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Neurogenic airway inflammation in chronic cough and bronchial asthma related to
gastroesophageal reflux (GER) is involved in the esophageal–bronchial reflex, but
it is unclear whether this reflex is mediated by central neurons. This study aimed
to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway
inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following
the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was
evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP)
expression in the airway. Neuronal activity was indicated by Fos expression in the DVC.
The neural pathways from the lower esophagus to the DVC and the DVC to the airway
were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde
tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP
expression in the trachea, and the expression of SP and Fos in the medulla oblongata
nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus
of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to
enhance neuronal activity in the DVC significantly potentiated plasma extravasation and
SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric
acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated
plasma extravasation and SP release. In conclusion, airway inflammation induced by the
esophageal perfusion of HCl is regulated by DVC. This study provides new insight for
the mechanism of airway neurogenic inflammation related to GER.

Keywords: gastroesophageal reflux, dorsal vagal complex, substance P, neurogenic inflammation, chronic cough

INTRODUCTION

Gastroesophageal reflux (GER) is one of the most common causes of chronic cough and is
associated with severe asthma (Irwin et al., 1981, 1990; Klauser et al., 1990; Mello et al., 1996;
Harding and Richter, 1997; Leggett et al., 2005; Lai et al., 2013); however, its pathogenesis is poorly
understood. It was traditionally thought that aspiration leads to chronic cough and even asthma
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(Ayres and Miles, 1996; Canning and Mazzone, 2003), but
a study shows proximal GER and microaspiration into the
airways have limited roles in provoking chronic cough (Decalmer
et al., 2012), and increasing evidence indicates that neurogenic
inflammation induced by the esophageal-bronchial reflex plays
an important role (Stein, 2003; Kollarik and Brozmanova,
2009). Single acid perfusion into the distal esophagus induces
microvascular leakage, which is suppressed by a neurokinin 1
receptor (NK1R) antagonist or by cutting the bilateral vagus,
indicating that acid stimulation leads to the release of substance
P (SP) and neurogenic inflammation (Hamamoto et al., 1997).
Distal esophageal acid perfusion in rabbits decreases airway
resistance and lung compliance, which is preventable by the
administration of NK1R and a neurokinin 2 receptor (NK2R)
antagonist (Gallelli et al., 2003). Neurokinin B (NKB) also causes
airway microvascular leakage in guinea pigs (Daoui et al., 2002).
Therefore, experimental evidence indicates the importance of
neurogenic inflammation in the airway induced by GER via the
esophageal-bronchial reflex. In a previous study, we established a
guinea pig model with GER by performing repeated esophageal
HCl perfusion and observed increased plasma leakage and
neuropeptides, such as SP, neurokinin A (NKA), and NKB in lung
tissues (Liu et al., 2013), and also the airway hyperresponsiveness
and remodeling could be induced (Cheng et al., 2014). Irwin
et al. (1993) proposed that the activation of mucous membrane
receptors, rather than aspiration, is the main mechanism
underlying cough. Cough severity parallels the severity of acid
reflux (Wunderlich and Murray, 2003). Approximately 78% of
patients with acid reflux experience cough, and continuous reflux
lasting more than 5 min may lead to paroxysms of coughing.
In addition, acid perfusion in GER disease (GERD) patients
also worsens their cough (Ing et al., 1992; Ing and Ngu, 1999).
These studies suggest that cough is closely associated with
GER, and airway neurogenic inflammation could be induced by
acid stimulation in the esophagus. Besides microaspiration and
reflux, the sensitized esophageal–bronchial neuronal pathway is
also important (Houghton et al., 2016). However, whether the
esophageal-bronchial reflex and neurogenic inflammation of the
airway are involved in the modulation of central nervous system
(CNS) remains unclear.

The primary neurogenic inflammatory mediators include
SP, calcitonin gene-related peptide (CGRP), NKA, and NKB,
which are released by sensory nerve terminals. These mediators
cause vasodilatation, plasma leakage, and cough. In a previous
study, we found that SP expression in the nodose ganglion was
increased in a guinea pig model of GER (Liu et al., 2013). The
nodose ganglion is the first relay neuron of the afferent sensory
nerves, and the nucleus of the solitary tract (NTS) comprises
secondary CNS neurons from the afferent sensory nerves. Studies
have shown that airway inflammation could affect the CNS
neurons thereby modifying the airway response. The µ-Opioid
receptors in the CNS could modulate the psychological stress-
induced aggravation of allergic airway inflammation (Okuyama
et al., 2010). The allergic airway inflammation may cause a
hyperexcitable state of the airway-related vagal preganglionic
neurons, and centrally mediated airway hyperreactivity (Wilson
et al., 2007). The parasympathetic, sympathetic, and sensory

nerves innervate airways and adjust airway reflex via receptors
and neurotransmitters (Kc and Martin, 2010; Audrit et al.,
2017). It is unclear whether the central nuclei are involved
in or modulate the release of inflammatory mediators in
the lung. We hypothesized that when acid stimulates the
esophagus, sensory information reaches the medulla oblongata
and induces changes in the activity and transmitter expression
of neurons. These effects subsequently induce or intensify airway
inflammation via efferent nerves, potentially constituting an
important mechanism underlying chronic refractory cough and
severe asthma associated with GER. This study aimed to observe
the activity and neurotransmitter expression of dorsal vagal
complex (DVC) neurons after esophageal acid perfusion and the
modulation of airway inflammation via the DVC using a guinea
pig model of GER.

MATERIALS AND METHODS

Animals
Male albino Hartley guinea pigs (n = 156 in total, body weight:
350–400 g) were purchased from the Experimental Animal
Center of Jiangsu Province. The Animal Research Committee
of Guangzhou Medical University and Southeast University
approved the study protocol. Similar to previously described
methods (Liu et al., 2013), acid perfusion was performed by
anesthetizing guinea pigs in the HCl group (n = 78) with
ketamine hydrochloride [50 mg/kg, intraperitoneally (i.p.)] and
then perfusing with 0.1 mol/l HCl (including 0.5% pepsin) into
the lower esophagus (8 drops/min, 20 min/day) via a stomach
tube once per day for 14 consecutive days. Guinea pigs in the
saline group (n = 66) were perfused with saline, whereas those in
the sham group (n = 6) only had a stomach tube inserted. Control
guinea pigs (n = 6) were fed normally (Figure 1A).

DiI Tracing
Six guinea pigs perfused with HCl for 14 consecutive days
were anesthetized with ketamine hydrochloride (50 mg/kg, i.p.)
on the 1st day for DiI tracing (Figure 1B). All four limbs
were restrained, and the abdominal skin was disinfected. The
upper abdominal muscles were dissected to expose the stomach
and lower esophagus. The lower esophagus was then separated.
A microsyringe (Nanofil NF34BV-2; WPI) was used to inject a
total of 10 µl of 5% DiI (Sigma-Aldrich) into the esophageal
wall. The needle remained in place for 1 min after the injection
was complete to prevent liquid overflow. Finally, the abdominal
muscles and skin were cleaned and sutured. When the animals
recovered, they were returned to their cages for feeding.

PRV Retrograde Tracing
Six guinea pigs that were perfused with HCl for 14 consecutive
days were anesthetized with ketamine hydrochloride (50 mg/kg,
i.p.) on the 12th day for PRV tracing (Figure 1C). All four
limbs were restrained, and the skin on the neck was disinfected.
The neck muscles were dissected to expose the esophagus
and trachea. The trachea was then separated. A microsyringe
(Nanofil NF34BV-2; WPI) was used to inject a total of 10 µl
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FIGURE 1 | The experimental process of the study. (A) Intra-esophageal perfusion (saline, sham and HCl group) of guinea pigs for 14 consecutive days. (B) DiI
injection into the lower esophageal wall on the 1st day in guinea pigs in the HCl group. (C) PRV injection into the tracheal wall on the 12th day in guinea pigs in the
HCl group. (D) Microinjection into the DVC on the 12th day in guinea pigs in the HCl and saline group. The animal was fixed on a stereotaxic instrument (a). The
microinjection site (white circle) and coronal schematic are presented in (b,c).

of pseudorabies virus Bartha (PRV-Bartha) (105 pfu/ml) into
trachea wall sites. The needle remained in place for 1 min after
the injection was complete to prevent liquid overflow. Finally,
the neck muscles and skin were cleaned and sutured. When the
animals recovered, they were returned to their cages for feeding.

Nuclei Microinjection
A total of sixty guinea pigs in the HCl perfusion group were
anesthetized with pentobarbital (30 mg/kg, i.p.) on the 12th day.
Prior to surgery, guinea pigs were placed on a warming pad and
fixed to a stereotaxic apparatus (Figure 1D). The microinjection
coordinates were determined based on Canning’s study (Canning
and Mori, 2010). Guinea pigs were randomly divided into six
groups (n = 10 per group), and each group was microinjected
with one of the six following agents: artificial cerebrospinal fluid
(ACSF; 0.5 µl) to simulate a normal environment, glutamic acid

(Glu; 2 mg/ml, 0.5 µl) to excite neurons, γ-aminobutyric acid
(GABA; 5 mg/ml, 0.5 µl) to inhibit neurons, lidocaine (2%,
0.5 µl) to induce palsy, exogenous SP (5 mg/ml, 0.5 µl) to increase
the concentration of SP in the target area and anti-SP serum
(1:200, 0.5 µl) to neutralize SP in the target area. The volume was
injected over 5 min; the needle was not removed for an additional
5 min to prevent liquid overflow. Finally, the skin on the scalp
was cleaned and sutured. To evaluate the effect of the drugs on
control animals, the nuclei microinjection was also performed in
the additional sixty guinea pigs with saline perfusion group, and
the operation and drugs were described above.

Evans Blue Dye (EBD) Detection for
Airway Microvascular Leakage
Evans blue dye was injected after the last acid perfusion
in five randomly selected animals in each group that
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received nuclei microinjection. As previously reported,
leakage reflects vasodilatation and inflammation (Saria
and Lundberg, 1983). EBD (30 mg/kg) was injected into
the left internal jugular vein after the last HCl perfusion.
Animals were anesthetized with pentobarbitone (30 mg/kg,
i.p.) and transcardially perfused with 100 ml 0.9% saline to
exclude EBD from the blood vessels. Trachea and bronchi
were separated from the lungs and dried with filter paper.
Then, parts of the trachea and bronchi were coronally
sectioned into six 10-µm pieces that were observed using
an Olympus fluorescence microscope. The other tissues
were weighed and placed in methanamide at 37◦C for
24 h to extract the EBD. Absorbance was measured with
a spectrophotometer (wavelength 620 nm). The EBD
concentration was calculated based on the EBD standard
curve (0.5–10 µg/ml range).

Specimen Processing
On the 14th day, animals were anesthetized with pentobarbitone
(30 mg/kg, i.p.).

The control, saline, sham and HCl group (n = 6 per
group) animals were transcardially perfused with 0.3%
phosphate buffered saline (PBS). Then, the left lung and
bronchial tissues were rapidly removed (for ELISA), and
the animals were then perfused with 4% paraformaldehyde
in PBS. The brain, right lung, and bronchia were removed,
placed in 4% paraformaldehyde at 4◦C for 4 h and then
cryoprotected in 30% sucrose at 4◦C overnight. Parts of
right lung and bronchia were embedded in paraffin. The
tissue was then sectioned at 5 µm for hematoxylin and
eosin (HE) staining and observed using an Olympus light
microscope. The remaining right lung and brainstem tissues
were frozen with OCT and coronally sectioned at 20 µm
(lung tissues at 40 µm) using a Leica freezing microtome for
immunohistochemistry and immunofluorescence, respectively.
The total brainstem sections were 2 mm thick (1 mm from
rostral and caudal to obex, separately). One section was selected
from every five consecutive sections for immunofluorescence
and immunohistochemistry.

Brains from DiI tracing and PRV tracing animals (n = 6,
separately) were removed as described above. DiI was observed
directly using an Olympus fluorescence microscope, and PRV
was observed by immunofluorescence.

The lungs and bronchial tissues of other animals receiving
microinjection (n = 30) without EBD injection were
removed as described above. Left lungs and bronchial tissues
were used for ELISA, and the right tissues were used for
immunohistochemistry.

Immunohistochemistry
Lung tissue sections were incubated with 3% H2O2 for 15 min
to block endogenous peroxidase activity, washed with 0.3%
PBS (3 × 5 min), incubated for 1 h at room temperature
with a blocking solution (10% goat serum), and subsequently
incubated overnight with the primary antibody (mouse anti-
SP; 1:200; Abcam). The tissue was washed with 0.3% PBS
(3 × 5 min) followed by incubation for 1 h at room temperature

with a biotinylated second antibody (goat anti-mouse; 1:300;
Abcam). After washing with 0.3% PBS (3 × 5 min), sections
were incubated for 30 min with avidin/biotinylated horseradish
peroxidase (HRP), washed with 0.3% PBS (3 × 5 min), and
reacted with DAB as a chromogen. Sections were observed using
an Olympus light microscope.

Immunofluorescence
Brainstem sections were washed with 0.3% PBS and 0.4%
Triton-X 100 (3 × 5 min) and incubated for 1 h at room
temperature with a blocking solution (10% goat serum), then
overnight with primary antibodies (rabbit anti-Fos, 1:500, Santa
Cruz; mouse anti-SP, 1:200 Abcam; and rabbit anti-PRV, 1:200,
Abcam). Sections were then washed with PBS (3 × 5 min)
followed by incubation for 1 h at room temperature with the
appropriate secondary antibodies (AlexaFluor R© 594-conjugated
goat anti-rabbit, 1:400, Invitrogen; AlexaFluor R© 488-conjugated
goat anti-mouse, 1:400, Invitrogen). After washing (3 × 5 min
in PBS), sections were observed using an Olympus fluorescence
microscope.

ELISA
The bronchi and lungs were weighed, boiled (100◦C) for 10 min
in 1 M acetic acid (1:10, wt/vol), diluted with 0.1 M PBS and
homogenized. Homogenates were transferred to polypropylene
tubes and centrifuged (40,000 × g, 4◦C, 20 min). Before
measurements were taken, the supernatant was centrifuged again
(40,000 × g, 4◦C, 20 min). The SP concentration was measured
using an ELISA kit (Cayman) following the manufacturer’s
instructions.

Statistical Analysis
Data were expressed as the mean ± SD and analyzed for
significant differences using SPSS 17.0 software. Comparisons
among multiple groups were performed using one-way
analysis of variance (ANOVA). A p-value < 0.05 was
considered statistically significant. The mean densities for
immunohistochemistry and EBD were determined using
Image-Pro Plus (IPP). Immunofluorescence measurements were
determined at the same time that positive neurons were counted
using IPP. Six lung and brain tissue sections each were selected
randomly for statistical analysis.

RESULTS

Inflammation in the Airway and
Esophagus After Repeated
Intra-Esophageal HCl Perfusion
In the HCl-treated group, we observed tracheal and bronchial
mucosal edema, partial epithelial shedding, vasodilation,
and mucosa and submucosa congestion (Figure 2A). No
abnormalities in the tracheal mucosa were observed in the
other three groups. We also excluded HCl direct reflux or
microaspiration into the airway by performing 99mTc tracing as
described in our previous study (Liu et al., 2013).
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FIGURE 2 | HCl perfusion into the esophagus caused airway inflammation. (A) Pathological changes in the lung tissues of guinea pigs in four groups as assessed by
HE staining. (B) SP expression (black arrow) in the airway of the HCl group animals was increased compared with that of the other three groups. (C) SP mean
density is presented. (D) SP concentrations were measured by ELISA. Data are expressed as the mean ± SD. ∗∗∗p < 0.001 compared with the other three groups;
#p > 0.05 among the control, saline and sham groups; one-way ANOVA followed by LSD test.

Esophageal HCl Perfusion Increased SP
Expression in the Airway
SP-like immunoreactivity (SP-li) was observed in bronchus
and lung tissues, predominantly in the cytoplasm of epithelial
cells in the peribronchial region (Figure 2B). The mean
density of SP-li staining was significantly increased in the
HCl-treated group (1.41 ± 0.12, Figure 2C) compared with
the other groups, and the SP concentration was increased
in the HCl group (30.60 ± 3.73, Figure 2D). No significant
differences were detected among the other three groups. These
data demonstrate that intra-esophageal HCl perfusion induced
the release of neurogenic inflammatory mediators in the
airway.

Intra-Esophageal HCl Perfusion
Enhanced Neuronal Activities and SP
Expression in the DVC
Fos-positive cells were primarily distributed in the DVC
[123.75 ± 18.42, including the NTS and dorsal motor nucleus
of the vagus (DMV)], intermediate reticular nucleus (IRT,
195.86 ± 24.39), and lateral reticular nucleus (LRT, 104.39 ± 8.70)
in the HCl-treated group. No Fos-positive cells were observed in
the control group. No differences were noted between the saline
and sham groups (Figures 3A,B).

SP-positive cells were located in the cytoplasm and primarily
distributed in the DVC (76.17 ± 14.45), IRT (11.64 ± 2.56), and
LRT (10.86 ± 2.63) in the HCl-treated group. Few SP-positive
neurons were observed in other groups, and no significant
differences in SP expression were noted among the other three
groups (Figures 3C,D).

Co-expression of Fos and SP in the DVC
of GER Guinea Pigs
A large number of Fos/SP double-labeled cells were primarily
observed in the DVC of HCl-treated guinea pigs (Figure 4A),
accounting for approximately 24.19% of Fos-positive cells and
39.47% of SP-positive cells observed (Figures 4B,C). Double-
labeled neurons were occasionally observed in the IRT and LRT.
The results showed that HCl perfusion into the lower esophagus
caused neuron activity and SP expression.

DiI Tracing Between the Esophagus and
Medulla Oblongata
DiI-labeled neurons were distributed in the NTS (1.86 ± 0.69),
DMV (3.06 ± 0.52), nucleus ambiguous (Amb, 10.53 ± 1.72),
and Pa5 (4.61 ± 0.92) (Figures 5A,B). These findings proved
the connection between the lower esophagus and nuclei in the
medulla oblongata.

Frontiers in Physiology | www.frontiersin.org 5 May 2018 | Volume 9 | Article 536

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00536 May 10, 2018 Time: 16:20 # 6

Chen et al. DVC Modulates Neurogenic Airway Inflammation

FIGURE 3 | Fos and SP expression in the nuclei of the medulla oblongata in four groups. (A) Fos expression (white arrow) in the DVC, IRT, and LRT in the HCl group
was increased compared with expression in the other three groups. Fos-positive cells were not observed in the control group. (B) Fos-positive cell counts are
presented. (C) SP expression (white arrow) in the DVC, IRT, and LRT was increased in the HCl group compared with expression in the other three groups.
(D) SP-positive cell counts are presented. Data are expressed as the mean ± SD. ∗∗∗p < 0.001 compared with the other three groups; #p > 0.05 for Fos-positive
cell counts between the saline and sham groups; #p > 0.05 for SP-positive cell counts among the control, saline and sham groups; Dunnett’s T3 test. cc, central
canal.

FIGURE 4 | Fos/SP-positive cell distribution in the nuclei of the medulla oblongata in the HCl group. (A) Fos/SP-positive cells (white arrow) were primarily distributed
in the DVC (including NTS and DMV), and a few cells were observed in the IRT and LRT. (B,C) Fos/SP-positive cells represent a large proportion of Fos- or
SP-positive cells, especially in the DVC.
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FIGURE 5 | (A) DiI-labeled cells (white arrow) were observed in the nuclei of the medulla oblongata in the HCl group and primarily distributed in the Amb (B).

Neural Connections to the Airway Were
Identified by PRV Tracing in GER Guinea
Pigs
Pseudorabies virus-infected neurons were observed in multiple
nuclei, including the NTS (69.78 ± 8.06), DMV (22.83 ± 4.45),
paratrigeminal nucleus (Pa5, 45.31 ± 9.75), IRT (86.31 ± 7.36),
LRT (24.03 ± 3.47), and raphe nuclei (RN, 2.89 ± 0.93)
(Figures 6A–C). Most PRV/SP double-labeled neurons were
distributed in the NTS (approximately 44.68% of PRV single-
labeled neurons and 33.87% of SP single-labeled neurons) and
DMV (65.22% of PRV single-labeled neurons and 37.50% of SP
single-labeled neurons), with few observed in the other nuclei
(Figures 6D–F). The results indicated that the NTS and DMV
neurons connecting to the airway were active, and SP expression
increased during HCl intra-esophageal perfusion.

Airway Inflammation Is Modulated via
the DVC
Microinjection was performed to alter neuronal activities and
SP concentrations, and SP expression and microvascular leakage
in the airway were subsequently assessed in the HCl group
(Figures 7, 8). Glu or exogenous SP significantly increased airway
microvascular leakage (EBD mean density, Glu 0.13 ± 0.02
and exogenous SP 0.10 ± 0.01 vs ACSF 0.07 ± 0.01; EBD
concentration, Glu 89.50 ± 12.73 and exogenous SP 97.34 ± 9.22
vs ACSF 68.22 ± 7.44) and SP expression (SP mean density, Glu
1.75 ± 0.12 and exogenous SP 1.74 ± 0.06 vs ACSF 1.48 ± 0.09; SP
concentration, Glu 43.58 ± 6.00 and exogenous SP 43.58 ± 4.41
vs ACSF 32.06 ± 3.83). Opposite results were observed following
the injection of anti-SP serum, GABA, or lidocaine (EBD mean
density, anti-SP 0.05 ± 0.02, GABA 0.04 ± 0.02 and lidocaine
0.04 ± 0.01 vs ACSF 0.07 ± 0.01; EBD concentration, anti-SP
50.81 ± 7.32, GABA 48.56 ± 2.92 and lidocaine 45.72 ± 3.95 vs
ACSF 68.22 ± 7.44) and SP expression (SP mean density, anti-
SP 1.30 ± 0.07, GABA 1.23 ± 0.07 and lidocaine 1.11 ± 0.17 vs
ACSF 0.07 ± 0.01; SP concentration, anti-SP 26.44 ± 4.03, GABA
24.33 ± 2.82 and lidocaine 23.16 ± 3.62 vs ACSF 68.22 ± 7.44). In
the saline perfusion animals, there were no differences in the SP

and EBD densities and concentrations among all the six groups
(Figures 9, 10). These results revealed that airway neurogenic
inflammation was altered by DVC neuronal activities and SP
concentration in esophageal HCl perfusion.

DISCUSSION

Many studies have shown associations between airway
inflammation and GER, but the brainstem nuclei involved
in the progression of airway inflammation is still uncertain.
In this study, we have found DVC neurons may modulate
neurogenic airway inflammation in guinea pigs with esophageal
HCl perfusion.

Previous studies (Gestreau et al., 1997; Ohi et al., 2005; Jakus
et al., 2008) have confirmed the location of neurons related
to cough using c-fos. Jakus et al. (2008) used Fos to locate
the brainstem neurons related to cough and revealed that a
large number of the medulla oblongata, pons, and midbrain
neural nuclei are involved in the regulation of coughing in
cats. The central terminals of cough receptors are a critical
component to cough gating, and terminals localized in the
medial subnuclei of NTS were confirmed by microinjection and
dual-tracing studies (Canning and Mori, 2010). In this study,
airway inflammation was influenced by the microinjection of
Glu, GABA, or lidocaine, which altered neuronal activity in the
injected areas. Our findings revealed that the DVC potentially
modulates airway inflammation related to GER.

It is clear that SP increases the excitability of nucleus of the
NTS neurons, thereby facilitating lung afferent transmission in
guinea pigs and rabbits (Mutoh et al., 2000; Mutolo et al., 2007).
SP is also closely associated with the inflammation observed
in respiratory diseases. In this study, intra-esophageal HCl
perfusion induced SP expression in the lung and CNS, and SP-
immunoreactive nerve terminals were abundant in the DVC,
particularly in the NTS. SP expression was increased in the
NTS and DMV, where many Fos/SP double-labeled neurons
were observed in GER guinea pigs. These findings indicate
that Fos/SP-positive neurons were active, and SP was localized
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FIGURE 6 | PRV/SP-positive cell distribution in the nuclei of the medulla oblongata in the HCl group. (A) PRV-infected cells were located in most nuclei of the
medulla oblongata (white triangle). (B) PRV-infected cell distribution in the coronal schematic of the medulla oblongata. (C) PRV-positive cell counts in different
nuclei. (D) PRV/SP-positive cells (white arrow) were primarily located in the NTS and DMV. (E) The ratio of PRV/SP-positive cells among SP-positive cells. (F) The
ratio of PRV/SP-positive cells among PRV-positive cells was quite high. 4V, fourth ventricle.

FIGURE 7 | The effects of microinjection into the DVC on airway microvascular leakage in a guinea pig model of HCl perfusion. Airway inflammation was aggravated
by microinjection of exogenous SP and Glu into the DVC but was alleviated by anti-SP serum, GABA, and lidocaine. (A) Airway microvascular leakage was observed
via EBD (white arrow) after drug microinjection into the DVC. EBD mean densities and concentrations in six groups are presented in (B,C). Data are expressed as the
mean ± SD. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs ACSF group; one-way ANOVA followed by LSD test.
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FIGURE 8 | The effects of microinjection into the DVC on SP airway expression in a guinea pig model with HCl perfusion. (A) SP expression (brown staining, black
arrows) in the airway after drug microinjection into the DVC. SP mean densities and concentrations (measured by ELISA) in six groups are presented in (B,C). Data
are expressed as the mean ± SD. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs ACSF group; one-way ANOVA followed by LSD test.

FIGURE 9 | The effects of microinjection into the DVC on airway microvascular leakage in a guinea pig model of saline perfusion. (A) Airway microvascular leakage
was observed via EBD after drug microinjection into the DVC. EBD mean densities and concentrations in six groups are presented in (B,C). Data are expressed as
the mean ± SD. #p > 0.05 vs ACSF group; one-way ANOVA followed by LSD test.

in the soma, raising questions about the relationship between
central and peripheral SP. Our microinjection results reveal
that airway inflammation, vasodilation, and plasma leakage were
also consistent with changes in SP levels in the DVC following
the injection of SP or anti-SP serum. We hypothesize that
neuronal excitability or SP levels in the DVC influence nerve

endings that innervate the airway, subsequently increasing SP
release.

Higher brain circuitry was involved in the processing of
respiratory sensations according to our neural tracing results,
suggesting that sensations arising from airway vagal afferent
projections ascend the neuraxis through multiple hindbrain
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FIGURE 10 | The effects of microinjection into the DVC on SP airway expression in a guinea pig model with saline perfusion. (A) SP expression in the airway after
drug microinjection into the DVC. SP mean densities and concentrations in six groups are presented in (B,C). Data are expressed as the mean ± SD. #p > 0.05 vs
ACSF group; one-way ANOVA followed by LSD test.

FIGURE 11 | The schematic of airway neurogenic inflammation induced by HCl intra-esophageal perfusion regulated by the DVC. The stimulation of HCl reflux into
the lower esophagus was input via the vagus nerve to the nuclei in the medulla oblongata, especially NTS and DMV, and the integrated information was output via
the vagus nerve into the airway to induce changes in airway neurogenic inflammation.
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and subcortical nuclei to provide sensory input to the cerebral
cortex (McGovern et al., 2012a,b, 2015). In this experiment, we
employed PRV-Bartha, a well-defined retrograde tracer used to
study the pathway from the airway to the medulla oblongata.
The location and number of PRV-infected neurons may not be
accurate, particularly for PRV-infected and SP-positive cells, due
to the neurotoxicity of PRV. As PRV spreads to synapse-linked
neurons, our results reveal that the trachea wall is innervated
by neurons of the NTS and DMV; most PRV/SP double-labeled
neurons were located in the NTS and DMV. In combination with
our microinjection results, we conclude that the NTS and DMV
may regulate airway inflammation.

The NTS is a sensory nucleus, a visceral sensation center that
receives input from afferent nerves. Brain activities that regulate
the lung and airway enhance neurogenic inflammation induced
by neuropeptides given that CNS activities “enlarge” lung
inflammation during asthma attacks (Mazzone and Canning,
2002; Widdicombe, 2003). The vagus nerve, which is an
important pathway of communication from the immune system
to the brain, transmits inflammatory information to the CNS
(Banks and Kastin, 1991; Dantzer et al., 2000; Dantzer and
Wollman, 2003; Wrona, 2006), and inflammation is also
modulated by the vagus nerve and reflex (Tracey, 2002; Pavlov
and Tracey, 2012). In this GER model, the CNS may exhibit
a “pathological status”, and CNS inflammation may influence
the airway mutually. Similar to a report by Mazzone describing
communication from the esophagus to the nuclei in the medulla
oblongata detected by DiI tracing (McGovern and Mazzone,
2010), the DVC receives afferent information from the esophagus
and thereby controls peripheral airway inflammation in our
models. PRV-labeled neurons were observed in the NTS and
DMV, revealing communication between these sites and the
Amb, which innervates motor fibers. Based on our results,
GER associated airway inflammation and cough mediated by
esophageal–bronchial reflex arc are involved in DVC. Gastric
contents stimulate the receptors of the lower esophagus, and
afferent signals are transmitted via vagal afferent fibers to the
DVC, which is the primary center of the reflex arc. The excited
impulses from the active SP neurons are conducted to the
airway innervated by SP nerve fibers, which are important
components of vagal efferent nerves. The activated SP fibers
release SP to enhance inflammatory mediators and cough
sensitivity, thereby causing cough (Figure 11). This action
forms the vago-vagal reflex between the esophagus and airway.
Airway neurogenic inflammation is associated with not only local
airway inflammation but also brain neuron activity. The CNS
neurons play an important role in the pathological processes of
inflammation and enhanced cough sensitivity.

Chronic cough may be treated as a neuropathic disorder
(Chung et al., 2013). Gabapentin (GABA receptor agonist) and
baclofen (GABA analogue) exhibit satisfactory treatment results

in some patients with refractory cough. It is also suggested
that CNS neurons may be involved in postinfectious cough that
responds poorly to standard treatments. For further treatment
of GER-associated cough, chronic refractory cough, and even
severe asthma, the CNS may serve as a therapeutic target, and
blocking the CNS to alleviate airway neurogenic inflammation
may provide insight for future drug development.

In conclusion, the DVC is involved in the esophageal-
bronchial reflex and modulates neurogenic airway inflammation
induced by GER, and it maybe a possible mechanism of airway
neurogenic inflammation related to GER.
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