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Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are tauopathic

parkinsonian syndromes, presently lacking disease-modifying treatments. Patients

affected by these diseases suffer due tomultidimensional deteriorations resulting in motor

and cognitive impairment. Previously published research has confirmed risk factors that

may impact the course of PSP and CBS, among them hypertension and diabetes.

Less data is available regarding prediabetes and glycemic variability. In this study,

26 patients with clinical diagnoses of PSP and CBS were examined using glycated

hemoglobin and perfusion single-photon emission tomography (SPECT). Patients were

divided into two groups—PSP/CBS patients with glycated hemoglobin (HbA1c) below

and above 5.7%. The results of the perfusion evaluation were compared with the

values from healthy volunteers from the software’s database. A decrease in perfusion in

certain regions of interest was observed among patients affected by increased glycemic

variability. Amore pronounced decrement in perfusion was observed only in some regions

of interest—the hippocampus, pons, left thalamus, right insula. The results indicated

that, among PSP/CBS patients, individuals with more pronounced glycemic variability

had more severe hypoperfusion in certain brain regions in comparison with PSP/CBS

patients without carbohydrate metabolism disorders. Due to the fact that PSP and CBS

are associated with cognitive impairment, an additional decrease in perfusion in the

hippocampal area may impact the rate of cognitive deterioration.

Keywords: PSP, CBS, SPECT, prediabetes, perfusion

INTRODUCTION

PSP and CBS
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are the most common
clinical manifestations of four-repeat tauopathies (1–3). The clinical syndrome largely lacks
clinicopathologic correlation with progressive supranuclear palsy (PSP) pathology and CBS lacks
correlation with corticobasal degeneration (CBD). The correlation of syndrome and pathology in
the most common variant of PSP—Richardson’s syndrome—is estimated at ∼90%. However, in
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CBS, up to half of the cases are not related to CBD pathology
(4). Among patients with longer disease duration, clinical
manifestations of PSP and CBS overlap. Additionally, PSPmay be
a clinical manifestation of CBD pathology and, less commonly,
CBS may be a clinical manifestation of PSP pathology. There
is growing interest in the issues related to diagnosing PSP-CBS
or four-repeat tauopathy (5). Although the boundaries between
the pathologies of PSP and CBD related to tufted astrocytes
and astrocytic plaques are not in question, the differentiation
between their clinical manifestations is less obvious (4). Several
studies highlight the questionable significance of PSP and
CBS differentiation, especially in advanced stages (4, 6). The
diseases share similar risk factors as hypertension and diabetes,
however, the exact mechanism of their correlation has not
been explored (7, 8). In PSP, both hypertension and diabetes
were identified as risk factors (8). In PSP and CBS, some of
the clinical manifestations are based on vascular pathogenesis
(9, 10). Regarding the lack of effective disease-modifying
treatments for PSP and CBS, multiple questions are raised
in the context of modifiable factors. The issue of diabetes
and hypertension is evaluated and studied in the context of
various neurodegenerative disorders, less attention is focused on
preceding conditions such as prediabetes or glycemic variability,
where insufficient glucose values do not meet the criteria
for diabetes.

Glycemic Variability in Brain Diseases
There is little data available concerning the impact of glycemic
variability on the central nervous system. Reoccurring
hypoglycemia may exacerbate oxidative stress and inflammation,
leading to damage to vulnerable brain regions and the
acceleration of cognitive decline (11). Glucose variability is
the major predictor of cerebral vasomotor reactivity reduction
induced by acute hyperglycemia, which may be one of the early
mechanisms of cerebrovascular damage in diabetes mellitus
(DM) (12). Dysregulation of glycemic levels, recurring over
time, might contribute to brain atrophy and cognitive decline in
individuals with type 2 diabetes (DM2) (13). Glycemic variability
and hyperglycemia during acute ischemic stroke are correlated
with a higher risk of post-stroke cognitive impairment and early
neurological deterioration (14, 15). Moreover, it was shown
that, among patients with DM2 with acute ischemic stroke, the
initial glycemic variability increased cardiovascular events and
was an independent predictor of death (16, 17). Variability in
long-term glycemic control is also connected with a higher white
matter hyperintensity load in elderly patients with DM2 (18). In
patients with traumatic brain injury, variable glucose blood levels
were significantly associated with a worse long-term functional
outcome (19).

MATERIALS AND METHODS

Patients
The study included 26 patients (16 women and 10 men) aged
57 to 83 with possible clinical diagnoses of PSP and CBS
made in accordance with the currently applicable criteria (1, 2).
Disease duration varied from 4 to 6 years. Subjects evaluated

in the study were affected by mild (MMSE = 19–23 points)
or moderate cognitive impairment (MMSE = 10–18 points).
Patients were affected by limited mobility and suffered due to
multiple collapses. Examinations were performed by neurologists
experienced in movement disorders. Each patient underwent a
laboratory assessment for glycated hemoglobin level and a single-
photon emission computed tomography (SPECT) examination
of perfusion. For each patient, an evaluation of perfusion in
19 regions of interest was performed. All subjects included in
the study were diagnosed with PSP or CBS and had levels of
glycated hemoglobin lower than 6.5%. Each participant provided
written informed consent. The following exclusion criteria were
used in the study—history of stroke, vascular lesions with
cognitive impairment, neoplasms, posttraumatic brain injury,
autoimmune brain inflammation, or brain infection. Patients
included in the study were divided into two groups: “A”-
−12 patients with PSP/CBS without any abnormalities in the
context of glucose level, and “B”−14 patients with PSP/CBS and
significant glycemic variability. The level of glycated hemoglobin
in group “A” varied from 4.9 to 5.6%. In “B” the levels varied
from 5.7 to 6.4%. The perfusion of patients from groups “A” and
“B” was compared with healthy volunteers from the software’s
database. Among all of the patients included in the study, fasting
blood glucose level was below 100 mg/dl.

SPECT
SPECT with Technetium-99m hexamethylpropyleneamine
oxime (99mTc-HMPAO) as a radiotracer was performed in
all patients. The patients were placed in a quiet, dimly lit
room in a supine position. Seven hundred and forty MBq of
99mTc-HMPAO was administered. A dual-head gamma camera
SPECT/CT (Symbia T6, Siemens Healthcare) with low energy
high resolution (LEHR) parallel-hole collimator was used. Step
and shoot acquisition mode was used and sequences of 128
frames on a 128 x 128 matrix were obtained (64 projections per
head, 30 s per projection). The photopeak was set at 140 keV with
10% window on either side of the photopeak. All images were
reconstructed with filtered back projection and smoothed with a
filter. The reconstructed images were corrected for gamma-ray
attenuation with a measured correction matrix obtained from a
computed tomography scan.

Post-processing analysis was performed with Scenium
software (Siemens Healthcare Medical Solutions USA, Inc.).
The data were compared with a reference database comprised
of 99mTcHMPAO brain scans of 20 healthy volunteers with
an age range of 64–86 years (mixed population of women and
men). Standard deviation values from the mean for each voxel
were computed. The mean was taken from the corresponding
voxel in the normal brain. Statistics were displayed on a voxel-
by-voxel basis. The regions of interest (ROI) were predefined
on a high-resolution T1 MRI volume scan. The SPECT and
MRI data were merged. The mean standard deviation (SD)
was calculated for each ROI. The SD of perfusion in the basal
ganglia, frontal lobes, cerebellar hemispheres, and thalami
were subsequently examined among all patients. The results
were then analyzed using the Kruskal-Wallis test, which
showed whether the differences in perfusion of the selected
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TABLE 1 | Basic statistics with subgroup comparison.

Whole group (N = 26) Group A (N = 12) Group B (N = 14)

Mean (Min-Max) SD ± 95% CI Mean (Min-Max) SD ± 95% CI Mean (Min-Max) SD ± 95% CI P

III Ventricle (mm) 11.2 (6–17) 2.53 (1.98–3.49) 10.4 (6–14) 1.98 (1.4–3.35) 11.9 (7–17) 2.82 (2.05–4.55) 0.2368

PONS (cm2) 4.5 (3.3–5.8) 0.61 (0.47–0.84) 4.4 (3.3–5.8) 0.71 (0.5–0.5) 4.7 (3.8–5.6) 0.5 (0.36–0.8) 0.2801

MIDBRAIN (cm2) 0.8 (0.4–1.3) 0.26 (0.2–0.35) 0.8 (0.4–1.3) 0.24 (0.17–0.17) 0.8 (0.4–1.3) 0.28 (0.2–0.44) 0.607

P/M ratio 0.2 (0.1–0.3) 0.05 (0.04–0.07) 0.2 (0.1–0.3) 0.06 (0.04–0.04) 0.2 (0.1–0.2) 0.04 (0.03–0.07) 0.3681

Amygdala L −1.4 (−4.2–2.7) 1.66 (1.3–2.3) −1.1 (−4.2–2.7) 1.92 (1.36–1.36) −1.6 (−3.1–1.5) 1.43 (1.04–2.31) 0.4253

Amygdala R −1.1 (−3.8–1.3) 1.44 (1.13–1.99) −0.6 (−2.6–1.3) 1.28 (0.91–0.91) −1.6 (−3.8–1.3) 1.46 (1.06–2.35) 0.0896

Basal Ganglia L −2.4 (−5.8–0.5) 1.92 (1.5–2.65) −1.7 (−5.3–0.5) 1.7 (1.2–1.2) −3 (−5.8–0.1) 1.94 (1.41–3.13) 0.076

Basal Ganglia R −2.1 (−6.1–1.1) 2.05 (1.61–2.84) −1.3 (−5.3–0.9) 1.82 (1.29–1.29) −2.8 (−6.1–1.1) 2.07 (1.5–3.33) 0.0946

Brainstem −2.9 (−7–1.8) 1.93 (1.51–2.69) −2.3 (−5.3 to −0.3) 1.35 (0.94–0.94) −3.4 (−7–1.8) 2.21 (1.6–3.56) 0.0798

Cerebellum L −1.3 (−5.4–2.1) 2.06 (1.62–2.85) −1.2 (−1.2–0) 1.23 (0.87–0.87) −1.4 (−5.4–2.1) 2.62 (1.9–4.22) 0.817

Cerebellum R −1.5 (−9.2–1.9) 2.49 (1.95–3.44) −1.4 (−1.4–1.9) 3.11 (2.2–2.2) −1.6 (−4.8–1.4) 1.93 (1.4–3.12) 0.4715

Frontal Lobe L −1.4 (−6.9–2.6) 2.06 (1.62–2.84) −1.1 (−1.1–1.8) 1.91 (1.35–1.35) −1.7 (−6.9–2.6) 2.21 (1.6–3.55) 0.5371

Frontal Lobe R −1.5 (−5.7–3.1) 1.96 (1.54–2.71) −1.3 (−1.3–3.1) 2.01 (1.43–1.43) −1.7 (−5.7–1.9) 1.98 (1.44–3.19) 0.959

Hippocampus L −2.1 (−5.1–1.8) 1.75 (1.38–2.4) −1.2 (−1.2–1.8) 1.77 (1.25–1.25) −2.8 (−5.1 to −0.8) 1.45 (1.05–2.34) 0.0086

Hippocampus R −1.5 (−4.8–1.4) 1.66 (1.3–2.29) −0.8 (−0.8–1.4) 1.76 (1.25–1.25) −2.1 (−4.1 to −0.2) 1.36 (0.99–2.19) 0.0075

Insula L −3 (−7.1–2.4) 2.58 (2.03–3.54) −2.1 (−2.1–2.4) 2.59 (1.84–1.84) −3.9 (−7–0.4) 2.44 (1.77–3.94) 0.0803

Insula R −1.7 (−6.2–1) 1.77 (1.39–2.45) −0.9 (−0.9–1) 1.27 (0.9–0.9) −2.5 (−6.2–1) 1.85 (1.34–2.98) 0.0035

Pons −2.6 (−5–1.9) 1.28 (1.01–1.77) −2.3 (−2.3 to −0.8) 0.76 (0.53–0.53) −2.9 (−5–1.9) 1.59 (1.15–2.57) 0.0231

Temporal L 0.1 (−3–3.1) 1.51 (1.18–2.08) 0 (0–2.4) 1.36 (0.96–0.96) 0.3 (−3–3.1) 1.66 (1.2–2.67) 0.5542

Temporal R 1.4 (−4.1–4) 1.7 (1.34–2.34) 1.8 (1.8–3.2) 1.17 (0.83–0.83) 1.2 (−4.1–4) 2.12 (1.53–3.41) 0.5371

Thalamus L −4.1 (−7 to −0.7) 1.83 (1.44–2.5) −3.3 (−3.3 to −0.7) 1.55 (1.09–1.09) −5 (−7 to −1.1) 1.76 (1.27–2.83) 0.0146

Thalamus R −4.6 (−9.5 to −1.1) 2.22 (1.75–3.05) −3.8 (−3.8 to −1.1) 2.39 (1.69–1.69) −5.3 (−9.5 to −2.2) 1.99 (1.44–3.21) 0.0946

Whole Brain −2.3 (−7.9–1.5) 2.22 (1.74–3.06) −1.3 (−1.3–1.5) 1.9 (1.33–1.33) −3.2 (−7.9–0.9) 2.24 (1.62–3.6) 0.0428

Min, minimal value; Max, maximal value; SD, standard deviation; 95% CI, 95% confidence interval; p, p value for U Mann-Whitney test; in red are marked statistically significant p values.

brain regions were statistically significant. The regions with
significant differences were then additionally evaluated using
post-hoc analysis.

The authors of the study decided to study CBF disorders in
all regions of the brain, including areas that are not affected
by the lesions. Correct values for the accumulation of 99mTc
HM-PAO in these areas can be taken as evidence that the test
method is methodologically correct. We used a professional
program that also includes a verified database (control group).
The control groupwas thoroughly examined by themanufacturer
and corresponds to the age of the group of patients we studied.
Performing check-ups with radiopharmaceuticals and SPECT-
CT would be unethical due to exposure to ionizing radiation and
the lack of availability of a professional, registered program for
the analysis of test results.

Laboratory Testing
Blood samples were collected from patients during
their hospitalization in the Department of Neurology.
Ethylenediaminetetraacetic acid (EDTA) was used to avoid
extracorporeal coagulation before the analysis. Blood samples
were analyzed automatically using high-pressure liquid
chromatography in the Department of Laboratory Diagnostics
of the Mazovian Bródno Hospital. The value of glycated
hemoglobin was obtained automatically.

Statistical Analyses
Data analyses were performed with the use of original statistical
programs and available modules of the Statistica software
(version 13.1 Dell. Inc. Statsoft). Continuous data were used for
analyses. All results were expressed as means, with minimal and
maximal values, and standard deviation with a 95% confidence
interval. In subgroup analysis, we used the Mann-Whitney
U test. Spearman correlation coefficient (Rs) was used for
determining the relationship between glycated hemoglobin level
and CNS perfusion. We first tried to apply the Benjamini-
Hochberg method for reducing the false discovery rate (FDR)
for multiple hypothesis testing, but unfortunately, no p-value
survived after this correction. Thus, we chose to set a more
restrictive, uncorrected significance threshold at P < 0.01 for
multiple comparison correction.

RESULTS

The mean, maximal, minimal, and standard deviation with 95%
confidence interval values for the assessed parameters are listed
in Table 1 for the whole group and subgroups. There were
significant differences in the mean values of SPECT perfusion for
two regions: hippocampus left (−1.2 vs. −2.8; p = 0.0086) and
right (−0.8 vs.−2.1; p= 0.0075), and insula right (−0.9 vs.−2.5;
p = 0.0035) (Table 1). The perfusion abnormalities in the group
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TABLE 2 | Spearman correlation.

Rs

III Ventricle (mm) 0.25

PONS (cm2) 0.22

MIDBRAIN (cm2 ) −0.11

P/M ratio −0.19

Amygdala L −0.16

Amygdala R −0.34

Basal Ganglia L −0.36

Basal Ganglia R −0.34

Brainstem −0.36

Cerebellum L 0.05

Cerebellum R −0.15

Frontal Lobe L −0.13

Frontal Lobe R −0.02

Hippocampus L −0.48

Hippocampus R −0.46

Insula L −0.36

Insula R −0.47

Pons −0.47

Temporal L 0.12

Temporal R −0.13

Thalamus L −0.49

Thalamus R −0.34

Whole Brain −0.42

Rs, Spearman correlation coefficient; in red are marked statistically significant values of Rs.

affected by glycemic variability in the other regions of interest
were not significant. Spearman correlation coefficient showed an
average negative correlation for the above-mentioned regions:
hippocampus left, Rs = −0.48; hippocampus right Rs = −0.46;
insula right, Rs = −0.47; pons, Rs = −0.47; thalamus left, Rs =
−0.49 andwhole brain,Rs=−0.42 (all Rs values were statistically
significant p < 0.005, Table 2) (Figures 1–3).

DISCUSSION

Hippocampus Hypoperfusion in Tauopathic
Atypical Parkinsonian Syndrome
This study stresses the necessity of evaluating glycemic levels
below the boundary of diabetes in neurodegenerative disorders.
PSP and CBS are not fully recognized in the context of
pathogenesis. The presented preliminary research should be
considered as a factor in further discussions concerning
deterioration within brain structures that may impact cognitive
abilities, such as the hippocampus hypoperfusion observed in
patients affected by glycemic variability. In our study, the
results show that glycemic variability most significantly impacts
certain regions of the brain, such as the hippocampus and
insula. Moreover, there is a negative correlation between higher
prediabetes glucose levels and SPECT-based perfusion images.

FIGURE 1 | Comparison of perfusion in regions significantly affected by

glycemic variability.

FIGURE 2 | Comparison of perfusion in regions significantly affected by

glycemic variability.

Glycemic Variability and Prediabetes in
Neurodegenerative Disorders
Prediabetes and glycemic variability are better known for their
impact on the peripheral nervous system, however, recent
papers have revealed interesting findings concerning the impact
of prediabetes on brain amyloid accumulation and cognitive
abilities (20, 21). The majority of the described reports discuss
diseases other than PSP/CBS, however, they may be useful
in understanding the underlying mechanisms that are likely
also present in atypical tauopathic parkinsonian syndromes.
In one study, the authors described the association between
prediabetes and beta-amyloid concentration in late middle
age. The same correlation was not confirmed in DM2. The
authors of the study hypothesized that this may be related
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FIGURE 3 | Comparison of perfusion in regions significantly affected by

glycemic variability.

to the efficiency of diabetes treatment on brain beta-amyloid
accumulation (20). Another study concerning the impact of
prediabetes on the brain was performed on patients with
Alzheimer’s disease; the authors did not find any significant
association between prediabetes and various analyzed factors
such as hippocampal/intracranial volume ratio and cerebrospinal
fluid phosphorylated tau-181/amyloid-β1−42 ratio (22). On
the other hand, cognition was affected by abnormalities in
brain metabolism. The metabolic evaluations were based on
examinations using fluorodeoxyglucose in positron emission
tomography. In a different study, prediabetes was associated
with insulin resistance rather than solely based on the elevation
of glucose levels in the context of cognitive deterioration (21).
The literature concerning the correlation between prediabetes
and brain abnormalities is limited. However, it has been
demonstrated that in obese subjects with prediabetes the
activation of reward-related areas is reduced significantly (23).
In individuals with prediabetes, an increase in insulin resistance
is associated with a decrease in the brain glucose metabolism
rate in the frontal, parietotemporal, and cingulate gyrus regions
(24). Zborowski et al. observed downregulation of hippocampal
insulin and brain-derived neurotrophic factor signaling in
prediabetic mice. On the other hand, a study by Soares al. based
on increased hippocampal levels of AMPA and NMDA receptor
subunits GluA1 and GLUN1 and decreased hippocampal
glucocorticoid receptor levels, suggested that alteration of
glutamatergic neurotransmission and abnormal glucocorticoid
signaling in hippocampus is typical for prediabetes (25, 26).
In a different study, the hippocampal region, as well as the
whole brain, was associated with increased lactate production
in prediabetes (27). There is also some data available on the
volume of certain brain regions in prediabetes. Left hippocampal
tail volume was interpreted as an early diabetes-related marker
due to brain damage and a bilateral lateral hippocampus, left
amygdala, and right putamen reduction in gray matter volume

in prediabetes when compared to healthy controls (28, 29).
Smaller hippocampal volumes and greater frontal lobe atrophy
were typical for adolescents with insulin resistance (30). White
matter changes, represented by alterations in the white matter
micro-integrity of the anterior thalamic radiation and inferior
and superior longitudinal fasciculi, are described as typical early
signs of prediabetic brain (31). Reitz observed that abnormalities
in glycaemia are associated with a higher number of brain
infarcts, white matter hyperintensity volume, decreased total
white matter and gray matter, and hippocampus volume (32).
Nevertheless, a study by Schneider et al. indicated that there
is no evidence that associations of diabetes with smaller brain
volumes are mediated by brain vascular pathology (33). On
the other hand, cerebrovascular impairment, which is present
in prediabetes, may lead to a mild hypoxic state that, when
accompanied by themetabolic dysfunction-driven suppression of
neuronal autophagy, causes cognitive decline (34).

Though effects on the hippocampus are more commonly
associated with Alzheimer’s disease, considerable tau
accumulation can be observed in the hippocampus in
PSP; however, it was found to be independent and the tau
accumulation in PSP is more pronounced in strategic regions
related to the disease’s progression such as the brainstem and
basal ganglia (35). This finding could be analyzed in the context
of an association between tau accumulation and microglial
activation in PSP. Microglial activation, on the other hand, is
also associated with diabetes and other glycemic disturbances.
This series of possible mechanisms leading to hippocampus
vulnerability have not been fully recognized.

Observations concerning abnormal transglutaminase activity
in PSP as well as other tauopathies were described in
previous research; however, no abnormal transglutaminase-
induced crosslinking activity with glycemic variability was found
in PSP and CBS (36, 37). Though transglutaminase is associated
with an indirect impact on neurodegeneration, the enzyme is
considered to be a factor leading to the neuropathology after
the initiation of the disease process. Glycemic variability, though
not proven to be associated with transglutaminase’s impact on
neurodegeneration, appears to act as an enhancer of clinical
decline and structural hypoperfusion; however, insufficient data
in the field make any interpretation questionable and requiring
further verification.

Clinical Significance
The possible disturbance of hippocampal function is commonly
associated with cognitive decline. Recent studies showed
associations between tau pathology and clinical symptoms in the
subfield of hippocampal formation and indicated associations
with executive function and behavior (38). The significance
of the deterioration within the hippocampus in PSP/CBS was
presented in various studies. The features possibly affected by
this disturbance include multiple speech and language domains
(39). The literature concerning the impact of hippocampal
deterioration and its clinical significance in PSP/CBS is limited.
The most striking issue highlighted in this study is undoubtedly
related to the possible reversibility of mechanisms leading to
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hippocampal dysfunction, as glycemic variability appears to be
a modifiable risk factor.

Limitations
This is a small pilot study; however, it stresses the significance
of glycemic variability as a risk factor for further deterioration
in tauopathic atypical parkinsonian syndromes. The study was
limited to tauopathic atypical parkinsonian syndromes due to
their rarity, difficulties in examination, and the fact that they are
underdiagnosed in the context of glycemic variability, as only a
few studies highlight the issue of diabetes in PSP. To the best of
our knowledge, no such study has been conducted in prediabetes
and glycemic variability groups. The authors did not perform
an additional examination of SPECT in subjects with increased
glycemic variability without neurodegenerative disorders. This
is related to the preliminary character of the study and to the
fact that the aim of the study is to highlight the significance
of glucose metabolism impairment as a possible enhancer
of deterioration rate in tauopathic parkinsonian syndromes.
Additionally, due to the pilot character of the study, the authors
were not granted permission by the Ethical Committee to use
radiotracers in patients without neurodegenerative disease in
this study considering the availability of a software database
of healthy volunteers age-matched with the examined group of
PSP/CBS patients. The authors did not create separate groups
for PSP and CBS patients, as previous studies showed that
perfusion assessment does not show significant differences in the
differential diagnoses of these diseases (6). Due to the fact that
all included patients are alive, no neuropathological verification
could be conducted.

CONCLUSION

The study results stress the necessity of early diagnosis
of glycemic variability in neurodegenerative diseases. The

significant decrease in perfusion of the hippocampus in patients
with PSP/CBS is an interesting observation considering the
diverse course of cognitive deterioration among patients with
PSP and CBS. The results of the study should be interpreted as
a factor encouraging discussion of hippocampal vulnerability to
glycemic variability and its possible links with pathomechanisms
of neurodegeneration. Early initiation of treatment and control
of glycemic variability and prediabetes may have a beneficial role
that impacts the rate of deterioration of cognitive impairment.
Further research in the field on the role of glycemic variability
and prediabetes in tauopathic atypical parkinsonism is required.
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