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Abstract: The use of biomolecules in nanomaterial synthesis has received increasing attention, because
they can function as a medium to produce inorganic materials in ambient conditions. Short peptides
are putative ligands that interact with metallic surfaces, as they have the potential to control the
synthesis of nanoscale materials. Silver nanoparticle (AgNP) mineralization using peptides has
been investigated; however, further comprehensive analysis must be carried out, because the design
of peptide mediated-AgNP properties is still highly challenging. Herein, we employed an array
comprising 200 spot synthesis-based peptides, which were previously isolated as gold nanoparticle
(AuNP)-binding and/or mineralization peptides, and the AgNP mineralization activity of each peptide
was broadly evaluated. Among 10 peptides showing the highest AgNP-synthesis activity (TOP10),
nine showed the presence of EE and E[X]E (E: glutamic acid, and X: any amino acid), whereas none of
these motifs were found in the WORST25 (25 peptides showing the lowest AgNP synthesis activity)
peptides. The size and morphology of the particles synthesized by TOP3 peptides were dependent
on their sequences. These results suggested not only that array-based techniques are effective for
the peptide screening of AgNP mineralization, but also that AgNP mineralization regulated by
peptides has the potential for the synthesis of AgNPs, with controlled morphology in environmentally
friendly conditions.
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1. Introduction

Different metallic nanoparticles, such as silver nanoparticles (AgNPs), have received marked
attention in various fields including molecular labeling [1], sensing [2], microbiocidal activities [3],
and catalysis [4]. To expand the characteristics of these molecules, such as optical, electronic,
and catalytic properties, numerous studies have focused on the regulation of AgNP synthesis. However,
the controlled synthesis of AgNPs, especially in an aqueous solution through a green synthesis course,
is still challenging. Hence, it is necessary to develop a technique to synthesize AgNPs, controlling their
morphology, size, and properties [5,6].

Biological molecules directed at the synthesis of metallic nanoparticles have received great
attention in recent years, due to their potential as green and economic synthesis methods [7–9].
Whereas various biological molecules, including pigments, nucleic acids and proteins are utilized for
nanoparticle synthesis and functionalization [7–13], peptides also comprise promising ligand molecules
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that bind, not only metallic ions, but also metallic crystals. This is because variants are designed
abundantly from combinations using amino acids with various physicochemical properties through
chemical synthesis [14–18]. Among a wide range of functional peptides, catalytic peptides used for
nanoparticle synthesis regulation, named mineralization peptides, have commonly been isolated from
peptides that are strongly bound to target crystals [14–16]. Considering the chemical equilibrium
of crystalline nanoparticles and their metallic ions in solution, it has been suggested that the strong
binding of peptides stabilizes the crystals, resulting in a shift in the equilibrium from an ionic state
towards that of the crystal; specifically, target crystal mineralization is mediated by peptide addition.
AgNP mineralization by peptides has been investigated for the development of an AgNP-synthesis
technique in ambient conditions [19,20]; however, detailed analyses of peptide directed-AgNP property
design are still required.

In this research area, one of the limitations is the number of known AgNP mineralization peptides.
To evaluate the mineralization mechanism, additional AgNP-mineralization peptides are required.
Among the various techniques used for peptide screening (e.g., phage display library, cell surface
display library, ribosome library), coherent membrane-supported peptide array libraries based on
spot-synthesis are known to have different advantages, such as ease of peptide sequence identification
(DNA sequencing is not necessary), chemical synthesis without a biological organism, and the gain
of mineralization activity data from positive (high-mineralization peptides) to negative (weak- or
null-mineralization) with amino acid sequences [21,22]. In a previous study, we developed a technique
to screen nanoparticle-binding peptides using the peptide array technique [23–26]. Among them,
gold nanoparticle (AuNP)-binding peptides were isolated through the design of an array based on
variations in the amino acid frequency, informed by empirical results of their binding assays [25].
This simple strategy resulted in approximately 1800 peptides with various AuNP-binding affinities.

In this study, we explored the green synthesis of AgNPs, using peptides without any environmentally
hostile chemicals (e.g., NaBH4). To investigate the AgNP mineralization by peptides, peptide array
technology was used to identify a list of mineralization peptides with various physicochemical
properties. The peptide library was designed from an AuNP-binding peptide, previously reported,
because many of these peptide sequences revealed AuNP mineralization activity [15,25]. To expand the
potential for other nanoparticle synthesis, the top 200 AuNP-binding peptides were herein evaluated
in terms of AgNP mineralization activity.

2. Results

2.1. Screening of AgNP Mineralization Peptide Using Peptide Array Consisting of AuNP-Binding Peptides

To screen various types of AgNP mineralization peptides, AgNP mineralization properties of
the top 200 (TOP200) high AuNP-binding peptide sequences (Table S1 in [15]) were investigated.
Based on the result shown in Figure 1a, approximately 50 AgNP mineralization peptides were isolated
using the peptide array. After a 7-h incubation of the peptide array in an aqueous solution of 50 mM
AgNO3 in MilliQ water, individual peptide array spots were observed to change color, indicative
of AgNP mineralization. The mineralization profiles using a peptide array with the same peptide
library were not identical to the results of an AuNP mineralization evaluation previously reported [15].
From this observation, the mineralization mechanism associated with peptides seems to be different
between AuNP and AgNP mineralization. The observed colors were yellowish and consistent at all
mineralizing peptide spots, except those of peptide 64 (AESEHEWEVA) and 112 (NWELEEHSAS)
(Figure 1a), showing an orange-yellow color.
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Figure 1. Screening of silver nanoparticle (AgNP) mineralization peptides using peptide array consisting
of AuNP-binding peptides. (a) Representative image of peptide array after biomineralization reaction
by soaking in AgNO3-containing solution for 7 h. (b) Amino acid frequencies for high-mineralization
peptides (TOP25) and low-mineralization peptides (WORST25), based on the brightness evaluation
from each peptide spot using ImageJ. (c) Physicochemical properties of high- and low-mineralization
peptides. Physicochemical properties of high-binding TOP25 peptides (blue circle) and worse binding
WORST25 peptides (black circle), based on pI and GRAVY (the grand average of hydropathy) values.
The latter is considered the average hydropathy value for all amino acids in a peptide sequence;
therefore, high GRAVY values denote hydrophobicity.

In addition, comparative analyses of amino acid frequencies and sequences among the TOP25
peptides are shown in Figure 1b. Comparing the amino acid frequency with the average of all 200
library peptides, results indicated a significantly higher proportion of acidic amino acids, including
aspartic acid (D) and glutamic acid (E) monomers in AgNP mineralization peptides, whereas these
were notably reduced in the bottom 25 (WORST25) peptides. It is probable that this results from
the negative charge of amino acids, which can interact with Ag+. In terms of other minerals of
magnetite and hydroxyapatites, the importance of these amino acids has also been reported; however,
the mechanisms are still controversial [22–24]. Therefore, these residues could comprise a prerequisite
for all AgNP biomineralization peptides. The importance of acidic amino acids was also supported
by the plot analysis of peptide physicochemical properties (Figure 1c). Almost all peptides were
found in a region of hydrophilicity and a low isoelectric point (pI), whereas the bottom 25 (WORST25)
peptides were widely spread in the chart. The amino acid frequency and physicochemical properties of
AgNP mineralization peptides were different from those of AuNP mineralization peptides (Figure S1).
A tryptophan residue was clearly an important amino acid for AuNP mineralization, and the pI
and hydropathy values did not appear to coincide with the Au mineralization activity. A detailed
investigation based on these differences would contribute to the elucidation of metallic nanoparticle
mineralization peptides and their sequence design to control particle properties.

In the image of the peptide array after AgNP mineralization activity evaluation, peptides
demonstrating strong Ag mineralization are signified by a low summed color intensity value. The TOP10
peptides (re-named AgMP1–10; Ag mineralization peptide 1–10) and the WORST10 are listed with
their physicochemical properties in Tables 1 and 2, respectively. Interestingly, nine peptides of the
TOP10 peptide sequences were found to have a unique motif, specifically EE and E[X]E (E: glutamic
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acid, and X: any amino acid), whereas none of these motifs were found in the WORST10 peptides
(Tables 1 and 2). The motif collectively possessing glutamic acids would be an important factor for
AgNP mineralization by peptides.

Table 1. List of Ag mineralization peptides (TOP10) screened, and their physical properties.

Peptide No. Sequence Mineralization Activity 1 pI 2 GRAVY2 2

AuP64 (AgMP1) AESEHEWEVA 162.9 4.09 −1.11
AuP13 (AgMP2) EEPHWEEMAA 168.2 4.09 −1.42
AuP11 (AgMP3) PEESQEGWMA 168.2 3.67 −1.4
AuP112 (AgMP4) NWELEEHSAS 169.4 4.24 −1.41
AuP139 (AgMP5) ETEWLGHETL 174.7 4.24 −0.88
AuP41 (AgMP6) WSEETEMWPL 177.8 3.67 −0.97
AuP82 (AgMP7) WQENSMEENW 183.9 3.67 −2.17
AuP180 (AgMP8) HWWWEHEMEH 185.1 5.22 −2.09
AuP165 (AgMP9) EGSDHPSWNQ 186.0 4.35 −2.17
AuP28 (AgMP10) PEEGPHSLWH 186.3 5.23 −1.49

1 Using Image quant software, the mineralization activity of each peptide was determined through the quantitative
analysis of spot color intensity for peptide array images. Average values for peptide spots are shown from
triplicate independent experiments. 2 Based on the ProtParam tool in ExPASy (http://web.expasy.org/protparam/),
the isoelectric point (pI) and the grand average of the hydropathy value (GRAVY) were shown.

Table 2. List of Ag mineralization peptides (WORST10) screened and their physical properties.

Peptide No. Sequence Mineralization Activity 1 pI 2 GRAVY 2

AuP77 YWASHKHWWW 221.2 8.61 −1.42
AuP173 WMMWGWVHEI 221.6 5.24 0.27
AuP65 TQWHEWHWYQ 221.9 5.98 −2.16

AuP155 NWTHWSTTQH 222.0 6.92 −1.81
AuP137 VHYGSQIEWG 222.7 5.24 −0.53
AuP95 AHALWIWHKT 223.0 8.76 −0.09

AuP125 TTWHGFPWAG 223.1 6.74 −0.42
AuP74 VLWRHEWAWK 223.1 8.75 −0.80

AuP116 WHHWAQGWHG 223.5 7.02 −1.48
AuP117 YEAVSTTWQS 224.0 4.00 −0.62

1 Using Image quant software, the mineralization activity of each peptide was determined through the quantitative
analysis of spot color intensity for peptide array images. Average values for peptide spots are shown from
triplicate independent experiments. 2 Based on the ProtParam tool in ExPASy (http://web.expasy.org/protparam/),
the isoelectric point (pI) and the grand average of the hydropathy value (GRAVY) are shown.

2.2. Ag Nanoparticle Synthesis by Screened Mineralization Peptides

The AgNP mineralization activity of the top three (TOP3) peptides (AgMP1; AESEHEWEVA,
AgMP2; EEPHWEEMAA, and AgMP3; PEESQEGWMA) was further investigated for use in the
one-pot green synthesis of AgNPs in aqueous solution. Herein, in the presence of different peptide
and AgNO3 concentrations, AgNP mineralization was demonstrated (Figure 2). Particle synthesis by
AgMP1 and AgMP2 was confirmed easily by the naked eye, and orange/yellow pigments derived from
synthesized AgNPs were observed, whereas no color change was found in the presence of AgMP3 or
without peptide. Therefore, it was shown that for the identified peptides, at least two can function in
AgNP mineralization. In addition, according to the increase in peptide and AgNO3 concentrations,
the increase in absorbance signals at 450 nm, indicative of AgNP mineralization, was found in the
presence of AgMP1 and AgMP2, whereas no significant change was found in the presence of AgMP3
and in the absence of peptide. When the reaction was conducted with 5 mM of each peptide (AgMP1
and AgMP2) and 50 mM AgNO3, maximum absorbance signals were observed.

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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Figure 2. Silver nanoparticle (AgNP) synthesis using the top three (TOP3) screened peptides (AgMP1,
AgMP2, and AgMP3) from the peptide array. Mineralization was evaluated based on absorbance
intensity (450 nm) in the presence of different concentrations of peptides (0, 0.25, 0.5, 1.0, 2.5, and 5.0 mM)
and AgNO3 (0.5, 5.0, and 50 mM).

To further characterize the mineralization mediated by peptides, time-course analyses of AgNP
synthesis were performed, showing gradual AgNP synthesis (Figure 3). Clearly, different absorbance
spectra were obtained by using AgMP1 and AgMP2, whereas no significant absorbance was found in
the negative control (without peptide). The solution containing AgNPs synthesized by AgMP1 had
two absorbance peaks at 420 nm and one broad peak at approximately 490 nm. The AgMP2-based
solution revealed one broad absorbance peak at 450 nm. These spectra are expected to be derived from
localized surface plasmon resonance (LSPR) by synthesized AgNPs. As the LSPR wavelength depends
on the shape, size, and agglomeration state [25–27], it was suggested that the synthesized AgNPs have
different characteristics.
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Figure 3. Time-dependent changes in absorption spectra of silver nanoparticles (AgNPs) synthesized by
screened peptides, including AgMP1(AuP64) and AgMP2(AuP13). The mineralization was monitored
until 132 h in the presence of each mineralization peptide (5 mM) and AgNO3 (50 mM). Images of
solutions containing AgNPs synthesized by each peptide at 132 h are included.

2.3. Transmission Electron Microscopic (TEM) Observation of AgNPs Synthesized by Screened
Mineralization Peptides

A TEM observation of synthesized AgNPs by each peptide (AgMP1 and AgMP2) was conducted
(Figure S2). These two solutions contained two types of particles, large agglomerate and small spherical
particles. Interestingly, the morphologies of agglomerate particles were obviously different in each
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sample. In the presence of AgMP1, large agglomerates made by vertically overlapping nanoplates
(mainly triangle nanoplates) with sizes of 250 nm to 1 µm were found. To the best of our knowledge,
there are no reports of a silver agglomerate with this unique morphology. In general, the triangle silver
nanoplate revealed absorbance at 420 nm and the red-shifted region [27,28]. Therefore, two absorbance
peaks at 420 and 490 nm might be observed in the solution containing AgNPs synthesized by AgMP1.
In addition, as an increased absorbance in the whole range of wavelengths was found, the aggregation
of biomineralized AgNPs seems to have occurred. This was supported by TEM observation; large
agglomerates were found in the solution. From the size evaluation of more than 350 randomly selected
AgNPs, the size of small spherical nanoparticles was 19.1 ± 9.3 nm. The AgNPs synthesized by AgMP2
showed large agglomerates with a coral morphology and a smaller size range than that of AgNPs
derived from AgMP1 (200 to 750 nm). The small spherical nanoparticles were also smaller (4.9 ± 2.4 nm)
than the AgNPs synthesized by AgMP1.

3. Discussion

Using a list of AuNP-binding peptides synthesized on a peptide array, AgNP mineralization
activity was evaluated. As a result, more than 50 AgNP mineralization peptides were effectively
isolated (Figure 1). This is probably because Au and Ag have similar metallic properties and the utilized
peptide library contains a large number of tryptophan molecules, which could play an important role
as electron donors for particle formation. The result obtained here suggests that the 200 peptides have
potential for the synthesis of other nanoparticles. However, the AgNP mineralization activity of isolated
peptides was not consistent with that of AuNPs. This was very interesting because this observation
reveals the potential of peptide isolation for metallic species-specific mineralization, through further
comparative studies with other metals.

From the sequence analysis of isolated AgNP mineralization peptides, EE and E[X]E (E: glutamic
acid, and X: any amino acid) motifs were found. For this kind of analysis, it is beneficial to use peptide
array technology, because the activity information could be obtained from all peptides, whereas it
is difficult to use a positive screening technique including phage display library-based screening.
In addition, the results indicated that the AgMP1 and AgMP2 peptides have two and three EE and
E[X]E (E: glutamic acid, and X: any amino acid) motifs in their sequence, respectively, whereas AgMP3
has only one. This observation suggested that the number of EE and E[X]E (E: glutamic acid, and X:
any amino acid) motifs is important for peptide-based AgNP mineralization in solution.

As shown in Figure 3, the AgNP mineralization reaction was still occurring, even after 132 h.
In the case of AuNP mineralization, when G1 (ETGHHIWEWM) and B3 (ASHQWAWKWE) peptides
were used, AuNPs of 2.6 ± 1.2 nm and 34.7 ± 6.7 nm were synthesized, respectively [15]. Interestingly,
the reaction for smaller particle synthesis with an irregular shape reached a plateau within 10 min,
whereas the synthesis of larger particles with unique morphologies, including triangle nanoplate and
decahedron particles, required approximately 12 h [15]. As AgNPs with unique morphologies were
also observed after long reaction times in this study, the difference in reaction kinetics seems to be a key
factor for the formation of different sizes and morphologies of AgNPs, as discussed in a previous study
on AuNP synthesis regulation [29–31]. In addition, further investigation of the interaction between
peptides and specific crystal facets should be performed to elucidate the morphological regulation,
because various biological molecules bound to a specific crystal surface are suggested to contribute to
morphological regulation in the biomineralization process [32–36].

In conclusion, using a peptide array comprising an AuNP-binding peptide library, AgNP
mineralization peptide screening was performed and identified approximately 50 different peptide
candidates. From these sequence analyses, some unique characteristics, including amino acid frequency
and physicochemical properties with a unique sequence motif, specifically EE and E[X]E (E: glutamic
acid, and X: any amino acid), were found. Interestingly, among the TOP3 AgNP mineralization peptides
isolated from the peptide array, two peptides (named AgMP1 and AgMP2) were revealed to possess
AgNP-synthesis activity resulting in different morphologies. Moreover, it should be noted that although
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detailed analyses were only performed for two peptides screened in this study, the investigation
could be expanded to the entire array of peptides. A comprehensive analysis using various peptides
might contribute to the elucidation of AgNP mineralization by peptides and peptide design for
morphologically controlled AgNP synthesis through a one-pot green course. The investigation of
particle properties of each AgNP synthesized by the peptides might also lead to particle applications
in various fields.

4. Materials and Methods

4.1. Peptide Array Synthesis Using Spot Technology

We used a cellulose membrane (grade 542; Whatman, Maidstone, UK), activated by β-alanine as
the N-terminal basal spacer, as reported previously [37,38]. With a peptide auto-spotter (ResPepSL;
Intavis AG, Köln, Germany), each activated Fmoc amino acid (0.5 M) was spotted on the membrane,
as per the manufacturer’s instructions. After adding the first amino acid residue, the remaining amino
groups were blocked with 4% acetic anhydride. The membrane, deprotected with 20% piperidine in
N,N′-dimethylformamide (DMF), was subsequently washed thoroughly with DMF, followed by ethanol
at each amino acid elongation process. After the final deprotection step, side-chain-protecting groups
were deprotected using a solution of m-cresol:thioanisol:ethandithiol:trifluoroacetic acid (1:6:3:40) for
3 h. The membranes were finally carefully washed with diethyl ether and ethanol and dried.

4.2. Screening of AgNP Mineralization Peptides Using Peptide Array

To screen AgNP mineralization peptides, 200 AuNP-binding and/or mineralization peptides
were synthesized on a cellulose membrane. The synthesized membrane was incubated in an aqueous
solution of 500 mM AgNO3 in MilliQ water under fluorescent light. After incubation for 7 h, individual
peptide array spots were observed to change color, indicative of AgNP mineralization. After washing
twice with MilliQ water, the mineralization activity of each peptide was evaluated quantitatively,
based on the color intensity derived from AgNP mineralization activity onto peptide spots. This was
measured from digitized images of the peptide array after the mineralization experiment (ImageQuant
TL software, GE Healthcare, Tokyo, Japan).

4.3. AgNP Synthesis and Characterization Using Screened Mineralization Peptides

To evaluate the effects of AgNP mineralization peptides on AgNP synthesis in free aqueous
solution (not on the peptide array), chemically synthesized and purified peptides were added to
the reaction solution. The peptide was synthesized following the standard Fmoc-based solid-phase
protocol, with a Respep SL automatic peptide synthesizer (Intavis AG, Köln, Germany). Briefly,
Fmoc protected amino acid residues were applied to the TentaGel Resin stepwise for elongation of the
peptide chain. The synthesized peptide was deprotected with 20% piperidine in DMF and cleaved from
the scaffold resin by the cleavage cocktail containing TFA, water, thioanisole, phenol, EDT, and TIPS
(82.5:5:5:2.5:1). Peptides were precipitated in cold diethyl ether and dissolved in 30% acetonitrile for
storage in a form of freeze-dried powder. Purification was performed with an ODS-80TS column
(Tosoh Corp., Tokyo, Japan) and a high-performance liquid chromatography (HPLC) system (LC-20AR,
CBM-20A, SIL-20AC, CTO-20AC, SPD-20AV, Shimadzu Corp., Kyoto, Japan), before measuring the
molecular weight by matrix assisted laser desorption/ionization mass spectrometry (AXIMA-CFRPlus,
Shimadzu Corp.) (Figure S3). The final purity of the peptide was confirmed to be > 85% using an
ODS-100Z column (Tosoh Corp.) and the HPLC system (Shimadzu Corp.)

Three different peptides comprising three AgMPs screened using a peptide array (AgMP1;
AESEHEWEVA, AgMP2; EEPHWEEMAA, and AgMP3; PEESQEGWMA) were investigated.
The peptide powders were dissolved in 100% DMSO (100 mM peptide). After confirming that
DMSO did not affect Ag mineralization, different volumes of the peptide solution were added to
AgNO3 containing MilliQ water for Ag mineralization evaluation.
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TEM analysis was performed using a Hitachi H7650 microscope (Hitachi, Tokyo, Japan), operating
at a working voltage of 100 kV. Specimens were prepared through the drop-casting of 1.5 µL of
the sample dispersion onto a formvar-coated 200-mesh Cu grid (Nisshin EM, Tokyo, Japan) and
washed with MilliQ water twice. The average sizes (± SD) of nanoparticles were obtained by manually
counting >350 randomly selected particles in TEM images. UV-vis optical absorbance of the AgNPs was
delineated using a microtiter plate reader (PowerScan 4, DS Pharma Biomedical Co., Ltd., Osaka, Japan).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/7/2377/s1.
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