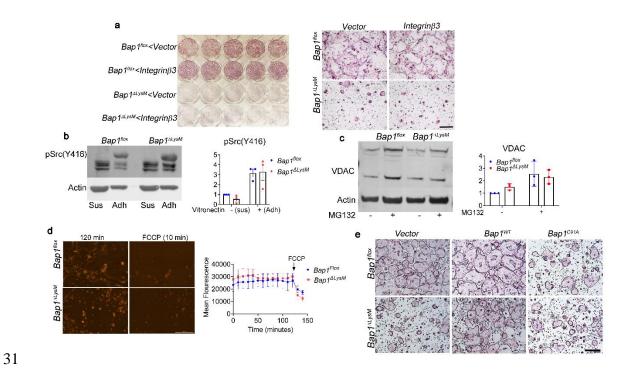
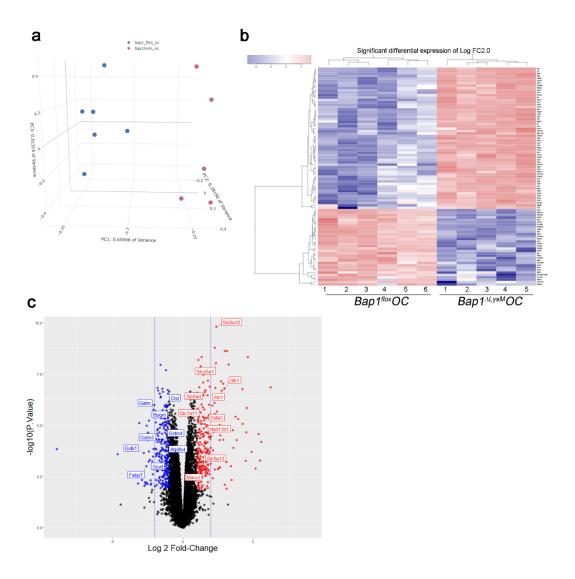
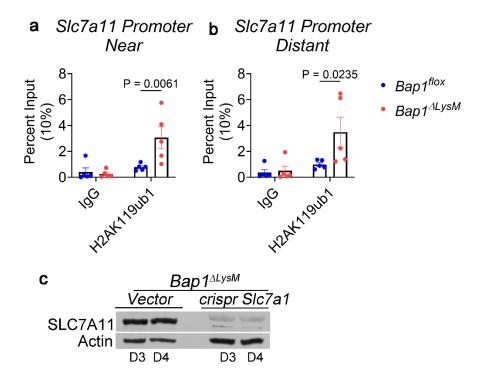

1	SUPPLEMENTARY INFORMATION
2	
3	
4	
5	BAP1 promotes osteoclast function by metabolic reprogramming.
6	Nidhi Rohatgi, Wei Zou, Yongjia Li, Kevin Cho, Patrick L. Collins, Eric Tycksen,
7	Gaurav Pandey, Carl J. DeSelm, Gary J. Patti, Anwesha Dey and Steven L. Teitelbaum
8	

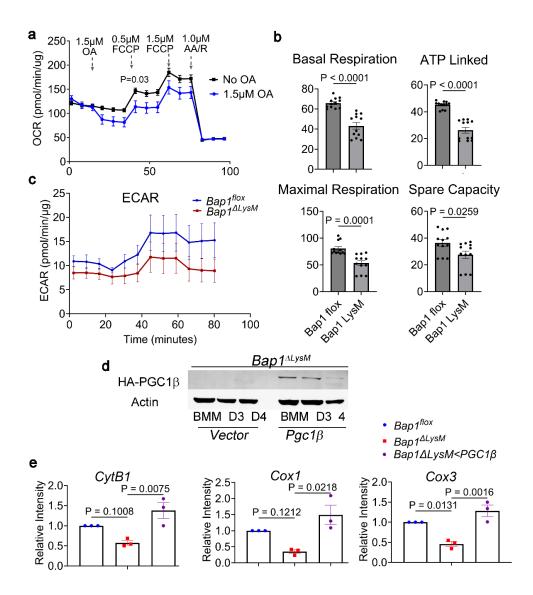

Supplementary Figures

Supplementary Fig. 1: $Bap1^{\Delta LysM}$ Mice Are Osteopetrotic. a) $Bap1^{flox}$ and $Bap1^{\Delta LysM}$ BMMs derived from 8-week old mice were exposed to MCSF \pm RANKL (100 ng/ml) for indicated time. Bap1 mRNA expression was determined by qPCR analysis. Day 2 untreated BMMs serve as control. **b-d** μ CT analysis of femurs of (**b**) 20 week old males (n=9 biological samples); (**c**) 20 week old females ($Bap1^{flox}$ n=6 and $Bap1^{\Delta LysM}$ n=5) (**d**)1 year old male mice ($Bap1^{flox}$ n = 5 and $Bap1^{\Delta LysM}$ n=6 mice). Conn-Dens, connectivity density, normed by TV; TbN, trabecular number; TbSp, trabecular separation; TbTh, trabecular thickness. Data represent mean \pm SEM. P values shown are determined by two-way ANOVA with Sidak multiple comparison testing (**a**) or two-sided Student's t-test (**b-d**). Source data are provided as Source Data file.

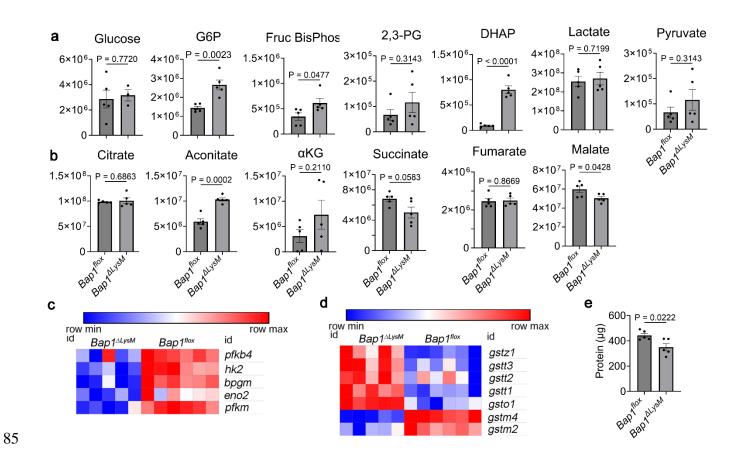

Supplementary Fig. 2: Bap1 Regulates Osteoclast Function. a Double labelling in 8 week old $Bap1^{flox}$ and $Bap1^{ALysM}$ male mice ($Bap1^{flox}$ n=12 and $Bap1^{ALysM}$ n=14 biologically independent samples). Scale Bar represents 1mm. **b** $Bap1^{flox}$ and $Bap1^{ALysM}$ BMMs cultured with M-CSF and RANKL (100 ng/mL) for days as indicated. Alamar Blue assay was done to measure cell numbers (n=5-6 biologically independent samples). **c** Gene expression analysis of Bap1 deletion in 20-week old $Bap1^{AcatK}$ mice (n=3 independent experiments). **d** μ CT analysis of femurs of 20-week old $Bap1^{flox}$ and $Bap1^{AcatK}$ males ($Bap1^{flox}$ n = 6 and $Bap1^{ALysM}$ n=7 biologically independent samples). Data represents mean \pm SEM. P values shown are determined by two-sided Student's t test (**a**, **d**) or two-way ANOVA with Sidak's multiple comparison testing (**b**, **c**). Source data are provided as a Source Data file.


Supplementary Fig. 3: Bap1 epigenetic activity modulates osteoclast function. a

Representative image of whole plate (left) and TRAP stained microscopic image (right) of *Bap1*^{flox} and *Bap1*^{ALysM} osteoclast derived from 8-12 week old male mice transduced with *integrin β3* or *vector* (n=2 independent experiments). Scale bar represents 500μm. **b** Day 3 *Bap1*^{flox} and *Bap1*^{ALysM} preOCs derived from 8-12 week old male mice were cultured for 3h in serum-free medium. The cells were plated on vitronectin-coated petri-dishes or maintained in suspension for 30 min. Total cell lysate was collected and pSrc(Y416) and Actin were determined by immunoblot; n=3 independent experiments. **c** *Bap1*^{flox} and *Bap1*^{ALysM} preOCs were cultured for 30 min with proteasome inhibitor, 5 μM MG132 or DMSO as control. Cell lysates were immunoprecipitated (IP) with ubiquitin antibody and analyzed by Western blotting (WB) with VDAC antibody; n=3 independent experiments. **d** Mitochondrial membrane potential (MMP) was measured in live cells for 2h followed by FCCP treatment. Representative image of TMRM staining in osteoclast (left) scale bar represents 200μm; quantification of MMP over 2h


- 45 (right) (n=2). **e** Representative image of $Bap I^{flox}$ and $Bap I^{\Delta LysM}$ osteoclast transduced with
- *vector*, *Bap1*^{WT} or *Bap1*^{C91A} constructs after which cells were stained for TRAP activity (n=3
- independent experiments). Scale bar represents 500 μ m. Data represents mean \pm SEM. Statistics
- conducted by two-way ANOVA with Sidak's multiple comparison testing (**c,d,e**). No
- 49 significance was noted in comparison to their respective controls. Source data are provided as
- 50 Source Data file.

Supplementary Fig. 4: Bap1 regulates osteoclast transcriptional program. a PCA plot demonstrating separation by genotype. **b** Heatmap of 50 most upregulated (red) or downregulated (blue) genes during RNA-seq of mRNAs of $Bap1^{flox}$ and $Bap1^{ALysM}$ preOCs based on the Log FC value. **c** Volcano plots of RNAseq data to visualize genes (data points) that are being identified as differentially expressed in $Bap1^{ALysM}$ osteoclast compared with $Bap1^{flox}$. The red and blue dots represent genes with at least 1.5-fold increase or decrease in $Bap1^{ALysM}$ respectively. Candidate genes involved in metabolism are identified in blue and solute carriers identified in red.



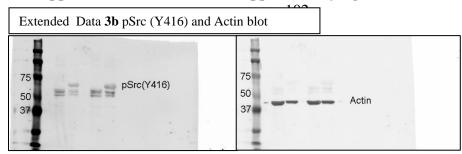
Supplementary Fig. 5: Bap1 regulates Slc7a11 expression. a-b ChIP-qPCR showing H2Aub binding on different Slc7a11 promoter regions (near and distant) in 16-20 week old $Bap1^{\Delta LysM}$ and $Bap1^{flox}$ preOCs (n = 3 biologically independent samples). c Representative blot for SLC7A11 protein expression in $Bap1^{\Delta LysM}$ BMMs knockdown with Slc7a11 and exposed to M-CSF and RANKL (100 ng/ml) for 3 and 4 days (n=2 biologically independent samples). Data represents mean \pm SEM. P values shown are determined by two-way ANOVA with Sidak's multiple comparison test used for statistical analysis (a,b). Source data are provided as a Source Data file.

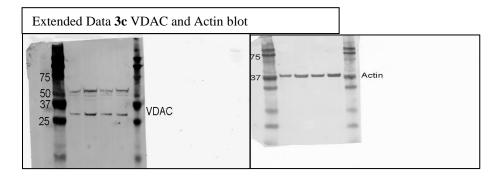
Supplementary Fig. 6: Bap1 regulates osteoclast mitochondrial respiration. a Oxygen consumption profiles for WT osteoclast precursors. 6.0×10^4 cells/well were plated in XF96 plates and grown for 3 days in presence of 100ng/ml RANKL. On the day of the assay, culture media was changed to unbuffered DMEM (pH7.4) supplemented with 10 mM glucose, 200 ng/ml GST-RANKL and 100 ng/ml M-CSF, 1mM pyruvate and 2 mM glutamine. Arrows indicate sequential additions of oligomycin (1.5 μ M, except for black line group), two sequential pulses of FCCP [FCCP]= 0.5 μ M followed by 1.5 μ M (2.0 μ M final), and rotenone with antimycin A (1.0 μ M) (n=2 independent experiments). **b** Quantification of OCR parameters of

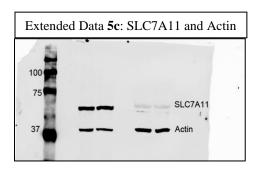
- Bap I^{flox} and Bap I^{ΔLysM} preOCs. **c** Extracellular acidification rate (ECAR) measured during mito stress test assay (n=4 independent experiments). **d** and **e** Bap I^{ΔLysM} BMMs transduced with Pgc1β or vector, were exposed to M-CSF and RANKL. **d** Abundance of HA-PGC1β determined by immunoblot and (**e**) qPCR determined mitochondrial biogenesis markers mRNA (n=2 independent experiments). Data represents mean ± SEM. P values shown are determined by twoway ANOVA with Sidak's multiple comparison test (**a**, **c**, **e**) or two sided Student t test (**b**).
- 84 Source data are provided as Source Data file.

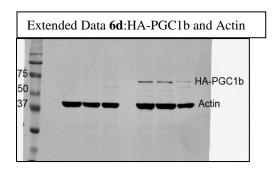
Supplementary Fig. 7: Bap1 regulates metabolic reprogramming in osteoclast. a Relative abundance of glutamine, aspartate and glutamate in the cell determined by LC-MS analysis. b heatmap of downregulated glycolytic genes. c heatmap of upregulated gst genes and d Protein content by genotype (n=5 biologically independent samples). Data represents mean \pm SEM. P values shown are determined by two-sided Student t test (a, d). Source data are provided as a Source Data file.

Supplementary Table 1: Oligonucleotide List


Primer name	type	5'-3'			
B4galt4 For	qPCR	AACCCACCTTATCACCTCTCC			
B4galt4 Rev	qPCR	TAGCACCCACAAAGTAGTTGC			
Bap1C91A For	SDM	CAGCTGATACCCAACTCTGCTGCAACTCATGCCTTG			
Bap1C91A Rev	SDM	CAAGGCATGAGTTGCAGCAGAGTTGGGTATCAGCTG			
bglobin For	qPCR-DNA	GAAGCGATTCTAGGGAGCAG			
bglobin Rev	qPCR-DNA	GGAGCAGCGATTCTGAGTAGA			
CathepsinK For	qPCR	AGGCAGCTAAATGCAGAGGGTACA			
CathepsinK Rev	qPCR	AGCTTGCATCGATGGACACAGAGA			
Cox1 For	qPCR	TTTTCAGGCTTCACCCTAGATGA			
Cox1 Rev	qPCR	GAAGAATGTTATGTTTACTCCTACGAA			
Cox3 For	qPCR	CGGAAGTATTTCTTTGCAGGAT			
Cox3 Rev	qPCR	CAGCAGCCTCCTAGATCATGTG			
CytB1 For	qPCR	GCCACCTTGACCCGATTCT			
CytB1 Rev	qPCR	TTGCTAGGGCCGCGATAAT			
DCStamp For	qPCR	ACTAGAGGAGAAGTCCTGGGAGTC			
DCStamp Rev	qPCR	CACCCACATGTAGAGATAGGTCAG			
Ehhadh For	qPCR	ATGGCTGAGTATCTGAGGCTG			
Ehhadh Rev	qPCR	GGTCCAAACTAGCTTTCTGGAG			
Ephx1 For	qPCR	GGAGACCTTACCACTTGAAGATG			
Ephx1 Rev	qPCR	GCCCGGAACCTATCTATCCTCT			
Fabp7 For	qPCR	GGACACAATGCACATTCAAGAAC			
Fabp7 Rev	qPCR	CCGAACCACAGACTTACAGTTT			
Gapdh For	qPCR	AGGTCGGTGTGAACGGATTTG			
Gapdh Rev	qPCR	TGTAGACCATGTAGTTGAGGTCA			
Gclc For	qPCR	GGGGTGACGAGGTGGAGTA			
Gclc Rev	qPCR	GTTGGGGTTTGTCCTCTCCC			
<i>Ggt5</i> For	qPCR	TTCAATGGGACAGAAACCTTGAG			
Ggt5 Rev qPCR		TCCCTGTGTATAAGACCTCCG			
Gss For	qPCR	CAAAGCAGGCCATAGACAGGG			
Gss Rev	qPCR	AAAAGCGTGAATGGGGCATAC			
Gsta3 For	qPCR	AAGAATGGAGCCTATCCGGTG			
Gsta3 Rev	qPCR	CCATCACTTCGTAACCTTGCC			
hBAP1 For	qPCR	GATACGTCCGTGATTGATGATGA			
hBAP1 Rev	qPCR	TGAGTTGCACAAGAGTTGGGTA			
integrinb3 For	qPCR	TTCGACTACGGCCAGATGATT			
integrinb3 Rev	qPCR	GGAGAAAGACAGGTCCATCAAGT			
mBap1 For	qPCR	CTCCTGGTGGAAGATTTCGGT			
mBap1 Rev	qPCR	GAGTGGCACAAGAGTTGGGAA			
mtCO2 For	qPCR-DNA	CCGACTAAATCAAGCAACA			


Primer Name	Type	5'-3'			
mtCO2 Rev	qPCR-DNA	CAATGGGCATAAAGCTATGG			
Nd4 For	qPCR	CATCACTCTATTCTGCCTAGCAA			
Nd4 Rev	qPCR	TCCTCGGGCCATGATTATAGTAC			
Nfatc1 For	qPCR	CCCGTCACATTCTGGTCCAT			
Nfatc1 Rev	qPCR	CAAGTAACCGTGTAGCTGCACAA			
Pgc1b For	qPCR	CTCCAGGCAGGTTCAACCC			
Pgc1b Rev	qPCR	GGGCCAGAAGTTCCCTTAGG			
Siglec1 For	qPCR	CAGGGCATCCTCGACTGTC			
Siglec1 Rev	qPCR	GGAGCATCGTGAAGTTGGTTG			
Slc6a12 For	qPCR	GGTCCCTGAGGAAGGAGAT			
Slc6a12 Rev	qPCR	GGGGATGAAGAAAGCTCCACC			
Slc6a4 For	qPCR	TATCCAATGGGTACTCCGCAG			
Slc6a4 Rev	qPCR	CCGTTCCCCTTGGTGAATCT			
Slc6a5 for	qPCR	CCACCGGGATAGTCCTCGT			
Slc6a5 Rev	qPCR	GGCTGCTGAGATTACAAAACCC			
Slc7a11 For	qPCR	GGCACCGTCATCGGATCAG			
Slc7a11 Rev	qPCR	CTCCACAGGCAGACCAGAAAA			
Slc7a11 promoter 2 For	ChIP qPCR	CCAAGACTTTCACCTGGAAAGGATA			
Slc7a11 promoter 2 Rev	ChIP qPCR	GAGACTGCACAGGGAATACAC			
Slc7a11 promoter distant For	ChIP qPCR	TGAAGACACGCACAGAGCAA			
Slc7a11 promoter distant Rev	ChIP qPCR	ATTTCCGGCTTTGAGCTAAC			
Slc7a11 promoter near For	ChIP qPCR	CGTGGAAGGCTCCGTATTTA			
Slc7a11 promoter near Rev	ChIP qPCR	TAATGTTGGCGCTTTCTCAA			


Supplementary Table 2: Antibody List


Antibody	Company	Catalog No.	Lot No.	Dilution	Application	Validation
Alexa 488	Thermo Scientific	A12379	1360987	1:60	IFC	Mouse
Phalloidin						
Actin	Sigma Aldrich	A2228	476697	1:10,000	WB	Mouse
Bap1	Cell Signaling	13187s	1	1:1000	WB	Human
	Technologies			5ug	ChIP	
CathepsinK	EMD Millipore	MAB3324 (182-12G5)	2519359	1:1000	WB	Human
H2AK119ub1	Cell Signaling	8240s(D27C4xp)	8	1:2000	WB	Mouse
	Technologies			5ug	ChIP	
Normal Mouse IgG	SantaCruz	Sc2025	LH0615	5ug	ChIP	Mouse
	Biotechnologies					
Normal Rabbit IgG	SantaCruz	Sc2027	B0515	5ug	ChIP	Mouse
	Biotechnologies					
Integrinb3	Cell Signaling	4702s	5	1:1000	WB	Mouse
	Technologies					
NFATc1	SantaCruz	Sc7294(7A6)	12214	1:100	WB	Mouse
	Biotechnologies					
pSrc	Cell Signaling	2010L	17	1:1000	WB	Mouse
	Technologies					
Rac1	Thermo Scientific	1862341	we328014	1:1000	IP/WB	Mouse
ubiquitin	Cell Signaling	3936s (P4D1)	18	5ug	IP	Mouse
	Technologies					
VDAC	Cell Signaling	4661s (D73D12)	10	1:1000	WB	Mouse
	Technologies					
HA tag	Covance	16B12		1:1000	WB	Mouse
Goat anti-Rabbit	Thermo Scientific	21109	37505A	1:5000	WB	Rabbit
IgG Alexa Fluor TM						
680						
Goat anti-Mouse	Thermo Scientific	21058	35818A	1:5000	WB	Mouse
IgG Alexa Fluor TM						
680						
Rabbit IgG	Rockland	611-732-127	25342	1:5000	WB	Rabbit
DyLight TM 800						
Donkey Polyclonal						
Mouse IgG	Rockland	611-432-042	18247	1:5000	WB	Mouse
DyLight TM 800						
Donkey Polyclonal						

101 Uncropped Immunoblots used in supplementary figures:

