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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United
States with no effective treatment. The current diagnostic method, spirometry, does not accurately reflect the
severity of COPD disease status. Therefore, there is a pressing unmet medical need to develop noninvasive
methods and reliable biomarkers to detect early stages of COPD. Lipids are the fundamental components of cell
membranes, and dysregulation of lipids was proven to be associated with COPD. Lipidomics is a comprehensive
approach to all the pathways and networks of cellular lipids in biological systems. It is widely used for disease
diagnosis, biomarker identification, and pathology disorders detection relating to lipid metabolism.

Methods: In the current study, a total of 25 serum samples were collected from 5 normal control subjects and 20
patients with different stages of COPD according to the global initiative for chronic obstructive lung disease (GOLD)
(GOLD stages | ~ IV, 5 patients per group). After metabolite extraction, lipidomic analysis was performed using
electrospray ionization mass spectrometry (ESI-MS) to detect the serum lipid species. Later, the comparisons of
individual lipids were performed between controls and patients with COPD. Orthogonal projections to latent
structures discriminant analysis (OPLS-DA) and receiver operating characteristic (ROC) analysis were utilized to test
the potential biomarkers. Finally, correlations between the validated lipidomic biomarkers and disease stages, age,
FEV1% pack years and BMI were evaluated.

Results: Our results indicate that a panel of 50 lipid metabolites including phospholipids, sphingolipids, glycerolipids,
and cholesterol esters can be used to differentiate the presence of COPD. Among them, 10 individual lipid species
showed significance (p < 0.05) with a two-fold change. In addition, lipid ratios between every two lipid species were
also evaluated as potential biomarkers. Further multivariate data analysis and receiver operating characteristic (ROC:
0.83 ~0.99) analysis suggest that four lipid species (AUC:0.86 ~ 0.95) and ten lipid ratios could be potential biomarkers
for COPD (AUC:0.94 ~ 1) with higher sensitivity and specificity. Further correlation analyses indicate these potential
biomarkers were not affected age, BMI, stages and FEV1%, but were associated with smoking pack years.
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roles in the development of COPD.

characteristic

Conclusion: Using lipidomics and statistical methods, we identified unique lipid signatures as potential biomarkers for
diagnosis of COPD. Further validation studies of these potential biomarkers with large population may elucidate their
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Introduction

Chronic obstructive pulmonary disease (COPD) is a
chronic lung disease, which is characterized by irreversible
airflow obstruction, mucus hypersecretion, and chronic
airway inflammation. It is the third leading cause of death
worldwide, and it was ranked second as disability-adjusted
life-years (DALY) from 1990 to 2010 [1-3]. Previous stud-
ies demonstrated that the progressive structural changes
in the bronchial epithelium are associated with sub-
epithelial fibrous remodeling [4]. Tobacco smoking is the
leading cause of COPD although other factors such as air
pollution, genetic susceptibility and occupational exposure
also account for COPD [5]. Spirometry is the major clin-
ical test used to diagnose patients with COPD by measur-
ing the airflow volumes into and out of the lung.
Spirometry is clinically utilized to measure the forced ex-
piratory volume in one second (FEV;) and forced vital
capacity (FVC), the ratio of FEV;/FVC as the indicator of
obstructive or restrictive ventilatory defects [6]. However,
clinical evidence indicates that spirometry can neither pre-
dict the disease activity or the severity nor differentiate the
subtypes of disease. Moreover, symptoms such as bron-
chial hyper-responsiveness and frequent exacerbations are
also used as indicators of COPD disease progression.
However, these clinical markers have no specificity and
cannot be quantified [7]. Until now, there is no effective
treatment for COPD. Therefore, novel biomarkers are ur-
gently needed for early detection of COPD, which holds
the potential for successful intervention in the progression
of the disease [8].

Cellular lipid species play an essential role in various cellu-
lar processes, including membrane integrity, energy sources,
and cellular signaling processes such as cell proliferation, me-
tabolism, and apoptosis induction. Accumulating studies in-
dicate that dysregulation of lipids is associated with the
pathogenesis of COPD [9, 10]. Obesity with high composi-
tions of triglyceridesis and cholesterol is associated with de-
clining lung function and increased morbidity of COPD [11].
Meta-analysis shows that the use of statins was associated
with 38% reduction in all-cause mortality (95% CI 0.52 to
0.73) and a 52% reduction in COPD mortality [12]. In
addition, phospholipid is a significant component of cell
membranes, which consists of a hydrophilic head and two
hydrophobic fatty acid tails. Phospholipids account for 85%
of pulmonary surfactant mass, and the composition and

concentration of individual phospholipid are critical factors
of functional pulmonary surfactants [13]. The more enhance-
ment of phosphatidylcholine (PC)16:0/16:0 occurs within the
surfactants, the surfactants are more resistant to the high
pressures generated at the air-liquid interface of the mamma-
lian lung [13]. In addition, total surfactant phospholipids are
also known to decrease in patients with COPD, which may
correlate with pulmonary function [14]. Moreover, dysregula-
tion of bioactive lipids such as ceramides, sphingomyelins,
and sphingosine-1-phospate (S1P) were associated with
smoking. The amount of sphingolipids was significantly
higher in smokers with COPD than in smokers without
COPD [15, 16]. The S1P promotes acquired immune re-
sponses in smoke-induced lung inflammation and lympho-
cyte trafficking [17, 18]. Data from COPDGene cohort
showed that three unique sphingolipids found in the plasma
are strongly associated with emphysema and COPD exacer-
bation phenotypes, but not with airflow obstruction and
chronic bronchitis [19]. Other lipids such as ceramide plays
important roles in the induction of apoptosis and cellular
senescence, and free fatty acids could cause similar inflam-
matory responses [20, 21]. These data suggest that lipids play
important roles in the development of COPD, and a detailed
lipidomic profiling across different stage of COPD for indi-
vidual lipids may shed light on the pathogenesis of COPD.
Lipidomics is an emerging “omics” approach, which compre-
hensively measures the full lipid components of cells, tissues,
and organisms [22]. To determine whether lipid metabolites
could be biomarkers for the diagnosis of COPD, global
untargeted lipidomic analysis was performed to investigate
serum samples from patients with different stages of COPD.
Subsequently, general statistical analysis, orthogonal partial
least squares discriminant analysis (OPLS-DA), and receiver
operating characteristic (ROC) analysis were performed to
assess the quantitative change of lipid metabolites. Finally,
the correlation of lipid productions with ages and smoking
status in patients was also assessed.

Materials and methods

Patient and control serum sample collection

In this study, 25 serum samples were obtained from the
Vanderbilt Medical Center and the Nashville Veteran
Affairs Medical Center. All procedures performed in
studies involving human participants were in accordance
with the ethical standards of the institutional and/or
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national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable
ethical standards. The study was approved by the local
institutional review board (Vanderbilt University Med-
ical Center and Veterans Affairs, Tennessee Valley
Healthcare System, Nashville, Tennessee Institutional
Review Boards), and informed consents were obtained
from all individuals at both institutions. Individuals pro-
viding serum samples were grouped based on their FEV;
value, each group consisting of 5 individuals. Clinical in-
formation, sample size, classification of patients with
COPD based on Global Initiative for Chronic Obstruct-
ive Lung Disease Stage [23], and normal control are
listed in Table 1. From each subject, 1 mL of whole
blood was collected into a vacutainer tube without anti-
coagulant. Each serum sample was promptly separated
(no more than 4 h after collection of whole blood) and
stored at — 80 °C immediately.

Lipids extraction from serum samples

Serum metabolite extraction was performed as described
previously [24]. Briefly, 50 uL of each serum sample was
mixed with 160 uL of chloroform and 320 pL of metha-
nol containing BHT (50 pug/ml). After vortex mixing for
20 min, 160 pl of water was added and shook. Later, the
sample was centrifuged for 5min at 2000 g, after that
the lower layer was retained. Then another 160 pL
chloroform was added, shook and centrifuged, and the
lower layer was collected and combined with the previ-
ous step. The combined lower layers were washed with a
small volume of 1 M KClI solution once. For each sam-
ple, chloroform was used to dissolve the extracted lipids
from serum (chloroform vs serum, 10:1 in volume), then
6 pL of the serum extraction lipid in chloroform was
prepared for Waters Xevo instrument infusion in next

Table 1 Characteristics of Patients by Lipidomic Analysis
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step. All extracted samples were transported on dry ice
to the Kansas Lipidomics Research Center (KLRC) for
lipid analysis. Most of the phospholipid standards were
purchased from Avanti Polar Lipids, Inc. (Alabaster,
AL), except for di24:1-PE and di24:1-PG, which were
prepared by transphosphatidylation of di24:1-PC [25].

ESI-MS lipid profiling

In order to profile the lipid species, an automated electro-
spray ionization tandem mass spectrometry method was ap-
plied. In this method, the ratio of head groups plus total acyl
carbons to total double bonds is used to determine the
serum lipid species. Data acquisition and analysis were per-
formed as described previously with modifications [26]. In
short, proper amounts of internal standards, obtained and
quantified as previously described [27], were added in the fol-
lowing quantities: 0.30 nmol lysophosphatidylglycerol—
LPG(14:0), 0.30 nmol LPG (18:0), 0.30 nmol phosphatidylgly-
cerol— PG (14:0/14:0), 0.30 nmol lysophosphatidylethanola-
mine—LPE(14:0), 0.30nmol  LPE(18:0),  0.30 nmol
phosphatidylethanolamine—PE(12:0/12:0), 0.30 nmol PE(23:
0/23:0), 0.60 nmol lysophosphatidylcholine—LPC(13:0), 0.60
nmol LPC(19:0), 0.60 nmol phosphatidylcholine—PC(12:0/
12:0), 0.60 nmol PC(24:1/24:1), 0.30 nmol lysophosphatidic
acid—LPA(14:0), 0.30 nmol LPA(18:0), 0.30 nmol lysopho-
sphatidic acidcPA(20:0/20:0), 0.30 nmol PA(14:0/14:0), 0.20
nmol phosphatidylserine—PS(14:0/14:0), 0.29 nmol phos-
phatidylinositol—PI (16:0/18:0), 0.11 nmol PI (18:0/18:0), 10
nmol cholesterol ester—CE(13:0) and 10 nmol CE(23:0). The
6 pL of the serum extraction lipid from the last step was
mixed with the standard internal mixture and finally dis-
solved in 1.2ml solvent, which was 300 mM ammonium
acetate/chloroform/methanol with the ratio 300/665/35. The
mixture was introduced by continuous infusion into the ESI
source on a triple quadrupole MS/MS (API 4000, Applied

GOLD Status No 1 Il ] v
N= 5 5 5 5 5
FEV1%

Average + Std 109+ 3.67 77 +£1.87 534+321 474+1.14 274 +364
Age

Average + Std 65.81+5.89 67 £4.30 726 £297 71.8£8.53 65.8 £5.89
Smoking

Yes 5/5 (100%) 5/5 (100%) 5/5 (100%) 5/5 (100%) 5/5 (100%)
Pack-Years

Average + Std 494+13.04 63+19.26 65.9 £3040 67.2£2931 69+214
BMI

Average + Std 264 +4.88 283 +4.30 263 +£297 25.7+£853 24.6 £8.53
Gender

Male 2/5 (40%) 2/5 (40%) 3/5 (60%) 4/5 (80%) 4/5 (80%)
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Biosystems, Foster City, CA), using an auto-sampler (LC
Mini PAL, CTC Analytics AG, Zwingen, Switzerland) fitted
with a 300 pL loop for the acquisition time and pumped to
the ESI needle at 30 ml/min. The collision gas pressure was
set at 2 (arbitrary units). The collision energies, with nitrogen
in the collision cell, were + 5V for CE, +28V for PC, +5V
for PA, + 12V for PE, + 17V for PI and + 13V for PS. The
cone voltage was +24 V for CE and + 40V for all other spe-
cies. The source temperature (heated nebulizer) was 150 °C,
and the interface heater was on, cone gas flow was 150 L per
hour, desolation gas flow was 650 L per hour, the gas flow
was 0.14 ml per min, scan rate was set to 200 units per sec.

All scans were performed in a positive mode. Lipid spe-
cies with a common head group fragment were deter-
mined by the precursor ion and neutral loss scans of the
lipid extracts. Lipid species were detected with the follow-
ing scans: CE, [M + NH4]" with precursor of 369.3 (Pre
369.3); PC and LPC, [M + H]" with Pre 184.1; PA, [M +
NH4]" with Neutral Loss of 115.0 (NL 115.0); PE and
LPE, [M +H]" ions with NL 141.0; PI, [M + NH4]" with
NL 277.0; PS, [M +H]" with NL 185.0; Triacylglycerol
(TAG) with ten NL, including palmitic (P, 16:0), linolenic
(Ln, 18:3), linoleic (L, 18:2), oleic (O, 18:1), stearic (S, 18:
0), eicosadienoic (20:2), gadoleic (20:1), arachidic (20:0),
erucic (22:1), and behenic (22:0). PG and LPG were deter-
mined by the same diacyl standards with other PC and PE
species, but no response factors were reported.

Deconvolution is applied to the data for overlapping of
isotopic peaks. Each spectrum was subtracted by back-
ground. Later, the signal normalized by internal stan-
dards was wused for relative quantification. Since
molecular species in the same class would have similar
ionization efficiency, the same class of internal standards
was applied to quantification analysis. Quality controls
were made by pooling from all 25 samples. After the first
6 quality controls, the mass spectra of internal standard
mixture only, one quality control, and normally 10 pa-
tients’ samples were acquired successively. The average
molar amount of lipid species detected in “internal stan-
dards only” was used for background subtract. At last,
the data were normalized by the analyzed sample
amount to generate data with the concentration unit of
nmol/pL.

Statistical analysis

Four criteria were applied to select lipid biomarkers can-
didates. Species below the detection of limit, species with
excessive missing values, species with insignificant differ-
ence between patient and control groups, and species
with insignificant fold change would be removed. Cri-
teria for retention were: 1) mean of serum lipid with
concentration was higher than 0.0007 nmol/uL; 2) lipid
species with less than 50% missing value; 3) difference
between control and patient groups was statistically
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significant p < 0.05; 4) fold changes in concentration in
serum lipid is >2 (up or down). Later, Orthogonal Pro-
jections to Latent Structures (OPLS) and receiver oper-
ating characteristic curve (ROC) were applied to
evaluate the biomarker candidates. In MetaboanalystR,
the OPLS-DA model was constructed, and ROC analysis
was performed based on the selected biomarker candi-
dates [28]. All the results were demonstrated as the
mean + SD. Individual p-values were reported in the fig-
ures with values of p<0.05 considered as statistically
significant.

Results

Subject characteristics

Previous data demonstrated that patients with COPD
exhibit systematic dysregulation in lipid metabolism, in
which sphingolipid pathway is higher in smokers with
COPD compared with smokers without COPD [15].
Other study indicated that sphingomyelins are strongly
associated with emphysema and glycosphingolipids are
associated with COPD exacerbations [19]. To confirm
these findings and search for novel lipid biomarkers as-
sociated with COPD, we examined the serum lipid pro-
filing from 25 serum samples, among them 20 samples
from patients with different severity levels of COPD and
5 samples as controls showed in Table 1. Each GOLD
stage has 5 samples from the subjects. There were no
significant differences in baseline characteristics between
the patients with and without COPD. All the subjects
have a history of smoking and were of similar age. Not
surprisingly, there is a positive correlation between the
pack-years (the number of cigarette smoking packs
multiplied by the number of smoking years within same
patients) and the stage of COPD.

Lipid profiling of 377 lipid species

Using electrospray ionization mass spectrometry (ESI-
MS), 377 individual lipid species were identified using
previous published method (Supplemental Table 1) [29].
These lipid species include 11 classes of phospholipids, 1
class of sphingolipids, 1 class of sterol lipids, and 1 class
of glycerolipids. Among the abundance of the lipid spe-
cies, our lipidomics data indicates that 54% of PC,
26.22% of CE, 6.5% of SM, 4.4% of TAG, 10% of other
lipid species (Fig. 1a). Among all identified lipids species,
the highest concentration in serum was CE (18:2)
(112.25 +33.50 mM in patients vs 118.34 + 33.02 mM in
controls). Among phospholipids, the lipid with the high-
est concentration in serum was PC (34:2) (91.68 +27.10
mM in patients, 103.92 + 49.07 mM in controls). Among
sphingolipids, the lipid species with the highest concen-
tration in serum was SM (16:0) (17.64 £ 4.97 in patients,
17.69 + 3.01 mM in controls). Among triacylglycerol spe-
cies, the lipid with the highest concentration in serum
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Fig. 1 Lipidomic analysis of serum samples from patients with different severity of COPD. a. Relative lipid species composition in serum samples by
electrospray ionization mass spectrometry (ESI-MS); b. Venn diagram of 50 lipid species with either FDR-adjusted significance (p < 0.05, blue with 17 lipid
species) or two-times fold change (green with 43 lipids species); ¢. Detailed fold change of 50 lipid species: 10 lipid species with both two-times fold
change and p < 0.05 (orange bar), 32 lipid species with two-times fold change only (green bar), 7 lipid species with significant change (blue bar) only

was TAG (52:2) (13.36 +7.63 mM in patients, 14.40 +
8.2 mM in controls). Comparing the concentration of all
the lipid species in serum, the significant fold change be-
tween patient and control groups ranged from positive
40-fold for ePS (36:3) to negative 33.3-fold for ePE (40:
6). Supplemental Figure 1 shows the examples of mass
spectrum of precursor and neutral loss scan.

Identification of individual lipid species as biomarker
candidate

In order to quantify the individual lipid species, the con-
centrations of individual lipid species with more than
50% detection values were retained for further analysis
(total 268 species). The remaining missing values were
replaced by the half of the minimum positive value in
original data. Log transformation was performed before
statistics analysis. Fold changes and p-value were also
applied to separate the individual lipid species among
the controls and patients with different stages of COPD.
First, a t-test was applied to compare the difference be-
tween the mean concentration of lipid species in COPD
and controls. As shown in Fig. 1b, a total of 17 lipid spe-
cies were identified to be statistically significant different
(p <0.05). Later, the Log2 value of fold change was used
as the cut-off value to compare the lipid species from
disease and from control groups (Log2Fc >1 or<-1).
Of interest, 43 lipids were obtained to have distinct

concentration values of lipid species (Fig. 1b). Therefore,
based on the statistical approach, a total of 50 lipid spe-
cies were selected as biomarker candidates. As shown in
Fig. 1c, among these 50 lipid species, 33 lipid species
had considerable fold change but p > 0.05 (green bar), 7
lipid species had statistically significant difference but
fold change <2 (blue bar), and 10 lipid species met both
criteria as fold change >2 and p<0.05 (orange bar).
These results demonstrate a total of 10 lipid species have
satisfied both p-value and fold change cut-off and could
be selected as potential biomarker candidates.

Identification of lipid species ratio as biomarker
candidate

Previous data suggest that the ratios of the concentra-
tions between two relative metabolites could convey
more information compared to the two individual me-
tabolites [30]. In addition, the ratios between two or
more lipid species especially between the subjects and
products could be a biomarker for diseases which
reflecting the specific metabolic enzyme [31]. For ex-
ample, the ratio of lysophosphatidylcholine (LPC) to
phosphatidylcholine (PC) was indicated the dysregula-
tion of lysophosphatidylcholine acyltransferase 1, that
play essential roles during the tumorigenic process of
gastric cancer [32]. In this study, within the 268 lipid
species after excluding missing values, ratios of all
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possible lipid pairs were calculated, and the top 10 ratios
(based on p-value) were chosen as lipid ratio candidates
for further biomarker analysis. In Table 2, the top 10
lipid ratio candidates with p-value <0.001 and fold
change >2 were demonstrated. Interestingly, the most
significant ones were the ratio of glycerophospholipids
to cholesterol ester such as PI (38:4)/C16:1 CE and
PI(36:2)/C16:1 CE. Moreover, 8 of the ratios of glycero-
phospholipids to cholesterol ester were lower in COPD
groups, while the rest 2 lipid ratios biomarkers were
higher in COPD groups. Patients with severe COPD
have a higher level of cholesterol in the blood [33]. The
upregulation of cholesterol could be partially due to the
adverse effects of cigarette smoking on lipoprotein regu-
lation [34-37]. In aggregate, we successfully identified
10 lipid ratio biomarker candidates from the patients
with different severity of COPD.

Evaluation of lipid biomarker candidates by OPLS-DA and
ROC analysis

To validate the diagnostic potential of those biomarker
candidates, a supervised multivariate data analysis
(OPLS-DA) was performed to discriminate the bio-
marker candidates between COPD patients and control
[38]. The discriminant analysis was evaluated by the cu-
mulative modeled variation in the matrix of lipid species
(R2X), the cumulative modeled variation in the matrix
of the COPD samples (R2Y), and the cross-validated
predictive ability (Q2) [39]. In our OPLS-DA model of
50 lipid species candidates, R2X, R2Y, and Q2 of the
model were 0.111, 0.888, and 0.67 respectively; In the
OPLS-DA model of 10 lipid species candidates, R2X,
R2Y, and Q2 of the model were 0.242, 0.777, and 0.719;
In the OPLS-DA model of 10 lipid ratio candidates,
R2X, R2Y, and Q2 of the model were 0.619, 0.766, and
0.735. Q2 is used to calculate how well a variable can be
predicted and estimated by cross-validation, and R2X in-
dicates how well the variation of a variable is repre-
sented. Basically, each model with R2X > 0.5 and Q2 >

Table 2 Top 10 lipid ratio biomarker candidates
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0.4 is considered as a robust model in metabolomics
analysis [39]. According to these validated predictive
ability (Q2) values, the lipid ratios has excellent predict-
ive ability. As shown in Fig. 2, OPLS-DA scores plot of
10 lipid ratio candidates clearly separate the control and
COPD patients. Although the model of single lipid spe-
cies were not satisfied, ROC analyses were applied to
further select valuable biomarkers.

Next, we confirmed the feasibility of using lipid ratio
as COPD diagnostic markers with receiver operating
characteristic curve (ROC) plot analysis. The area under
the ROC curve was also utilized to assess the efficacy of
the selected biomarker candidates. The results of the
area under the curve (AUC), the sensitivity (true-positive
rate) and specificity (false-positive rate) was calculated
by MetaboAnalystR in R [28]. According to ROC ana-
lysis from 51 lipid species candidates, the 10 lipid species
candidates occupied most of the top 10 highest AUC
values as shown in Table 3. The possible values of AUC
range from 0.5 (no diagnostic ability) to 1.0 (perfect
diagnostic ability) [40]. Among these 10 lipid species, all
of them had AUC values larger than 0.7, including 5
lipid species with AUC values larger than 0.8. Among
the 10 lipid species, PI (36:6) had the highest AUC value
0.95, and it has significantly lower concentration (> 8
fold lower) in COPD groups. In addition, the 10 lipid ra-
tio candidates were also evaluated by ROC analysis. As
shown in Table 2, all of the lipid ratio candidates had
AUC values higher than 0.9. As shown in Fig. 3, the ra-
tio PI (38:4)/C16:1 CE had the highest AUC value at 1.
Comparing with the ratio PI (38:4)/C16:1 CE in the con-
trol group, the value of PI (38:4)/C16:1 CE in patients
with COPD is significant decreased with only one third.
Thus, we can get high sensitivity and specificity from 4
lipid species and all 10 lipid ratios by OPLS-DA and
ROC analysis, indicating the potential as serum COPD
biomarkers.

Finally, we explored the ability of lipid ratio bio-
markers to determine different stages of COPD. The

Rank Lipid Species Trend Lipid Class AUC Log2FC p value
1 PI(38:4)/C16:1 CE l glycerophospholipids/sterol lipids 1 -1.59 6.41E-05
2 PI(36:2)/C16:1 CE l glycerophospholipids/sterol lipids 098 -201 2.25E-04
3 C16:1 CE/C19:0 CE 1 sterol lipids/sterol lipids 0.98 1.24 3.72E-05
4 ePC(38:2)/C16:1 CE ! glycerophospholipids/sterol lipids 0.97 -1.8 2.26E-05
5 LPC(18:0)/C20:3 CE l glycerophospholipids/sterol lipids 0.95 -1.13 3.38E-05
6 LPC(16:1)/C16:1 CE ! glycerophospholipids/sterol lipids 0.94 —143 1.87E-04
7 PC(32:0)/C16:1 ! glycerophospholipids/sterol lipids 0.94 -1.23 1.51E-04
8 PC(34:3)/C16:1 l glycerophospholipids/sterol lipids 0.94 -1.36 1.00E-04
9 pPC@E8:m)/Cle:1 ! glycerophospholipids/sterol lipids 0.94 -1.78 1.17E-04
10 PC(40:4)/ePC(38:2) 1 glycerophospholipids/glycerophospholipids 0.94 1.14 8.76E-05
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lipid ratio PI (38:4)/C16:1 CE is shown in the spots plot
in Fig. 4. As shown in Fig. 4a, the lipid ratio PI (38:4)/
C16:1 CE could distinguish the control group from the
patients with COPD, but it cannot distinguish different
stages of COPD. Since age and smoking status are major
risk factors for COPD, we were asking if the lipid ratio
PI (38:4)/C16:1 CE is associated with these characteris-
tics. Interestingly, the ratio of PI (38:4)/C16:1 CE de-
creases with the burden of cigarette smoking status in
patients with COPD (Fig. 4b). Additionally, this lipid

Table 3 Top 10 lipid species biomarker candidates

ratio was not affected by age (Fig. 4c). Collectively, our
lipidomic results suggested individual lipid and lipid ra-
tio signatures could be used as potential diagnostic bio-
markers in future study.

Discussion

Due to the prevalence of COPD, there is a demanding
for reliable non-invasive biomarkers in diagnosing and
treating patients. Blood biomarkers are relatively non-
invasive and easy to obtain for this purpose [41]. Among

Rank Lipid Species Mass Element Trend Lipid Class AUC Log2FC P value
1 PI(36:6) 8725 C45H75013P ! glycerophospholipids 095 -3.08 0.0057
2 C16:1 CE 640.6 C43H78NO2 1 sterol lipids 0.88 1.54 0.0077
3 TAG(54:6) 22:6/16:0/16:0 896.8 C57H10206N 1 glycerolipids 0.86 177 0.0098
4 Pl(44:6) 984.6 C53H91013P ! glycerophospholipids 0.82 -1 0.0368
5 PC(32:1) 7325 C40H7808PN 1 glycerophospholipids 08 142 0.0212
6 ePE(34:2) 702.5 C39H7607PN ! glycerophospholipids 0.8 -1 0.041
7 TAG(54:5) 18:2/18:1/18:2 898.8 C57H10406N | glycerolipids 0.8 =12 0.0456
8 SM(22:0) 787.7 C45H91N206P 1 gphingolipids 078 12 00312
9 LPE(20:2) 506.3 C25H4807PN ! glycerophospholipids 0.75 -1.07 0.0432
10 ePS(38:3) 800.6 C44H8209PN l glycerophospholipids 0.73 -1 0.0445
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all the blood biomarkers, blood eosinophils are the best
characterized and the most applied in clinical practice
[42—44]. Recent data indicates that the correlation be-
tween the COPD and the blood eosinophils is low (R* =
0.35), and this correlation is significantly affected by age
and the presence of hypertension [45]. Other study
shows that bacteria load could lower the eosinophil
counts in patients with COPD [46]. In addition, a total
number of 34 blood biomarkers were assessed in the
ECLIPSE cohort [47]. Among these 34 biomarkers, only
fibrinogen, CC-16, and surfactant protein D were classi-
fied as stable biomarkers of baseline disease activity with
low correlation coefficient [47]. Therefore, more innova-
tive and reliable biomarkers are needed to differentiate
the status of disease. Approximately 30% of COPD pa-
tients are considered obese, obesity reciprocally corre-
lates with morbidity in patients with moderate to severe
COPD [11, 48]. In order to understand the role of lipids
in the development of COPD, we performed lipidomic
analysis on serum from different severity levels of
COPD. A total of 377 lipid compounds were identified
in human serum from 25 patients. After the overall lipid
profiling, using statistics and fold change filtration, a
total of 10 lipid species and 10 lipid ratios were found to
be significantly different between patients with COPD
and controls. Together, our data suggest a lipid metabol-
ism disorder play a unique role in the pathogenesis of
COPD, and these unique lipidomic signatures need fur-
ther validation for future study.

In single lipids level, 10 lipid species were selected as
biomarker candidates, including six species of phospho-
lipids, two species of glycerolipids, one species of sphin-
golipids, and one species of sterol lipid. Among them,
three phospholipids (PC(32:1), PI(36:6), PI(44:6)), one
glycerolipid TAG(54:6) 22:6/16:0/16:0, one sphingolipid
(SM(22:0)), and one sterol lipid (C16:1 CE) were higher
in patients with COPD comparing with the control. On
the other hand, one glycerolipid TAG(54:5) 18:2/18:1/18:
2, and four other phospholipids (ePE(34:2), ePS(38:3),
LPE(20:2), and PS(34:0)) were lower in patients with
COPD.

Lipid ratios have been proven to be a useful biomarker
for several diseases, including cardiovascular disease,
Alzheimer’s disease, and diabetes [49-51]. In addition,
using lipid ratios as a disease indicator would carry more
information and be more biologically meaningful. Our
results showed that all of the ratio glycerophospholipids/
sterol lipids were lower in COPD patients than in
healthy controls. The ratio of two sterol lipids C16:1 CE/
C19:0 CE and the ratio of two glycerophospholipids PC
(40:4)/ePC(38:2) were higher in COPD groups compared
with the control group. Further studies are needed to es-
tablish the biological mechanisms of these ratios in
COPD patients.
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In the ROC analysis, the AUC of all biomarker candi-
dates was calculated. Generally, an AUC of 0.5 suggests
no diagnostic ability to distinguish patients with and
without the disease, 0.7 to 0.8 is an acceptable level, 0.8
to 0.9 is an excellent level, and more than 0.9 is an out-
standing level [52]. Based on this criteria, for single lipid
biomarker candidates, lipids including PS(34:0), ePS(38:
3), LPE(20:2), ePE(38:6), SM(22:0) are acceptable bio-
marker candidates; ePE(34:2), PC(32:1), PI(44:6), Cl6:1
CE are excellent biomarker candidates; and PI(36:6) is
outstanding biomarker candidate. For lipid ratio bio-
marker candidates, all of them are outstanding bio-
marker candidates. The AUC values of lipid ratio
biomarker candidates showed higher sensitivity (true-
positive rate) and specificity (false-positive rate) for dis-
tinguishing COPD objects from controls (Fig. 4). Here
we applied AUC value above outstanding level (AUC >
0.9) as cut off point, all of the 10 lipid ratios and 4 lipid
specie (AUC > 0.9) are qualified as potential biomarkers
in diagnosing COPD disease in the future. However, the
biological functions of these biomarker candidates need
to be validated before the confirmation of useful COPD
biomarkers.

Glycerolphospholipids, which are the main lipid class
identified in this study, are highly enriched within the
pulmonary airway surfactant. A surfactant disorder was
reported to be related to the pathogenesis of COPD [53].
PI consisted of an inositol group and two fatty acid
chains linked by a glycerol backbone. In a previous re-
port, the upregulation of phosphatidylinositol-3 kinase
(PI3K) generated extra oxidative stress on COPD pa-
tients [54]. The lower production of PI in our study
could partially due to the activation of PI3K pathway in
patients with COPD. Pulmonary surfactant is a complex
mixture consisting of phosphatidylcholine (PC), neutral
lipids, and specific proteins [8, 9]. It is essential for nor-
mal lung function because it reduces surface tension at
the air-liquid interface of lung alveoli. Surfactants defi-
ciency might be related to the development of COPD
[10, 11]. PC16:0/16:0 was reported to be a key compos-
ition of pulmonary surfactant [55]. PC 16:0/18:0 was also
reported to represent around 1% of surfactant phospho-
lipid [56]. Besides, the higher level of phosphatidylcho-
line hydroperoxide was found to be associated with the
increase of pulmonary artery pressures, which is import-
ant in the pathogenesis of COPD [57]. Previous study in-
dicated PC is its main component of surfactant, while
proteins and other phospholipids contribute to the dy-
namic properties and homeostasis of alveolar surfactant
[13]. The PC profiling from the patients with different
stages of COPD were demonstrated in Supplemental
Figure 2. We found PC (16:0/18:1) percentage is posi-
tively correlated with the severity of COPD. While PC
(16:0/18:2) and PC (16:0/20:2) is negatively correlated
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with the severity of COPD. This data suggests that alter-
ation of PC in plasma are pronounced in the pathogen-
esis COPD. As pulmonary surfactant deficiency was
closely associated with COPD [14], the change of PC 32:
1 in COPD patients in our results could be another indi-
cator of surfactant composition change. Due to small
sample size, our data did not reach the significant differ-
ence. Therefore, PC labeling signature need to be vali-
dated in large dataset using stable isotope standards for
potential biomarker in the future.

However, PE was reported to increase in COPD pa-
tients’ serum or sputum by previous lipidomics study
[15, 58], which was not identified in our study. Phospha-
tidylserine (PS) comprises a minor percentage of a
phospholipid, but it has an important effect on cell sig-
naling and blood coagulation [59]. Interestingly, PS and
ePS were higher expressed in our results, which were
not observed in previous studies on COPD patients in
our knowledge. Although COPD was not reported to
have a direct influence on Triacylglycerolipid (TAG), we
observed a unique labeling pattern of TAG in patients
with COPD. Among them, TAG(54:5) 18:2/18:1/18:2
was lower while TAG(54:6) 22:6/16:0/16:0 was higher in
patients with COPD, suggesting these labeling patterns
may play essential roles in the development of COPD.

Sphingolipids play an essential role in the development
of COPD [10, 60]. Smokers and COPD patients have ele-
vated levels of ceramides in their lungs. Accumulating
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data indicate that tobacco smoke induces pulmonary
and vascular cell apoptosis via ceramide production by
alveolar macrophages [10, 61-63]. Sphingomyelins (SM),
including phosphoethanolamines and ceramides, are the
main class of sphingolipids. Neutral sphingomyelinase-2
(nSMase-2), which hydrolyzes sphingomyelin to produce
ceramide, is elevated in small airways cells and alveolar
macrophages from COPD patients compared with the
control [64]. Consistent with these data, we found a
higher level of sphingomyelin (SM, 22:0) in COPD pa-
tients. Thus, identification of specific lipid regulations
may yield new insight for diagnosis and treatment.

The high hydrophobicity of cholesterol ester (CE)
leads the esterified cholesterol moving from the surface
into the center within discoidal high-density lipoprotein
(HDL), which will transform discoidal HDL into spher-
ical HDL [65]. This transformation leads HDL to higher
cholesterol carrying capacity in the blood. Consistent
with previous data [66], the major format of cholesterol
ester is C18:2 CE as shown in Supplemental Table 1. Pa-
tients with very severe COPD have a much higher level
of cholesterol [33, 35]. Interestingly, our results indicated
the ratio of C16:1 CE in patients with COPD is about 3
times higher than that in healthy controls. Biosynthesis
pathways of lipids usually involve two or more lipid spe-
cies and related enzymes. Therefore, changes in these
biosynthesis pathways can be reflected by a specific lipid
ratio. Lecithin cholesterol acyltransferase (LCAT) is a
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key enzyme for the production of cholesteryl esters in
plasma, which exerts on the formation and maturation
of HDL-C [67, 68]. Ratios of glycerophospholipids/sterol
lipids in our study consist of two major classes, PI/CE
and PC/CE. PC/CE ratio is highly associated with the
function of lecithin cholesterol acyltransferase (LCAT),
which can hydrolyze phosphatidylcholine and transfer
the free cholesterol to cholesterol ester (CE). After ester-
ification of cholesterol, the higher hydrophobicity of CE
would enhance the capacity of lipoproteins. The correl-
ation between the concentration of HDL and the status
of COPD is not very conclusive. Clinical studies on men
with more than 10 years of smoking history showed that
smokers had lower plasma HDL fractions 2 and 3 [37].
Another meta-analysis indicated that smokers had sig-
nificantly higher concentrations of cholesterol and LDL,
and the lower concentrations of HDL in the serum [36].
On the contrary, other studies showed patients with
COPD tend to have higher levels of high-density lipo-
protein cholesterol (HDL-C) [69]. As previously de-
scribed in the discussion, COPD is associated with an
increasing level of HDL-C, which refers to the elevation
of LCAT. Therefore, the decreasing PC/CE ratio in
COPD patients is possibly due to the increased function
of LCAT, resulting in the elevation of HDL-C (Fig. 5). In
addition, PI/CE ratio occupied the top 2 in the AUC
value rank of 10 lipid ratio biomarker candidates. Al-
though the PI/CE ratio does not involve pathways like
the PC/CE, PI has been shown to enhance the
mobilization of cellular sterol and promote a rapid clear-
ance of both cholesterol and cholesterol ester from the
plasma in vivo [70]. Phosphoinositide-3-kinase-delta
(PI3K-§) is activated in COPD and targeting PI3K-§
mimic the effects of could reverses corticosteroid resist-
ance in animal model of COPD [71].

Finally, correlation analysis was performed to explore
the possible effects of age, BMI, stages, FEV1% and
smoking pack years, on the identified biomarkers. All
the correlation analysis were shown as scatter plot in
supporting information (Supplemental Figure 3-12).
Through the correlation analysis, all the lipid ratios
could only discriminate the healthy people from the
COPD patients, but they were not affected by age, BMI,
stages, FEV1%. Interestingly, the lipid ratios showed dif-
ferences with the smoking exposure in patients with
COPD, while the healthy people had relative low pack
years among all samples. Since smoking is a main cause
of COPD, it is reasonable for these potential biomarkers
being affected by smoking pack years. Although the re-
sults are promising, limitations still exist in our study.
Due to the limited sample size and the sample size dif-
ference between control and disease groups, further ef-
forts need to validate in a large independent dataset.
Besides, since the instrument limitation, targeted lipid
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study cannot be performed, which could further validate
the results.

Conclusions

In conclusion, our study has identified potential bio-
markers for the diagnosis of COPD and acquired a vital
clue of lipid metabolism in COPD patients. Our results
discovered 4 individual lipid molecules and 10 lipid ra-
tios being able to differentiate COPD from controls.
Among these biomarkers, PI, PC, CE and their ratios PI/
CE, PC/CE are biologically significant to COPD. LCAT
could be a potential target for COPD. Future efforts
would be focused on validating these biomarkers using a
large sample size and targeted lipidomics approach. Fi-
nally, a panel of stable biomarkers will enable us to bet-
ter predict response to therapy and prognosis.
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