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Summary 
Allergic respiratory diseases (ARDs) are still a major burden on global public health. Sublingual immunotherapy (SLIT) is a mode of allergen im-
munotherapy (AIT) which involves administration of the allergen under the tongue, and benefits from tolerogenic properties of the oral mucosa. 
Studies revealed reduced levels of eosinophilia and eosinophil-dominated inflammation in airways of both animals and humans after SLIT. SLIT 
was also suggested to lower basophil responsiveness and innate lymphoid cell-2 function in blood samples collected from patients with ARD. 
Moreover, apart from shifting pathogenic type 2 (TH2) to a type 1 (TH1) and protective regulatory (Treg) polarization of helper T-cell immune re-
sponse, antibody isotype switch from IgE to IgG1, IgG2, IgG4 and IgA was also reported in patients with ARD receiving SLIT. Today, the literature 
on SLIT-mediated activities is still scarce and more studies are required to further enlighten the mechanisms utilized by SLIT for the induction 
of tolerance. The aim of this review is to summarize the current knowledge about the immune-regulatory mechanisms induced by SLIT against 
ARDs.
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Introduction
Today allergic respiratory diseases (ARDs) continue to be a sig-
nificant global public health problem [1–3]. However, albeit hu-
mans are continuously in contact with allergens, not everyone 
develops allergic reaction which highlights the importance 
of both extrinsic as well as intrinsic factors for the inception  
of the disease. Numerous genetic studies correlated the risk of 
developing allergies with multiple genes many of which were 
immunity related [4, 5]. Moreover, according to the hygiene 
hypothesis, the elevated prevalence of allergic diseases is due to 
increased sterile hygiene practices in the modern world leading 
to dysregulation of immune system and microbiome dysbiosis 
because of diminished exposure to immune-stimulating micro-
bial agents in the early childhood [6].

The AIT differs from the other pharmacological approaches 
for ARDs (e.g. anti-histamines, non-steroidal anti-inflamma-
tory drugs-NSAIDs) as it can both provide protection against 
the symptoms and improve the natural course of the allergy. 
The effects are mediated by its distinctive ability to modulate 
the allergen-specific T-helper type 2 (TH2) immune responses 
and induce the generation of tolerance against the causative 
agent by inducing immunosuppressive cytokine secretion and 
antigen-specific regulatory T-cell (Treg) activation [7].

The AIT has subtypes that differ in the routes of allergen 
administration. Among those subcutaneous immunotherapy 
(SCIT) and sublingual immunotherapy (SLIT) are the two 

main forms of AIT that are practiced by the clinicians against 
ARDs [8, 9]. The SLIT is considered to be a convenient alter-
native to SCIT which requires frequent injections and periodic 
visits to medical centers, as it involves self-administration of 
the allergen under the tongue [10]. The SLIT is also regarded 
as a safer approach as it is associated with lower risk of se-
vere systemic reactions [10]. This review summarizes the cur-
rent literature on the mechanisms of action induced by SLIT 
against ARDs.

Immunopathogenesis of ARDs: an overview
Respiratory epithelium provides an effective barrier against 
invading foreign particles including microbial agents and al-
lergens, through its physical barrier function (i.e. epithelial 
tight junctions), innate immune defence function (i.e. foreign 
particle detection and cytokine release) and mucociliary activ-
ities [11]. Various environmental factors including smoking, 
detergents, ozone, diesel exhaust as well as some allergens 
with protease enzymatic activity are known to disrupt the epi-
thelial barrier function and tight junctions (TJs) [12]. Entry 
of foreign substances into the body due to disruption of the 
epithelial barrier initiates protective innate immune response 
by activating myeloid and dendritic cells (DCs), which in turn 
leads to generation of adaptive immune response by antigen 
presentation to helper T cells and cytokine release [13].
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The DCs play an important role in allergic responses 
by presenting the internalized allergens/antigens to naïve 
T cells during ARDs [14]. Following the engulfment of 
the foreign particles, DCs display CCR7- and CCR8-
dependent migration to neighboring lymph nodes in order 
to induce naive CD4+ T-cell activation. In the presence of 
cytokines released by DCs (e.g. IL-4 and IL-13), activated 
T-cells differentiate to TH2 cells which in turn would pro-
mote IgE-mediated immune response [15]. Cytokines such 
as interleukin (IL)-25 and IL-33 which are released locally 
to initiate epithelial repair are known to increase TH2-
polarizing capacity of DCs [16].

The alarmins can also promote TH2-mediated immune 
response via local innate lymphoid cell (ILC)-mediated ac-
tivities which are regarded as innate counterparts of helper 
T cells (TH cells) and important sources of early innate ef-
fector cytokines [5]. Among the ILC subtypes, ILC2s are 
increasingly recognized as essential in the initiation and 
orchestration of allergic TH2 inflammation [17]. In atopic 
subjects, the resultant TH2-mediated immune response can 
result in further disruption of the epithelial barrier function 
by reducing TJ expression levels which would lead to ex-
acerbation of allergy symptoms by increasing sensitization 
to the allergen and consequently promoting inflammatory 
response [18, 19].

Allergic sensitization results in the generation of predom-
inantly TH2 cells which are responsible for the induction of 
allergen-specific IgE production by the follicular B-cells in the 
secondary lymphoid tissues; germinal centre B-cells which 
are activated by CD40-signaling undergo isotype switching 
from IgM to IgE in the presence of TH2 cytokines such as IL-4 
and IL-13 [20, 21]. The secreted IgE antibodies set the stage 
for the effector phase of allergic reactions by occupying the 
high-affinity IgE receptors (FcεRI) on mast cells and baso-
phils. During the effector phase, the cross-linking of FcεRI 
receptors upon interaction with IgE-bound allergens leads to 
release of granular mediators (e.g. histamine), lipid mediators 
(e.g. leukotrienes) and type 2 cytokines by mast cells and 
basophils [21, 22]. The released mediators lead to vasodila-
tion, increased vascular permeability, bronchoconstruction, 
and mucus production during the acute allergic reaction [23].

While the early signs of immediate allergic immune re-
sponse are IgE-dependent, the late-phase reactions are 
mainly regulated by infiltrated TH2-cells which results in 
further activation of the immune cells in the microenvir-
onment including basophils, MCs, eosinophils, and B 
cells. This leads to the second wave of type 2 cytokine (e.g. 
IL-4, IL-5) and mediator (e.g. leukotrienes, prostaglan-
dins, histamine, tryptase, eosinophilic cationic protein, 
and peroxidases) release that can elevate IgE production 
and eosinophil infiltration [7]. Among the TH2-cytokines 
released in the microenvironment, IL-5 serves as the key 
mediator for eosinophil proliferation, while IL-4 and 
IL-13 facilitate the eosinophil recruitment by increasing 
expression levels of endothelial adhesion molecules (e.g. 
L-selectin, and very late antigen-4) [24]. Upon degranula-
tion, eosinophils release granule-associated basic proteins, 
lipid mediators and reactive oxygen species which further 
exert epithelial cell damage and airway hyperactivity with 
mucus production. Moreover, eosinophils can also facili-
tate airway edema and bronchoconstriction indirectly 
through their modulating activities on other leukocytes 
including mast cells and T cells [25].

SLIT on immune cell functions during ARDs
Despite the growing number of studies on the contribution 
of AIT in the management of allergic diseases [26], the rele-
vant literature on the SLIT in the context of ARDs is still 
scarce. The SLIT aims to induce mucosal immunity against 
airway allergic reactions through administration of allergen 
extract as drops or dissolvable tablet under the tongue [27, 
28]. While the allergen can arrive in local lymph nodes as 
unbound via free diffusion, it can also be delivered by oral 
DCs which can migrate to the proximal lymph nodes for the 
activation of both allergen-specific T- and B-cells upon en-
gulfment of the foreign particle [29]. Generation of allergen 
specific blocking antibodies and skewing allergen-specific im-
mune response away from TH2 to type 1 T cell (TH1) and 
Treg cells are essential for the pro-tolerogenic adaptive im-
mune responses [30].

Innate immune cells
In mice, sublingual antigens were able to pass through the epi-
thelial cells to reach ductal APCs [31]. The DCs were crucial 
in the induction of tolerogenic T cells against allergic airway 
responses following SLIT [32]. Facilitating antigen uptake by 
DCs had a positive contribution to enhance the SLIT efficiency 
against ARDs [33, 34]. Moreover, inclusion of adjuvants such 
as Pam3CSK4; 1,25-dihydroxyvitamin D3 plus dexametha-
sone; and Lactobacillus plantarum which would skew the 
immune response away from TH2, increased SLIT-associated 
protective activities mediated by murine DCs against airway 
hyperesponsiveness [35, 36]. Nevertheless, there has not yet 
been any study on the role played by distinct DC subtypes 
including myeloid and Langerhans types (LCs) latter of which 
was shown to be at levels higher in oral mucosa of allergic 
subjects compared with healthy controls [37]. Moreover, oral 
LCs were previously reported to differ from skin counterparts 
in terms of constitutive expression of IgE receptor, and elevated 
expression levels of major histocompatibility complex class I 
and II molecules as well as co-stimulatory molecules [38] that 
suggest tissue-specific phenotype in the oral microenvironment 
which may influence SLIT-induced mechanisms [39]. On the 
other hand, oral macrophage-like cells are also thought to mi-
grate to cervical lymph nodes and support regulatory CD4+ 
T-cell function in asthmatic mice following SLIT [40].

Antigen-specific IgE production is central in pathogenesis 
of atopic diseases, and due to the expression of high-affinity 
IgE receptors eosinophils, MCs and basophils are considered 
as essential cells in the allergic reactions responsible for 
ARDs. Of those, while MCs are tissue resident cells, baso-
phils and eosinophils home to areas of allergic inflammation 
[41]. In a previous study by Kaminuma et al., treatment of 
mice sublingually with ovalbumin (OVA) diminished eosino-
phil infiltration to bronchoelavolar and nasal cavities after 
intratracheally or intranasally challenge with OVA [42]. 
Following SLIT with birch pollen (BP) extract, BP-sensitized 
mice displayed reduced lung eosinophilia [43]. Moreover, 
HDM-based SLIT exhibited both prophylactic and thera-
peutic effects in an experimental mouse model of HDM-
induced eosinophil-dominated airway inflammation [44].

Similar results were also observed in human studies since 
significantly reduced nasal eosinophilia was reported in pa-
tients with allergic rhinitis and/or asthma following SLIT 
by two independent randomized controlled studies [45, 46]. 
Additionally, reduced fractional exhaled nitric oxide (an 
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index of eosinophilic airway inflammation) and nasal eo-
sinophil cationic protein levels were reported in patients with 
ARD upon SLIT [47, 48]. On the other hand, while baso-
phil responsiveness also displayed reduction following SLIT 
in patients with respiratory allergies to house dust mite and 
timothy grass [49, 50], there has not yet any report on the 
effect of SLIT on the allergen-specific MC level and activity 
in the context of ARDs.

The ILC2s represent another tissue-resident immune cell 
population distributed in mucosal tissues with important 
roles in type 2 inflammation and allergic diseases. Peripheral 
blood samples collected from subjects with allergic rhin-
itis (AR) displayed elevated levels of ILC2 which were in 
positive correlation with IL-13 levels and symptom scores 
[51, 52]. While a previous study by Shamji et al. reported 
SLIT-induced elevated levels of IL-35-inducible regulatory T 
cells which have inhibitory activity against ILC2-mediated 
type 2 immune responses [52], there has not been any data 
demonstrating the airway ILC2 frequency and/or function 
in patients with ARD after SLIT.

Adaptive immune cells
The SLIT was able to prevent the development of allergic 
reaction in sensitized animals by normalizing imbalance 
between TH1 and TH2 responses by exerting inhibitory 
and promoting activities on TH2 (e.g. IL-4) and TH1 (e.g. 
interferon, IFN-γ) cytokine secretion, respectively [43, 44, 
53–55]. Moreover, modification of SLIT with inclusion of 
adjuvants or adenylate cyclase vector system to target oral 

DCs were shown to act through skewing CD4+ T-cell po-
larization away from TH2 cells to Treg and TH1 cells in 
asthmatic mice model [35, 40, 56]. Elevated blood Treg 
cell levels and TH1 cytokine concentration were associated 
with clinical improvement in patients with ARD after SLIT 
[57, 58]. Peripheral blood mononuclear cells (PBMCs) 
isolated after a year of SLIT demonstrated reduced level 
of allergen-induced proliferation relative to the baseline 
levels obtained from PBMCs collected before SLIT [59]. 
In a study by Swamy et al, epigenetic modifications within 
the Foxp3 locus was shown to have a crucial role in the 
development of SLIT-mediated T-cell tolerance against al-
lergic reactions [50]. On the other hand, besides of Treg 
cells, IL-10/IFN-γ double positive Tr1-like cells were also 
involved in the induction of tolerance in patients with ARD 
following SLIT [60].

Characteristic inflammation pattern in the patients with al-
lergic diseases involves the IgE production by B-cells under 
the influence of type 2 cytokines [61]. Data obtained from nu-
merous studies investigating the efficiency of AIT also provided 
insights on the IgE production dynamics; similar to SCIT which 
causes a transient increase followed by a decrease in serum IgE 
production [27], SLIT was able to elevate the allergen-specific 
IgE levels within the initial few months [62–66], while unaltered 
or reduced IgE levels were detected after at least a year of treat-
ment in relative to the basal values [49, 50, 67–77]. However, 
elevated IgE levels after long-time treatment were also demon-
strated by some studies which could be due to differences in the 
treatment protocol (e.g. allergen concentration) used [59, 78].

Table 1: comparison of head to head SLIT versus SCIT studies in terms of clinical and immunological outcome

Author Study 
design 

No of 
patients 

Allergen Tx duration 
(month) 

Clinical results Immunologic results 

Schulten [60] RC 40 Grass 15 NE IL-5 decreased with SCIT
IL-10 increased with SCIT/SLIT

Xian [58] RC 67 Mite 12 TRS, TRMS, VAS, TAS 
decreased with SCIT/SLIT

SpIgG4 increased with SCIT/SLIT
IFN-δ increased with SCIT
CD4+CD25+Fox p3+ T regs increased 

with SLIT
Keles [85] RC 60 Mite 18 SS, MS, ICS dose, asthma attack 

frequency decreased with 
SCIT/SLIT

IL-10, TGF- β, IFN-δ increased with 
SCIT/SLIT

Sp.IgG4 increased with SCIT
Antunez [67] RC 23 Mite 24 NE Sp.IgE, CD8+CD25+ cells decreased,

Sp.IgG4 and Sp.IgE/IgG4 increased 
with SCIT

Karakoc-Aydiner [84] RC 48 Mite 36 VAS, TRS, TAS, TSS, TMS 
decreased with SCIT/SLIT

Sp.IgG4 increased with SCIT

Yukselen [83] RC 30 Mite 24 TRS, TAS, TRMS, TAS 
decreased NPT threshold 
increased with SCIT/SLIT

IL-10 and Sp.IgG4 inreased with SLIT/
SCIT

Shamji [92] RC 84 Grass 24 At year 1: lower TNSS was 
detected in the SCIT-treated 
group.

At year 2 years: TNSS was 
lower in both SCIT and 
SLIT groups

Higher nasal Sp.IgA and IgE levels in 
SLIT group subjects.

Serum Sp.IgG, and IgG4 levels were 
higher in patiens with SCIT

Abbreviations: Tx: treatment; RC: randomized controlled; NE: not evaluated; TRS: total rhinitis score; RMS: total rhinitis medication score; VAS: visual 
analogue score; TAS: total asthma score; SS: symptom score; MS: medication score; ICS: inhaled corticosteroid; TSS: total symptom score; TMS: total 
medication score; TNSS; total nasal symptom score; NP: nasal provocation test.
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The isotype-switched antibodies have the potential to in-
hibit IgE-mediated responses by targeting the IgE epitopes 
on the allergic antigen and blocking allergen-IgE immune-
complexes from binding to IgE receptors [79]. IgG4 is 
regarded as an efficient blocker of IgE-dependent inflam-
matory reactions since it has low avidity to allergen and 
high affinity to inhibitory FcγRIIb receptors [79]. Its in-
duction was suggested as a general maker of successful AIT 
[80, 81], and in accord, elevated IgG4 levels and decreased 
IgE/IgG4 ratio were reported after long-term SLIT [49, 50, 
59, 67, 75, 76, 78, 82, 83]. However, the relevant litera-
ture is not consistent due to studies showing no change 
in specific IgE, IgG, and IgG4 levels between SLIT-active 
and SLIT-placebo groups despite the significant decrease 
in asthmatic symptoms and medication use in the former 
group [77, 84, 85]. This can be at least partially explained 
by a mechanism that would generate tolerance against 
ARD through induction of other specific IgG subclasses 
including IgG1 and IgG2 [49, 50, 53–55, 57, 59, 62, 63, 
65, 67, 75, 76, 78, 82, 86, 87], both of which were also 
suggested to be with therapeutic importance following AIT 
[88, 89]. On the other hand, long-term SLIT was also as-
sociated with reduced or unchanged serum IgA levels [49, 
68] which could be due to enhanced transportation of IgA 
into the mucosal secretions [75].

When compared with SCIT, SLIT displayed some differ-
ences in the efficacy and immune responses that are triggered 
against ARDs [90, 91] (Table 1). In a study by Schulten et al., 
patients with ARD exhibited reduced IL-5 levels only following 
SCIT, but not SLIT [60]. In another report, total rhinitis score 
was inversely correlated with Treg and IFN-γ levels in SLIT 
and SCIT, respectively [58]. The SCIT was better in elevating 
IFN-γ/IL-4 ratio as well as the levels of CD4+CD25+ T-cells 
and allergen specific IgE and IgG4 antibodies [58, 67, 83–85]. 
Furthermore, quite recently, both AIT forms were suggested 
to differ in the predominant antibody class for the induction 
of tolerance (IgG4 and IgA in SCIT and SLIT, respectively) 
in patients with ARD [92]. Similar differences were also ob-
served in a mouse model for allergic asthma; SLIT was able 
to suppress allergen-induced AHR and clinically relevant lung 
function parameters, but was not able to exert any significant 
effect on type 2 allergic inflammation which was effectively 
suppressed by SCIT [86]. In the same study, higher IgG1 and 
IgG2a levels were reported following SCIT and SLIT, respect-
ively [86]. While these can be suggestive of the possible di-
vergence between the two approaches in the mechanism(s) of 
action, they can also be due to the other factors such as the 
higher cumulative dose of allergen and the use of adjuvants in 
SCIT [93], which are needed to be addressed by future studies 
for more confirmatory conclusions.

Figure 1: immune-regulatory mechanisms demonstrated for SLIT against ARDs. Both animal and human studies reported reduced level of respiratory 
eosinophilia and eosinophil-dominated inflammation (a). The SLIT was also suggested to exert inhibitory activities on blood basophil responsiveness (b) 
and ILC2 function (c) in patients with ARD. Animal studies suggested the positive contribution of facilitating antigen uptake by DCs to increase SLIT 
activity against ARDs (d). Treg differentiation in response to SLIT is supported by oral macrophage-like cells migrating to cervical lymph nodes (e). The 
SLIT induced an adaptive immune response toward a TH1 and Treg, phenotype away from the allergic TH2 phenotype, in both animal and human patient 
studies using blood samples (f). In correlation with the skewed T-cell-mediated immune response, the SLIT was also associated with serum antibody 
isotype switch from IgE to IgG1, IgG2, and IgG4 in patients with ARD (g). The lack of change in serum IgA levels were suggested to be due to enhanced 
transportation of IgA into the mucosal secretions (h). The figure was generated using BioRender software.
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Conclusions
Avoidance to limit the allergen exposure and medications 
including anti-inflammatory drugs and anti-histamines are 
among the typical treatment approaches which are in use 
today against ARD. The AIT provides a unique alternative 
strategy to both improve the symptom scores and reduce the 
need for medication [94]. Of the two main forms of AIT, 
SLIT is regarded as a more practical and safer approach 
than SCIT since it is a self-administered therapy and exploits 
the tolerogenic properties of the oral mucosa for the induc-
tion of tolerance against allergens.

Previous studies demonstrated the skewing of allergen-
specific T-cell differentiation away from the allergic TH2 
phenotype to a TH1 and Treg phenotype; and antibody 
isotype switch from IgE to IgG and IgA in patients with 
ARD receiving SLIT. The SLIT was also suggested to exert 
inhibitory activities on innate immune cells including eo-
sinophils, basophils and ICL2 (Figure 1). Nevertheless, the 
immune-regulatory mechanisms triggered by SLIT still re-
quires more attention in literature to investigate their pos-
sible divergence from those triggered by SCIT against ARDs. 
The clinical application of SLIT can also benefit from the 
modifications such as using multi-allergens [95], and com-
bination with SCIT [85], and identification of biomarkers 
associated with SLIT efficacy which would not only help 
to distinguish non-responders in clinic but also shorten the 
duration of the treatment.
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