with probability 1-r), a CSC will undergo symmetric division, in which case, with equal

probability, the CSC divides into two CSCs or two non-CSCs. This latter assumption is

required in order to maintain a gland of constant size. In other words, any other choice results

in a tumor that either consistently grows in size, or decreases in size, depending upon the spe-

cific choice of probabilities made, contrary to the standard Gompertzian models of colon

tumor growth, in which a period of rapid growth is followed by a long period of constant size.

[23,24]. As more data arises, one could test the validity of models in which this latter assump-

tion is relaxed, allowing for some fluctuations in tumor size during this latter ‘constant period’,

but such an analysis requires more data than is available currently.

The possibility of DNA mutation is incorporated into each cell division. Since mutation

rates are relatively low, we model the number of DNA mutations, n, introduced into each

daughter cell according to a Poisson distribution, the mean of which is referred to as the muta-

tion rate. Since we are interested in asking whether there is a mutation burst at the early stage

of tumor growth, we parameterize the DNA mutation rate separately before (mutation rate α)

and after (mutation rate β) the first gland formation. Our parameters are summarized in

Table 1. Since the focus of this study is the possible existence of an early mutation burst, and

the details of stem cell division, in our simulation study NCSC and T3 are set to ‘typical con-

stant’ values (see Table 1) so that we can keep the dimensionality of the simulation study man-

ageable. The prior distribution of α and β are set to cover a range wider than the mutation
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Fig 1. Schematic of tumor growth and the two types of CSC division. (A) The three stages of the growth model: formation of the first gland,

exponential growth of gland number, and constant size phase (the length of which is 100 generations). (B). Schematic of cell differentiation process during

Constant Size phase. Each yellow oval represents a CSC, while each white oval represents a non-CSC (cells which have limited differentiation capability).

doi:10.1371/journal.pone.0172516.g001

Table 1. Parameters in our model.

Parameter Range of Possible Values and

Prior Distribution

DNA point mutation rate before the first gland formation (α) Unif(0,5)

DNA point mutation rate after the first gland formation (β) Unif(0,1)

Number of Cancer Stem Cells (NCSC) 32

Probability of asymmetric division (r) Unif(0.5,1)

Number of generations in constant size phase (T3) 100

doi:10.1371/journal.pone.0172516.t001
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rates, 0.015–0.15 mutations per cell division per exome that are typically reported in the

literature.

Statistical methods

Approximate bayesian computation. Our goal here is to find the posterior distribution

of tumor growth parameters, in general denoted by θ = (θ1, θ2,. . ., θL), based on data, D, that

were observed experimentally. This is expressed as:

f ðyjDÞ ¼
f ðDjyÞpðyÞ

f ðDÞ
: ð1Þ

In our context the likelihood term ƒ(D|θ) is intractable and not available in closed form.

Therefore we replace the likelihood calculation with an acceptance-rejection simulation step

that accepts parameter values that result in ‘similarity’ between observed samples, D, and sim-

ulated samples, D’, generated by θ. θ-values are sampled from the prior distribution π(θ). Fur-

thermore, to reduce computational complexity, summary statistics S = (S1,S2,. . .,SM) are used

to represent the key features of the original data—in other words, ƒ(θ|S) is used to approximate

ƒ(θ|D). The ABC version of rejection sampling is then as follows:

For i = 1 to N
Sample parameters θ’ from the prior distribution π(θ)

Simulate data D’ using the tumor growth model described earlier with the sampled parame-

ters θ’, and summarize D’ as S’.

Accept θ’ if d(S’, S)< ε, for a given threshold ε, where d(S’, S) is a measure of distance

(which can be thought of as 1/‘similarity’) between S’ and S.

Adding extra non-informative or less informative summary statistics increases the noise in

the measure of distance, and thereby increases the error of matching S’ to S [24,25]. Therefore,

we must carefully select a minimal set of summary statistics that capture all important infor-

mation regarding tumor growth. A number of methods have been invented to choose a con-

cise set of summary statistics, ensuring that they maintain informativeness with regard to

inferring posterior distributions for model parameters [25–29]. We explore related methods

below and choose a set of summary statistics that performs well when estimating our model

parameters. As is common, we define d(S’, S) as a variant of the Euclidean distance metric.

Specifically, we use a variant of traditional Euclidean distance in which each statistic is

weighted. Some summary statistics s� might be more informative for a particular parameter θ�

than others, therefore, a higher weight on s� will help infer the posterior distribution of θ�

[25,30]. So including the weights of each summary statistic, the distance metric is defined as:

dðS’; SÞ ¼ jjðS’ � SÞWTjj2: ð2Þ

Summary statistics. Assume that G glands are sampled from the tumor. Each gland has

Kg (1�g�G) mutations. The allele frequency of k-th mutation in g-th gland is denoted as Fgk.
In a diploid system, if a mutation is present in every cell of a gland, i.e. it has an allele frequency

of 0.5, it is called a “fixed” mutation. Otherwise, the mutation is called non-fixed. We also

define a “gland-specific” mutation as a mutation that is only present in one gland, while a

“shared” mutation is one that is found in more than one gland.

Our analysis then uses the following summary statistics:

• The mean of the allele frequencies of all non-fixed mutations,

• The variance of the allele frequencies of all non-fixed mutation,
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• The number of gland-specific mutations among non-fixed mutations,

• The number of gland-specific mutations among fixed mutations,

• The number of shared mutations among non-fixed mutations,

• The number of shared mutation among fixed mutations,

• The variance of the number of non-fixed mutation across all glands,

• The variance of the number of fixed mutation,

• The variance of the allele frequency of non-fixed mutations across the two tumor halves.

Selecting weights for summary statistics. In this section, we compare three methods to

assign weights to summary statistics. As a baseline comparison we employ an analysis that uses

equal weight for every statistic, and infers the parameters jointly. To reduce the dimensionality

of the simulation study, which is already large and extremely computationally intensive, our

perspective here will be to focus on one parameter of interest at a time. As a consequence, we

will also learn which of our statistics are most informative for each of our parameters. We

show results for two methods in which we infer parameters one-at-a-time (i.e. we infer mar-

ginal parameter posterior distributions). Thus, the second weighting method we use, the ‘local

linear regression method’, applies local regression for the parameter of interest θ at each data

point, based on each statistic, and uses the coefficient between parameter and statistic as the

weight of that statistic (for details, see below). The third method we compare, ‘global linear

regression’, proceeds similarly, but now utilizes a global measure of correspondence between

parameter and each summary statistic to determine the weight for each statistic (again, we use

the correlation coefficient).

Local linear regression method. Here we describe our second analysis method, that is

based on local linear regression [31]. We conduct N simulations, each of which simulates a sin-

gle dataset, and in each of which the L parameters were sampled from the prior distributions

in Table 1. We denote the summary statistics observed in these N simulations by S’ = (s1,s2,
s3,. . .,sM), and denote the L generating parameter values byϴ’ = (θ1, θ2, θ3,. . .,θL), where sm
(1�m�M) and θl (1�l�L)are column vectors of length N. For a given parameter θl, we wish

to assess how much information each summary statistic carries regarding that parameter. In

order to do this, we denote the collection of generating parameter values, and the resulting

summary statistic values, by the pair (θl, sm). For each summary statistic sm, we then perform a

linear regression of θl, on sm in the vicinity of sm using the simulated datasets. We define this

vicinity as the 100�η percent of simulated data points that are closest to sm (in terms of their

resulting summary statistic values, using the Euclidean distance metric), for some k. We

denote these closest points by S’m(1), S’m(2),. . ., S’m(kN) (where the subscript () denotes the rank

ordered values, starting with the value closest to sm) and the corresponding generating parame-

ters are denoted byϴ’l(1),ϴ’l(2),. . .,ϴ’l(kN). We then fit a linear regression using S’m() as predic-

tor variable andϴ’l() as response variable. The R-square measure of fit of the linear regression

is recorded as R2lm. After all weights are calculated between the lth parameter and mth summary

statistic, we define final normalized weights to use as:

Wlm ¼
R2
lmXL

l¼1
R2
lm

: ð3Þ

We use the above weights as the weights for the summary statistics in a subsequent ABC

analysis for the parameter of interest, using previously unseen data.

Early mutation bursts in colorectal tumors
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Global linear regression method. The global correlation between a parameter and a sum-

mary statistic also indicates how informative that summary statistic is for a parameter. While it

may be less accurate, in principle, locally, it will also be less subject to the noise that might arise

from using just local values to estimate correlation. For that reason, our third method proceeds

as above but now calculates statistic weights based on the R-square measure of fit, R2
lm, between

parameter θl and summary statistic Sm derived from a global linear regression for a set of simu-

lated data. Again, these weights are then used when estimating that same parameter in previ-

ously unseen data in order to assess estimation performance of this weighting method. The

weights, Wlm, are defined and normalized in the same way as in Eq (3).

Data simulation

Perfect synthetic data. When we generate simulated tumor data for our study we use the

tumor growth model described earlier in this section. In our first set of analyses we explore a

situation in which we have ‘complete’ data, in the sense that no noise (e.g. sampling variation)

was simulated. For example, we assume that we can calculate the exact allele frequency of a

mutation from the output of the simulation. In reality, of course, such data is subject to error,

but the performance of our methods on this ‘perfect’ data provides a benchmark for the rest of

our study.

Simulated data with variable read depth. While it is useful to benchmark the analysis

method in this best case scenario, we also wish to assess how it performs in a realistic setting.

In idealized models, the sequencing depth follows a Poisson-like distribution with a small vari-

ance [32,33]. However, in reality, the distribution of sequencing depth has a larger variance

than would be predicted by such a model. Therefore, here, as is common, we use the more flex-

ible negative binomial distribution, X~NB(p,t), to model sequencing depth. If we think of the

negative binomial distribution as the number of successes, k, in a sequence of independent

Bernoulli trials (with success rate p) before the tth failure, then,

f ðk; t; pÞ ¼ PrðX ¼ kÞ ¼
kþ t � 1

k

 !

pkð1 � pÞt; ð4Þ

for k = 1, 2, 3. . .. Based on this definition, the mean (m) and the variance (v) of the negative

binomial distribution are:

m ¼
pt

1 � p
; ð5Þ

v ¼
pt

ð1 � pÞ2
: ð6Þ

We can re-write these constraints as:

p ¼ 1 �
m
v
; ð7Þ

t ¼
mv

v � m
� m: ð8Þ

Given an average sequencing depth (m) with variance (v), we model the sequencing depth

individually for each segregating locus based on the negative binomial distribution described

above. For a given locus, we draw a number k from the negative binomial distribution with

parameter p and t that are calculated by Eqs (7) and (8) to represent the sequencing depth at

Early mutation bursts in colorectal tumors
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this locus. Having done this we use a binomial distribution B(k, q)with q equal to the true allele

frequency of mutated (alternative) allele, to generate the number, na of reads sampled for the

mutated (alternative) allele, with the remaining k—na reads being of the reference allele.

As discussed earlier, mutant alleles with frequency 0.5 in the simulated diploid data are

referred to as “fixed”. However, when we are modeling the sequencing process itself, the exact

allele frequency is no longer obtained. Instead we observe counts of the number of reads at any

given position with each of the two possible allelic types. For this reason, at each locus we con-

duct a hypothesis test to determine whether or not we might regard the allele as “fixed”. Specif-

ically, since sequencing depths are generated according to a binomial distribution, we use a

standard binomial hypothesis test to assess whether we can reject the null hypothesis that the

underlying q, the true allele frequency of mutated allele, is 0.5. If we do not reject the null

hypothesis for a given mutation, then we consider this mutation as (potentially) fixed. Here

type II errors will increase the number of mutations called as fixed, typically because when the

actual allele frequency is relatively close to 0.5 the test will typically fail to reject the null

hypothesis even though the mutation is actually not fixed. However, we reflect this same call-

ing method in the production of simulated data during the ABC analysis of our synthetic data.

Thus, while our anti-conservative calling of fixed sites can be expected to introduce some loss

of precision in our analysis, there is no reason, a priori, to expect it to introduce bias for the

estimation of the parameters.

Somatic mutation calling. To identify somatic mutations, raw genomic sequence reads

were mapped to the 1000 Genomes (b37) build of the human genome reference with BWA

(version 0.7.5a) using default settings [34]. The resulting alignments were processed using the

GATK (version 2.8–1) base quality score recalibration, indel realignment, and duplicate

removal (picardtools, version 1.103) following the GATK Best Practices recommendations

[35–37]. Somatic single nucleotide variants were identified using MuTect version 1.1.4 [38].

MuTect was run using default parameters in the High Confidence (HC) mode along with

dbSNP (version 137) and COSMIC (version 67) databases.

Results

Synthetic tumor data

Weight summary statistics. Fig 2 shows the results of a simulation study comparing the

performance of these three methods in estimating model parameters for our tumor growth

model. For each simulated dataset we modeled tumor growth and then sampled 6 glands from

each half of the resulting tumor. The other generating parameter values were: NCSC = 32,

T3 = 100. The figures in the first column illustrate the mean of the posterior distributions for

mutation rate before gland formation (top), mutation rate after gland formation (middle) and

the asymmetric division rate (bottom), for 300 simulated test tumors, while the ones in the sec-

ond column represent the posterior standard deviation. Each of the three methods generates

good estimates, although there are some exceptional cases in which the posterior means devi-

ated from the true values by large amounts when the local regression was used. This illustrates

the noisier nature of estimates of local (as compared to global) regression between parameters

and summary statistics. However, the three methods have differing performances in terms of

the standard deviation of the posterior distribution (Fig 2, right column). The standard devia-

tions are very high for the local regression method, again likely because local estimates of

regression parameters are relatively unstable. The method that uses equal weights performs

relatively well compared to the local regression methods. However, the posterior distributions

generated by weighting the summary statistics by R-square measure of fit of the global linear

regression have a consistent tendency to have the smallest standard deviations, indicating that
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the R-square measure of fit of the global linear regression serves as a better weighting method

than other two methods for our analysis.

Minimum detectable allele frequency. A key feature of our simulated data is the allele

frequency of each mutation. If a mutation occurs early during tumor development, its allele

frequency will typically be large. For example, a mutation introduced to the tumor in the early

stem cell divisions has allele frequency 0.5 in a diploid setting. If a mutation first appears in the

Fig 2. Summary of posterior distributions for each parameter under different weighting schemes. Black represents the results using equally

weighted summary statistics. Red shows the results of using the R-square (coefficient of determination) of the local linear regression as the weight.

Green corresponds to the results using weights given by the global linear regression. 300 simulated test tumors were included in this analysis. The x-

axis is the true generating parameter value for each tumor. The top row shows results for mutation rate before gland formation. The middle row shows

results for the mutation rate after gland formation, while the third row shows the results for the asymmetric division rate. The first column shows the

mean of the posterior parameter estimate, while the second column shows the standard deviation of the posterior distribution.

doi:10.1371/journal.pone.0172516.g002
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constant growth phase (T3), the allele frequency can stay very low or can increase to 0.5, the

relative probabilities of these outcomes depending on the asymmetric division rate and the

number of generations that occur before the tumor is extracted. With real experimental data,

because of the realities of sequencing technologies, we are not able to reliably detect mutations

with very low allele frequencies, because they cannot be distinguished from sequencing errors.

The ability to detect mutations with low allele frequency depends on the depth of the sequence

data that has been collected for that tumor. For example, if the sequencing depth is 20, the low-

est allele frequency that is detectable is 1/20, which is 0.05.

To explore this, we generated 300 test tumors, for each of a range of parameter values, using

a range of lowest detectable allele frequency thresholds (to reflect the inability to reliably detect

low frequency mutations). Mutations with frequency lower than this threshold were removed

from the analysis. Fig 3 shows results for two such thresholds: 0.05 and 0.001. We show the

means and standard deviations of the posterior distributions of the corresponding parameter

estimates. As we can see, the minimum detectable allele frequency does not affect the estima-

tion of the mutation rate before gland formation. Mutations before gland formation all become

fixed, with allele frequency 0.5, due to the gland fission processes, and so are easily detected

using either threshold. However, for the other two parameters, the detection threshold does

have an impact on the posterior distributions. The means of the posterior distributions are

largely unaffected, and are still centered around the true (generating) parameter values, but the

variance increases with the higher threshold. This suggests that our ABC analysis continues to

Fig 3. Different minimum detectable allele frequency. 300 tumors with a range of generating parameters

were tested. Blue dots are for a threshold of 0.001 and red dots show results for a threshold of 0.05. 6 glands

were sampled from each half. Other generating parameter values are: NCSC = 32, T3 = 100.

doi:10.1371/journal.pone.0172516.g003
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function well in this more realistic setting. However, we do see an effect in the standard devia-

tions of the posterior distribution. These grow larger as the threshold value increases, reflecting

the loss of data results from our lack of ability to detect lower frequency mutations.

Number of sampled glands. Another important question is how the number of glands we

sample from a tumor affects our ability to estimate the model parameters. Intuitively, the more

glands we sample the more information we will have about the tumor, and so a large number

of sampled glands is of course preferred. However, the ability to sample glands from a tumor

may be limited for practical reasons. Therefore, we explore how estimation performance trades

off against number of glands sampled. To do this, we simulated tumor growth and harvested

differing numbers of glands upon which to base the analysis. 300 such tumors were analyzed

and posterior distributions of each parameter for each tumor were summarized via the mean

and the standard deviation. As we can see in Fig 4, with only one gland sampled from each

tumor half the posterior distributions have significantly larger standard deviations and the

means of the posterior distributions deviate more from the true values. Among the three

parameters tested, this is most severe for estimation of the mutation rate before gland forma-

tion. If we have only one gland sampled from each half, the summary statistics contain rela-

tively little information about events very early during the tumorigenesis. More precisely, the

heterogeneity within each tumor half is not captured by a single gland at all. However, with 3

or more glands, performance is relatively good (and improves as the number of sampled glands

increases, as expected). We suggest that sampling 6 glands from each tumor half is a reasonable

compromise. This number generates reasonably accurate estimates that have a small standard

deviation. Therefore, we assume 6 glands from each tumor half in later analyses in this paper.

Adding experimental noise in the form of sampling variation. In the previous sections,

we assumed that we had perfect data in the sense that all information is recorded completely

and accurately. For example, the allele frequency of each mutation in the glands is assumed

known, when detectable. We now add further, a more realistic filter to the data. For example,

estimation of allele frequency will depend upon the quality of the sequencing data collected,

which itself is subject to the sequencing technology used, the DNA quality, and requested

sequencing depth, etc. As such, we obtain estimates of these underlying true data characteris-

tics (for example, we may completely fail to detect a mutant allele, or estimate its frequency

incorrectly). Also, some regions of the genome are hard to sequence, resulting in lower cover-

age in those regions. To explore these considerations we now examine the effect of sequencing

depth, a key determinant of data quality, on the performance of our estimation. Higher cover-

age is always better from the perspective of data accuracy. But, of course, data is not free, so we

explore what depth of coverage is necessary to ensure high quality estimation.

Intuitively, we expect that higher sequencing depth should produce better results in parame-

ter estimation. The real question is “how much (coverage) is enough?” As shown in Fig 5, a

mean sequencing depth of just 20 appears to be sufficient to obtain good performance in our

parameter estimates. Even with significantly higher mean sequencing depth, e.g. 80, the perfor-

mance of the posterior distribution does not differ by much. There is no detectable difference

between the posterior variances that result when using a depth of just 20. This demonstrates

the advantage of the approximate Bayesian computation approach (or indeed any other model-

based approach): performance can be robust to the presence of sampling error so long as the
processes resulting in that sampling error are captured in the model itself, as they were here.

Experimental data

Having shown that our parameter estimation procedure performs well in realistic settings, we

close with an analysis of a small dataset. We focus on additional new single-gland exome

Early mutation bursts in colorectal tumors
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sequencing data from one tumor first reported by Sottoriva et al., 2015 (tumor U). In this new

experiment, sequence data was obtained for just one gland per half. While any conclusions

drawn will clearly be tentative, the results earlier in this paper show that some power for

parameter estimation remains. This data has been uploaded as supplementary data (“S1 File”

and “S2 File”) for this paper.

Is there a mutation burst?. Sottoriva et al. proposed a big bang tumor growth model in

which after transformation, some colorectal tumors develop as a single terminal expansion

Fig 4. Summary of posterior distributions as a function of the number of glands sampled from each tumor (x-axis). Colors correspond to the

different numbers of sampled glands (see key). Top row: mutation rate before gland formation; middle row: mutation rate after gland formation; Bottom

row: asymmetric division rate. Other generating parameter values are: NCSC = 32, T3 = 100. The numbers in the legend represent the number of

glands that were sampled from each half of the simulated tumors. The first column and second column show the mean and variance, respectively, of

each parameter’s posterior distribution across 300 simulated tumors.

doi:10.1371/journal.pone.0172516.g004
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containing subclonal events in the absence of stringent selection [6]. Mutations occurring

prior to transformation will be present in all cells of the tumor and by definition clonal,

whereas after transformation only early arising mutations, will reach detectable frequencies in

the tumors. One fundamental question arises: is there a mutation burst at the very beginning

of the tumor development? In other words, is the mutation rate before the first gland

Fig 5. Summary of posterior distributions for different sequencing depths. The first column and second column show the mean and standard

deviation of each parameter’s posterior distribution for the 300 simulated tumors respectively. The top row is the summary of for mutation rate before

gland formation. The middle row is for the mutation rate after gland formation while the third row shows the results for the asymmetric division rate.

The black dots, red dots and green dots represent the results when the mean sequencing depths are 20, 40, and 80 respectively, per single gland. We

see little improvement of parameter estimation with even higher sequencing depths. The other generating parameter values used were: NCSC = 32,

T3 = 100, and v = 1.1m for the negative binomial distribution used to generate sequencing depth.

doi:10.1371/journal.pone.0172516.g005
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formation much bigger than the mutation rate after the first gland formation? This question is

key for understanding the early evolution of a tumor.

Our results for analysis of tumor U are shown in Figs 6 and 7. Tumor U contains many

copy number variations in the genome. We use the method described in Kang et al., 2015 to

call integer copy numbers for each chromosomal segment. The allele frequency of each muta-

tion then is adjusted according to the copy number of its location. (For example, if a mutation

has frequency 0.33 in a region for which the copy number is 3, the mutation is interpreted as

“fixed”.) We see that while the posterior distribution has relatively high variance, there is still

signal in the data regarding mutation rate. The mean and the mode for mutation rate after

gland formation are 0.48 and 0.5 respectively (Fig 6B), while the mutation rate before gland

formation has mean 1.01 and mode 0.33. Based on this one tumor, no clear conclusion regard-

ing the relative magnitudes of the two mutation rates can be drawn. While the posterior for

the pre-gland mutation rates supports higher values, and that for the post-gland mutation rate

does not, the posteriors have a large degree of overlap.

How stem cells divide?. The results of our simulation study on synthetic tumors suggest

that we can successfully infer the asymmetric division rate. Applying the same procedure to

the data from tumor U we obtain the results shown in Fig 7. We see that the mean of the poste-

rior distribution is around 0.76 with little support for values around 0.5, at which point divi-

sion would be random (50% symmetric and 50% asymmetric). Thus, even with data for just

one tumor, and one gland from each side of that tumor, we see that CSCs in this tumor (at

least) almost certainly undergo asymmetric division.

Discussion

Inference regarding properties of tumor growth may well be crucial in understanding both

their behavior and, ultimately, how best to impact growth through medical treatment. But

tumor growth is non-trivial to understand because it is typically not observed. However, mod-

ern technologies allow high-resolution data to be collected. Here we focus on our ability to

Fig 6. Posterior distributions of mutation rate for tumor U. (A) mutation rate before gland formation. (B) mutation rate after gland formation.

The dashed line indicates the mean of the posterior distribution.

doi:10.1371/journal.pone.0172516.g006
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now collect data regarding sequence level mutation on small numbers of cells within a tumor

gland (e.g. 10,000 cells). While this application of the technology is relatively new we have

access to little actual data, our simulation study shows that model-based analyses based upon

ABC have the ability to successfully infer key parameters of tumor growth using such data.

The number of mutations thought to have originated during the first several cell divisions,

which can be detected by comparing the mutations profile in glands from multiregional sam-

ples, does not match the number generated by the normal mutation rate (10−10 to 10−9 per base

per cell division). A mutation burst at early stage tumor growth has been proposed to explain

this phenomenon [8]. However, no obvious evidence has been presented to rule out the possi-

bility that the mutation rate in the tumor is elevated throughout development, rather than just

during an initial ‘burst’. In this paper we demonstrated that the mutation rates both during the

initial stage of tumor development and at the later stage can be estimated using sequence-level

data study, even if such data is limited. Although the data from the sole single-gland data avail-

able to us, (from tumor U), were consistent with the idea of a burst, the posterior distributions

of mutation rates in tumor U do not allow a decisive conclusion to be drawn (see Fig 6). How-

ever as more data, for more glands, is collected in future, our analysis framework is likely to

allow investigators to decisively conclude whether or not such a burst has occurred.

Researchers have used biomarkers to confirm the existence of ‘stem cell like’ cells in various

tumors [39,40]. However, the details of CSC behavior have been hard to uncover, in part

because that behavior is hard to directly observe. As a consequence, the details of how CSCs

divide are also unknown. Some experiments have shown that not all CSCs divide in the same

Fig 7. Posterior distribution of asymmetric division rate (x-axis) for tumor U. Dashed line indicates the

mean of the posterior distribution.

doi:10.1371/journal.pone.0172516.g007
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manner. Some go through symmetric division and others undergo asymmetric division

[41,42]. However, it is still unknown what determines how a CSC divides and with what prob-

ability CSCs utilize asymmetric division to produce progeny. Despite all of these unknowns,

CSCs are thought to be a frequent cause of recurrence after treatment and have been targeted

for therapeutics in many studies [43–45]. In this paper we demonstrated a method for estimat-

ing how CSCs divide in a given tumor. The posterior distribution of the asymmetric division

rate probabilistically represents the behavior of a CSC. The model is constrained to assume

equal symmetric division rates which yields a constant population size that fits our data. We

could instead simulate additional variation in these rates so that the means are constant. This

would add further sampling variability but not bias, suggesting even larger data sets are needed

for precise inference. This is a topic of future research.

In previous work, we showed how to determine the number of CSC in each gland of a colo-

rectal tumor[46]. Together, these results might be used to find correlations with the severity

and resilience of a tumor, which might then be used to guide the individualized therapeutics.

We also show that our analysis performs robustly in the face of experimental noise when we

consider both the limit of detectable allele frequency and variation of sequencing depth. This is

because in a simulation-based method it is relatively straightforward to model the processes

that result in such experimental noise. When ABC is performed, the perturbation caused by

the noise in the data is also present in simulated data and therefore it is captured by the ABC

procedure (Figs 3 and 5). We also show that some conclusions can be drawn even if we have

just a single gland from each side of a single tumor (Figs 4, 6 and 7).

We focus on marginal analysis of parameters in this paper, modeling a situation in which

there is a particular parameter that is of interest to the investigator. The method extends natu-

rally to joint analysis of multiple parameters. However, for the experimental data presented in

this paper, (one gland from each side of a single tumor), such a joint analysis would probably

have little discriminative power.

In summary, the simulation study presented in this paper showed that the mutation rate at

different stages of tumor development and the asymmetric division rate of CSCs can be

retrieved based on mutation data collected from single gland sequencing. We also showed that

relatively little data is required to extract at least some useful information regarding the exis-

tence of a mutation burst and the asymmetric division rate. Our ABC framework provides a

widely-applicable tool for extracting information from genomic data, and in particular the

parameters that govern the development of a tumor, which may potentially shed light on the

post-diagnosis and post-surgery treatment.

Supporting information

S1 File. This file contains the somatic single nucleotide variants that were identified using

MuTect (version 1.1.4). UA contains the information for one half of tumor U. MuTect was

run using default parameters in the High Confidence (HC) mode along with dbSNP (version

137) and COSMIC (version 67) databases. A detailed explanation of each column in this file

can be found here: http://archive.broadinstitute.org/cancer/cga/mutect_run.

(KEEP)

S2 File. This file contains the somatic single nucleotide variants that were identified using

MuTect (version 1.1.4). UB contains the information for the other half of tumor U. MuTect

was run using default parameters in the High Confidence (HC) mode along with dbSNP (ver-

sion 137) and COSMIC (version 67) databases. A detailed explanation of each column in this

file can be found here: http://archive.broadinstitute.org/cancer/cga/mutect_run.

(KEEP)
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