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Abstract: We review the thermodynamics of combustion reactions involved in aluminum fires in the
light of the spate of recent high-profile tower-block disasters, such as the Grenfell fire in London 2017,
the Dubai fires between 2010 and 2016, and the fires and explosions that resulted in the 9/11 collapse
of the World Trade Center twin towers in New York. These fires are class B, i.e., burning metallic
materials, yet water was applied in all cases as an extinguisher. Here, we highlight the scientific
thermochemical reasons why water should never be used on aluminum fires, not least because a
mixture of aluminum and water is a highly exothermic fuel. When the plastic materials initially catch
fire and burn with limited oxygen (O2 in air) to carbon (C), which is seen as an aerosol (black smoke)
and black residue, the heat of the reaction melts the aluminum (Al) and increases its fluidity and
volatility. Hence, this process also increases its reactivity, whence it rapidly reacts with the carbon
product of polymer combustion to form aluminum carbide (Al4C3). The heat of formation of Al4Cl3
is so great that it becomes white-hot sparks that are similar to fireworks. At very high temperatures,
both molten Al and Al4C3 aerosol react violently with water to give alumina fine dust aerosol (Al2O3)
+ hydrogen (H2) gas and methane (CH4) gas, respectively, with white smoke and residues. These
highly inflammable gases, with low spontaneous combustion temperatures, instantaneously react
with the oxygen in the air, accelerating the fire out of control. Adding water to an aluminum fire is
similar to adding “rocket fuel” to the existing flames. A CO2–foam/powder extinguisher, as deployed
in the aircraft industry against aluminum and plastic fires by smothering, is required to contain
aluminum fires at an early stage. Automatic sprinkler extinguisher systems should not be installed in
tower blocks that are at risk of aluminum fires.

Keywords: combustion thermodynamics; aluminum fire; water extinguisher; Grenfell Tower;
tower-block safety

1. Introduction

A well-known adage of the advice given in the event of a kitchen fire is, “Never put water on
burning liquids!” There are several good reasons for this longstanding rule of engagement in the health
and safety of professional fire-fighting literature. In the case of fires involving pans of hot cooking oil,
for example, the main reason is that the heavier water with the lower boiling point would immediately
vaporize and spray the burning oil all around, thereby spreading the fire out of control. Fires are
classified according to the rules for extinguishing them; inflammable liquids and molten plastics or
metals are class B [1]. These fires involve liquids such as cooking oil, gasoline, diesel fuel, alcohol, and
molten plastics, all of which emit flammable vapors at the liquid surface. It is these vapors that burn,
not the liquid. If the surface of the liquid is static, the area is the smallest that it can be. If the liquid is
disturbed, it increases the surface area and amounts of flammable vapors released, thus increasing the
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extent of the fire. That is the main reason never to pour water on stovetop cooking oil fires. Successful
class B extinguishment is accomplished by starving the fire of oxygen, i.e., by smothering.

If the fire involves an aluminum pan, there is another good reason not to put water on it. A kitchen
fire caused by leaving an aluminum pan of food, which partially burns to carbon, on a hot stove can
also lead to a catastrophic conflagration. If the aluminum melts and reacts with the carbon, it becomes
aluminum carbide (Al4C3) which, when dry, is a harmless, yellowish brown powder. However,
aluminum carbide reacts with water to give aluminum hydroxide (Al(OH)3) plus the well-known
natural gas fuel, methane (CH4). At high temperatures, the reaction speed increases and the products
are alumina (Al2O3) + CH4. The reaction rate becomes fiercely fast, as the highly inflammable methane
adds fuel to the flames, releasing more energy to further increase the temperature.

The chemistry of metallic carbides reaction with water is well established. Molten aluminum
in contact with hot carbon readily forms aluminum carbide, which reacts with water to give off 3x
equimolar amounts of methane (CH4) gas. In the case of calcium carbide (Ca2C), the gas produced is
acetylene (C2H2), which combines with oxygen (O2) in air to produce the hottest known flame, as used
in oxyacetylene welding. The controlled application of water to calcium carbide has long been a source
of heat or light in the antique carbide lamps. This general chemistry between many metallic carbides
and water is one means of storing very high-energy gaseous fuels, such as methane, acetylene, and
hydrogen. It was first reported in nature as long ago as 1896 [2].

QUOTE: “The construction of the electric furnace by M. Moissan in 1893, in which the heating
power of the electric arc was directly utilized, by extending the upper limit of working temperatures,
fused aluminum takes up carbon readily with formation of the crystalline carbide AlC, and the oxides
of many other metals furnish similar crystalline compounds when heated in the electric furnace with an
excess of carbon. The behavior of these substances with water furnishes the most convenient mode of
classification. Of those reacting with water, the carbides of lithium, LiC, calcium, CaC, strontium, SrC,
and barium, BaC, furnish pure acetylene; of aluminum, AlC, and of beryllium, BeC, pure methane; of
manganese, MnC, a mixture of equal volumes of hydrogen and methane; whilst the metals of the cerite
group give crystalline carbides of the type RC (CeC, LaC, YC, and ThC), all of which react with cold
water, forming a complicated gas mixture containing hydrogen, acetylene, ethylene, and methane.”

Thus, we have known for at least 120 years that when the predominant materials are molten
aluminum and molten polymers, the combustion intermediate aluminum carbide is produced.
High-temperature aluminum carbide reacts instantly with water to produce copious quantities of
highly inflammable methane gas, which is the common natural gas combustion fuel that can even be
explosive. The spontaneous combustion temperature of methane is only 570 ◦C. Temperatures around
Grenfell Tower would reach an excess of 2000 ◦C. The otherwise slower burning aluminum–polymer
cladding needed nothing more than cold water to turn what was a domestic fire, manageable by
smothering containment, and evacuation, into the catastrophic inferno that was the Grenfell disaster
(Figure 1). Indeed, if water had not been used, it seems likely that the blaze would not have burned so
hot nor spread so quickly, leaving time for more efficient evacuation as was the case with the Address
Downtown Dubai fire (vide infra).

Many reports in the media have already suggested that the cladding used for the Grenfell Tower
refurbishment contributed to the rapid spread of fire. Online YouTube film footage shows flames
shooting up the side of the building and sheets of flaming material ‘raining’ down. There has been
a great deal of speculation as to why the fire spread so rapidly: the fire broke out on a warm night;
windows were open with curtains blowing in the breeze, which would have contributed to the
rapid spread of fire within the building; there were chimney ventilation effects from the cavities, etc.
Notwithstanding all of these observations, the basic reason that the fire spread out of control in just a
few minutes is that water was sprayed upon a combination of burning molten plastic and aluminum.
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Figure 1. Burning Grenfell Tower at the height of conflagration; the black smoke at the top is combustible
material burning without water; the whitish gas is mainly alumina dust from the reaction of Al and or
Al4C3 and steam, as the water still being applied. Note the intensity of the conflagration where the
water hits the building, and the associated whitish clouds around.

Notice that the flux of water hitting the lower floors is quite weak and insufficient to cause any
deluge effect. When the water hits the lower levels, it reacts with Al4C3 and Al to form large amounts
of methane and hydrogen. This gas ignites in a vertical wall of flame that rapidly rises and ignites the
higher levels. Since the gases also contain hot water vapor, there is positive feedback that leads a rapid,
mostly vertical, facade configuration that is a Hallmark of such events.

In the following sections we review (1) a brief survey of previous similar disasters, with lessons
that evidently have not yet been properly learned and instigated by the fire-fighting authorities;
(2) the properties of the combustible construction materials; (3) the thermochemical reactions involved;
and (4) the evidence that the water caused the acceleration of the conflagration from the timeline of
events. In the appendix, we review evidence that the 9/11 collapse of the World Trade Center twin
towers may also have been caused by similar reactions and cite other instances where the fires involved
buildings that were known to have been refurbished with aluminum panels.

2. High-Profile Aluminum Fires

There have been several previous high-profile tower-block fires, which are all associated with the
use of water as an ‘extinguisher’ on aluminum–polymer clad buildings, although still not recognized
as the cause of rapid conflagration by the various authorities involved.

2.1. Garnock Court, Ayrshire (1999)

This was the tower-block fire that first raised concerns over polymer and aluminum cladding on
high-rise buildings. Witnesses told how the flames leapt up yellow-colored cladding on the corners
of the block, taking just five minutes to spread to the top. The blaze prompted a parliamentary
inquiry into tower-block cladding, which recommended a much tougher testing regime, and the use
of non-combustible materials. One witness reported, “There were parts of the cladding dropping
on to the first appliance that “could not be moved as it was supplying the fire fighters with water.”
A subsequent Parliamentary enquiry concluded that when fire spreads externally via the cladding,
guidance for this type of fire might not be adequate to prevent the conflagration. It further concluded
that cladding systems should be required either to be entirely non-combustible, or to be proven through
full-scale testing not to pose an unacceptable level of risk in terms of fire spread.



Entropy 2020, 22, 14 4 of 14

2.2. Lakanal House Fire (2011)

Six people died in this Southwark London tower block fire, and many were injured. The fire
started as an electrical fault. A coroner’s report in 2013 found problems with fire safety including the
buildings’ fire resistance. The London Fire Brigade also opened an investigation into the fire; the report
revealed that Lakanal House had been identified as being at risk of enabling a fire to spread if one
should occur in one of the flats. Although it was originally reported that some of the windows made of
plastic (ultra-high-density polyvinyl chloride), windows in the block were in fact made of aluminum.
An inquest into the deaths at Lakanal House “found the fire spread unexpectedly fast, both laterally
and vertically, trapping people in apartments, with the exterior cladding panels burning through in
just four and a half minutes”. As in the case of the Grenfell Tower fire six years later, the official advice
was for people to remain in their homes in the event of a blaze. The inquest concluded that years of
“botched renovations” had removed fire-preventative material between flats and communal corridors,
allowing a blaze to spread, and that the risk of rapid conflagration was not identified in any of the
safety inspections.

2.3. Lacrosse Tower in Melbourne (2014)

The Lacrosse multi-story apartment block caught fire in November 2014 in the dockland area
of Melbourne, Australia, resulting in a rapid conflagration in a similar manner to London’s Grenfell
Tower. It was believed to have started when a cigarette burning on an eighth-floor balcony of the
residential tower sparked a fire that raced up the aluminum-clad walls to the 21st floor within 11 min.
A post-incident report said aluminum composite panels that were not approved for external use on a
high-rise building in Australia were the direct cause of the “speed and intensity of the fire spread”.
A closer investigation of the pictures and timeline of events bear a remarkable similarity to the Grenfell
Tower disaster. This suggests that the Lacrosse fire also erupted when water was first applied to
extinguish the embryonic flames.

2.4. Dubai Fires (2012–2016)

There have been five well-publicized aluminum cladding fires in the city of Dubai since 2012.
Dubai is renowned for its shiny rocket shaped skyscraper tower blocks that characterize the city skyline.
The first aluminum cladding fire was in 2012, when the 40-story Al Tayer Tower residential block
erupted in flames, and later the same year, another residential block, the 37-story Tamweed Tower,
went up in flames. In another Dubai fire Figure 2 in March 2015 known as the Torch Tower blaze,
a 79-story residential and office block also quickly and dramatically went up in flames. Fortunately,
just before the Torch Tower fire, the authorities had put in place a protected access and evacuation
system, so that the fire fighters were able to use this safety lift to get rescue forces up to the area of the
fire and safely evacuate all the occupants. The latest Dubai fire was a 75-story residential tower just
one year before Grenfell in July 2016.

However, the most dramatic of all the Dubai tower-block fires was on New Year’s Eve 2015 at the
Address Downtown Dubai Hotel, which stand’s adjacent to Dubai’s tallest skyscraper and indeed also
the world’s tallest building: the 850 m high Burg Khalifa. Dubai’s relatively modern tower blocks are
all fitted with sprinkler systems to protect apartment fires from escalating and to allow evacuation. The
Address Hotel fire coincided with the beginning of the New Year’s Eve fireworks celebrations from the
Burj Khalifa super-tower. According to Dubai Civil Defense record of events, sprinkler systems in the
fire at the Address Downtown Dubai Hotel ran out of water 15 min into the breakout of fire.

Was this a blessing, we ask? The extent of the Dubai Address Hotel blaze was beyond the capacity
of regular sprinkler systems to cope with; it was mainly an external fire across more than 40 floors.
Compared to Grenfell, the fire spread was relatively slow, with no fatalities. Everyone was evacuated,
leaving just 15 people with minor injuries, and one person suffered a heart attack. When the firefighters
reached the Address Downtown Hotel, they were swiftly able to clear 3000 people.
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Figure 2. Dubai’s Address Downtown Hotel, New Year Celebration fire, 31 December 2015.

Perhaps the reason for the damage-limited conflagration, and successful evacuation, can be
explained to some degree by the fact that, owing to pressure on the fire safety systems that day, the
Dubai Address Hotel tower building sprinkler system exhausted its water supply within 15 min of the
start of the fire. There was also no water available for the fire fighters’ hoses! Putting water sprinklers
in aluminum-clad tower blocks could exacerbate the risk of non-survival, in similar conflagrations to
Grenfell, rather than offer any more protection to residents.

3. “ALICE” NASA Rocket Fuel

Interestingly, NASA scientists recently test-launched a rocket with a new fuel propellant formulated
by mixing aluminum powder and water (powdered ice), which is called ‘ALICE’ [3]. Thermochemical
engineers have known for years that aluminum reacts exothermically with water, giving off hydrogen
gas plus heat energy. While solid aluminum requires excess heat to ignite the reaction with water,
nano-aluminum has a much greater surface area and will react with water at around 650 ◦C, i.e., as the
aluminum begins to melt. At this temperature, the nano-aluminum with water can be ignited with a
small flame. The same applies to molten aluminum when sprayed with water.

The US Defense Agencies have applied considerable resources to research fire hazards. While some
of that work is classified, much is available in the open-access scientific literature. For example, Zabel’s
group at the Southwest Research Institute at San Antonio, Texas has compiled a comprehensive military
handbook [4] that addresses, inter alia, the kind of special particulate-loaded fire extinguishers needed
to fight aluminum fires. The US Air Force uses Al2O3 powder-based extinguishers. It has also been
documented how various aluminum composite (thermite) formulations can be used to very effectively
burn through the armor plating of combat vehicles [5]. The special hazards of aluminum-based fires
are well-known to the aerospace research community. However, this information needs to more widely
disseminated throughout the civilian fire-fighting community.

4. Cladding and Roof Materials

High-rise buildings are designed to contain fires within the flat where they may break out. The
basic reason why people are told to stay put inside their flats is that there is a presumption that the
building construction materials and the application of water hoses, if need be, will prevent the fire
from spreading. The original Grenfell cladding when the building was constructed in 1970 was precast
ceramic panels to window height with single-glazed aluminum-framed windows above. The thermal
insulation of this type of façade is poor, but the fire resistance is good.
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The Grenfell Tower was upgraded using funding from the ECO (Energy Company Obligation),
which is a UK-government energy efficiency program. The cladding thermal insulation Figure 3 was a
‘Reynobond Celotex RS5000′ insulation panel and cladding. Its core material is mainly polyethylene.
There was a 50 mm gap between the insulation and cladding. The cladding was available in two
variants. The plastic construction choice enables a rigid yet lightweight panel, but it poses a greater
fire hazard.

Figure 3. Aluminum siding panels are composed of low-density polyethylene (LDPE) sandwiched
between aluminum metal composite sheets.

The facade windows in Grenfell Tower window frames were made from polyester (PMMA–
polymethyl methacrylate) powder coated aluminum.

ACM (aluminum composite material) cladding consists of two panels of aluminum bonded to
either side of a lightweight core of an insulating material such as polyethylene (PE). The insulation
plastic was a thick layer, 100 mm to 150 mm. The aluminum rain screen is fitted over the cladding
insulator panels to protect the insulation from the weather and provide a decorative finish. This is
separated from the insulation by a 50 mm wide cavity. Thermal insulation, air-tightness, and structural
stability are provided by the inner part of the wall construction.

Since polyethylene-cored plastic foam cladding panels were used alongside aluminum sheets,
and with a few millimeters of air in between, it is hardly surprising that external fires take hold quickly.
The aluminum facing is resistant to the surface spread of the flame, but this would be of little use where
the intensity of the fire would quickly melt the thin aluminum, which has a relatively low melting
point (660 ◦C). The outer aluminum panel would be cooler than the building wall when the fire starts,
so the molten plastic would preferably stick to the aluminum, creating favorable conditions for the
production of Al4C3. Cavities in buildings can contribute to the spread of fire, as these function similar
to a chimney, drawing flames upwards. Thus, once fire takes hold, all that is needed to spread a
firestorm upwards and out of control, with the liberation of flammable gases hydrogen and methane,
is a relatively small amount of water. Copious amounts of hot hydrogen and methane gases liberated
when water hits Al or Al4C3 go upwards by convection and thus rapidly accelerate the propagation of
fire upwards by bringing live flames to new quantities of plastic and aluminum. In effect, water added
to such fires is literally “adding fuel to the flames”.

5. Combustion Chemical Reactions

5.1. Combustion of Plastics

Polyethylene gets hot slowly as its specific heat is relatively high (1900 J.◦K−1 kg−1) and its thermal
conductivity is relatively low (0.45 to 0.52 W.m−1 ◦K−1). Figure 4 illustrates how solid polyethylene
burns with a slow and steady blue flame. The flash point of high-density polyethylene is 340 ◦C; the
autoignition point is 380 ◦C. The flame spreads slowly along the surface, melting the solid polyethylene
to liquid as it spreads. The melting point of polyethylene is 100 ◦C to 135 ◦C, depending on the
density. Molten polyethylene in the laboratory (Figure 4) drips flaming drops, but in a contained
environment—for example, sandwiched between aluminum sheets, with an air cavity—the whole



Entropy 2020, 22, 14 7 of 14

sample would quickly become liquid. Solid PE burns only after it has been melted at the surface by a
contiguous flame; it is the vapor at the surface of the molten plastic that combines with the oxygen of
the air during combustion; the rate of combustion can accelerate if the surface area of a molten plastic is
dispersed, for example, by the addition of water. When bulk polyethylene burns rapidly with a limited
supply of oxygen, the combustion produces clouds of black carbon aerosol fumes. Any containment or
fire control system should allow for the low melting point of polyethylene. The following combustion
reaction occurs when PE solid melts, and then liquid, polyethylene burns in air, with limited oxygen
diffusion to the molten polymer/air interface, i.e., at the flame.

Polyethylene + oxygen (air)→carbon + water
X (C2H4)n (solid) + Xn O2 (gas)→ 2nC(aerosol) + 2nH2O (vapor) ∆H =−13.1 kJ/gO2

(1)

Figure 4. Initial stages of burning a sample of polyethylene (PE). Note: Solid PE burns only after it has
been melted by a contiguous flame.

The combustion product, carbon, can take the form of both a solid residue and a black aerosol
smoke. Some of the carbon burns to carbon dioxide (CO2) and carbon monoxide (CO) gases. Flame
temperatures are estimated to be between 1000 and 1500 ◦C. The heat of combustion is taken from
Walters and Hackett [6]. Their experimental results were compared with thermochemical calculations
of the net heat of combustion from oxygen consumption and the gross heat of combustion from
the group additivity of the heats from the formation of products and reactants. The gross and net
heats of combustion calculated from polymer enthalpies of formation and oxygen consumption
thermochemistry were all found to be within 5% of the experimental values from oxygen bomb
calorimetry. The net heat released by combustion per gram of oxygen consumed is 13.1 ± 0.8 kJ/gO2

for all polymers tested, including polyethylene. Using this average result, and chemical Equation (1),
we very roughly estimate that a kilogram of burned polyethylene yields an amount of heat of 1000× 13.1
× 8/7 = 15 MJ/ kg, where 8/7 is the molecular weight ratio of oxygen to ethylene (32/28).

5.2. Reaction of Molten Aluminum with Water

The melting temperature of aluminum at 1 atm with a latent heat of fusion (∆Hf) is:

660 ◦C (1 atm.) Al (solid)→ Al (liquid) ∆Hf = − 387kJ/kg (2)

nd the boiling point of liquid aluminum is 2470 ◦C. We do not know that the fire reaches this high
temperature, but it may be possible.

The mean heat capacity (Cp) of solid aluminum over its range of existence from say 25 ◦C to
660 ◦C at 1 atm is < Cp > = 0.96 kJ/(kg.◦C). Thus, we can calculate that the total energy required to
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heat, and then to melt, 1 kg of aluminum is 635 × 0.96 + 387 = 997 kJ of heat. This amount of heat is
produced in the combustion of around only 67 g of polyethylene!

It is well known in the energy industry that over the entire temperature range of its existence,
aluminum reacts spontaneously with water to produce hydrogen [7]. The reaction at all temperatures
is exothermic with a very large heat of reaction (see Table 1).

Table 1. Thermodynamic data for the aluminum–water reaction to form alumina.

T (◦C) ∆H kJ/mol H2 ∆S J/K ∆G kJ/molH2

0 −272 62.1 −289
100 −275 51.1 −294
1000 −366 −51.6 −304

The first reaction forms the aluminum hydroxide bayerite (Al(OH)3) and hydrogen, the second
reaction forms the aluminum hydroxide boehmite (AlO(OH)) and hydrogen, and the third reaction
forms aluminum oxide and hydrogen Equation (3).

2Al + 3H2O (liquid)→ Al2O3 (solid) + 3H2(gas) ∆H1000 = -366 kJ/molH2 (3)

All these reactions are thermodynamically favorable from room temperatures upwards. All are also
highly exothermic. From room temperature to 280 ◦C, Al(OH)3 is the most stable product, while from
280–480 ◦C, AlO(OH) is most stable. Above 480 ◦C, alumina Al2O3 is the most stable product;
meanwhile, Al2O3 becomes increasingly more thermodynamically favorable than the hydroxide
Al(OH)3 at elevated temperatures.

The thermodynamic parameters for Al2O3 reactions are reproduced from reference [6] in Table 1
at three temperatures up to 1000 ◦C. The tabulated values are per mol H2 produced. The enthalpy
(∆H) is highly exothermic at all temperatures, with a very high value of –366 kJ/mol H2 at 1000 ◦C.
Over this temperature range, the entropy change (∆S) goes from positive to negative, reflecting that
water becomes steam above 100 ◦C. The Gibbs free energy of the reaction (∆G) decreases sharply as
temperature increases, thereby driving the reaction rate faster. The hydrogen that is liberated will
spontaneously burn in the air to water plus additional large amounts of energy. For example, at 1000 ◦C,
the heat of combustion of hydrogen is of the order 1 MJ per mole of oxygen.

2H2 (gas) + O2 (gas)→ 2H2O (steam) ∆H = + ~ 1 MJ/mol O2 (4)

‘ALICE’ is an acronym for a fuel used in the aerospace industry comprising a mixture of aluminum
powder and water, which is in the form of ice for safe storage. The mixture reacts by Equations (2) and
(3) to produce huge amounts of energy. It is used by NASA as a rocket launch propellant when burned
at high temperatures around 1000 ◦C [3].

5.3. Formation of Aluminium Carbide

The heat of formation of Al4C3 at around 1330 ◦C is a massive 1275 KJ per mole [8]; the enormous
amount of energy that is released when Al4C3 is formed can be compared with the heat of formation of
water vapor at 1 atmosphere pressure from the explosive reaction of hydrogen with oxygen, which is
241.8 KJ per mole of water. The heat of formation of AL4C3 is so great that it takes the form of white
hot liquid sparks similar to fireworks (Figure 5).
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Figure 5. Interation of vaporized aluminum with carbon at a temperature of 1800 ◦C in an electric
furnace produces aluminum carbide (Al4C3).

5.4. Hydrolysis of Aluminum Carbide

Hydrolysis is a reaction that takes place between a substance and water, as a result of which the
substance and water break down, and new compounds form. Al3C4 is a salt-like carbide, which is
essentially the product of the displacement of all the hydrogen atom in methane by Al atoms. During
hydrolysis, reverse displacement takes place easily, and methane forms. The hydrolysis of aluminum
carbide is a spontaneous irreversible reaction with a very large negative Gibbs free energy of reaction
at all temperatures. This reaction is often used as a simple room temperature method of obtaining
methane in the laboratory; the hydrolysis of Al4C3 at low temperatures gives aluminum hydroxide.

2H2 (gas) + O2 (gas)→ 2H2O (steam) ∆H = + ~ 1 MJ/mol O2 (5)

whereas at the high combustion temperatures above 1000 ◦C, the solid product is alumina.

2H2 (gas) + O2 (gas)→ 2H2O (steam) ∆H = + ~ 1 MJ/mol O2 (6)

5.5. Combustion of Hydrogen and Methane

The combustion reaction of hydrogen with oxygen is highly exothermic with a heat liberated of
572 kJ per mole of hydrogen.

2 H2(gas) + O2(air)→ 2 H2O (liquid-mist) ∆H300 = + 572 kJ/molH2 (7)

Hydrogen gas forms explosive mixtures with air in concentrations from 4%–74%; although the
spontaneous combustion temperature (585 ◦C) is higher than some hydrocarbon fuels, such as methane,
it is much more dangerous as the auto-ignition energy barrier is extremely small; explosive reactions
may be triggered by a spark, simply low heat, sunlight, or any hot metal oxide.

The auto-ignition or spontaneous combustion temperature of methane in the presence of oxygen–air
is 537 ◦C, so the CH4 then further fuels the conflagration with the exothermic combustion of the fuel
gaseous methane, which can also be explosive in its reaction with oxygen under certain conditions.

Figure 6 explains how amounts of reaction heat can be approximately estimated from bond energy
tables; the stronger the chemical bonds of the product, such as water and CO2, the greater the release
of energy on combustion.
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Figure 6. The heat of the combustion energy of methane obtained from standard tables of bond energies
explains how it originates; 1 kg of aluminum can combine with carbon and water to produce 30 moles
of CH4, which reacts with oxygen in air to liberate to the environment 0.8 × 30 = 24 megajoules of heat.

5.6. Overall Reactions

C (solid) + O2 (air)→ CO2 (gas)
2Al (liquid) + 3H2O (liquid)→ Al2O3 (solid/aerosol) + 3H2 (gas)

4Al (liquid) + 3C (solid/aerosol)→ Al4C3 (solid/aerosol)
Al4C3 (solid/aerosol) + 6H2O (liquid)→ 2Al2O3 (solid/aerosol) + 3CH4 (gas)

2H2 (gas) + O2 (air)→ 2H2O (steam)
CH4 (gas) + 2O2 (air)→ CO2 (gas) + 2H2O (steam)

(8)

An estimate of the heat balance with excess water, and oxygen surface-limited combustion of
polyethylene to melt the aluminum, for the overall combustion of a mixture of aluminum and water is
of the order + 20 megajoules of energy liberated per kg of aluminum at around 1000 ◦C. This massive
energy drives the very high-temperature fire.

6. Conclusions

The interior of flames from burning molten plastic can reach temperatures between 1000 ◦C and
1500 ◦C, giving off a black smoke which is a carbon aerosol, and black carbon residues. At temperatures
at or near burning molten plastics, aluminum becomes molten (above around 700 ◦C), highly fluid,
highly volatile, and highly reactive. The aluminum can react directly with carbon aerosols and residues
to produce aluminum carbide. The heat of formation of Al4C3 is so great that it appears transiently as
white-hot liquid sparks, which is similar to magnesium oxide in fireworks, as reportedly seen by the
firefighters and observers nearby.

When water is added to aluminum carbide, methane is produced along with alumina dust and
steam and carbon dioxide, which is also a white smoke. When water is sprayed onto hot molten
aluminum, hydrogen gas is produced along with alumina as a white dust and steam or water vapor.
All the thermodynamic data and analysis shows that both these reactions would have played a major
role in the rapid spread of the conflagration. Without more forensic evidence than available here, we are
unable to say with any certainty to what extent the aluminum burned directly with water via reaction
Equation (3) producing hydrogen, or reaction Equation (6) producing methane. However, whichever of
these two reaction mechanisms prevailed, the result would be the same; a rapid catastrophic produced
a mostly vertical spread of a façade conflagration, as both H2 and CH4 are highly inflammable—and
under certain conditions, explosive—gaseous fuels. The Gibbs energy changes for both these reactions
are extremely large and negative; thus, both reactions will undoubtedly occur if the reactants are
present. Moreover, the overall products of aluminum combustion with water are gases that are
removed rapidly from the reaction mixture by convective forces, thus driving all reaction pathways to
rapid completion.
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Therefore, we conclude that the application of water to extinguish aluminum fires is worse than
futile; it accelerates the conflagration and can be explosive. This is the scientific explanation of the
ferocity and speed of the spread of Grenfell Tower fire, which caused it to reach the top of the building
in less than 15 min and eventually encircle the entire building whilst water was continuously being
directed onto the flaming building from various directions.

In conclusion, the thermodynamic analysis presented here highlights the massive thermal
energy that drives aluminum fires. The presence of carbonaceous matter in close proximity to
aluminum provides a pathway for the formation of aluminum carbide. Spraying water at this stage
liberates methane and—at higher temperatures—hydrogen gas. We note that the underlying chemical
thermodynamics provides a very plausible mechanism that is in accord with the observations namely:

• Very high combustion temperature
• Rapid spread in the vertical direction
• Characteristic smoke emissions
• Large “sparks” emitted
• Reported explosions.

Clearly, it would be desirable to establish, as a matter of some urgency, the detailed mechanism of
initiation and propagation. It would be straightforward to analyze the reaction products that should
contain copious amounts of aluminum oxide, a long-lived refractory oxide, which might be expected to
deposit in the direction of the plume along with particulate carbon. The particle sizes and composition
will provide evidence of their origin. Highly instrumented laboratory tests, using Raman scattering
techniques to analyze the in situ composition of the fire plume would also be useful. Finally, it is
clearly essential that fire testing standards need to be developed for this class of building material so
that the effects of applying water (or sprinklers) may be better understood. It would seem particularly
unhelpful to install water-based sprinkler systems in buildings that contain or are coated with large
amounts of aluminum. Aluminum has many advantages in building application so that a better
understanding of how to formulate composite panels that retain the advantages of aluminum while
substantially mitigating the fire risk could be developed.

It is clearly imperative that the senior scientists who are responsible for developing, implementing,
and enforcing standards ought to be better educated in the scientific fundamentals so that they might
recognize that what might seem to be innocuous changes may introduce represent huge fire risks;
fire fighters on the ground need to be made aware of building classifications in their areas so as to
implement effective fire-fighting strategies. This will require improved training to the level of “boots
on the ground”.

In support of the conclusion of this work, we cite the thermochemical explanation of the world’s
greatest ever tower-block disaster: the collapse of the New York World Trade Centre twin towers
on 11 September 2001 after being hit by aeroplanes (Figure 7). The fundamental reason for the very
intensive fire that led to the total collapse was inexplicable at the time of the subsequent official forensic
investigations and for several years after. Senior scientist Christian Simensen of SINTEF Materials
and Chemistry (Norway) has presented the only plausible scientific explanation of what really caused
the collapse of the twin towers when they were attacked by the aircraft, at an international materials
technology conference [9].

Black and white smoke billowed up as the first of the two WTC towers collapsed; the burning
kerosene fuel and burning plastic is characterized by black smoke (second WTC: carbon aerosol and
water vapor), while the burning of aluminum and water reaction gases is characterized by white smoke
(first WTC: alumina dust and water vapor). Hydrogen liberated in the Al + water reaction ‘exploded’
as the first twin tower collapsed amidst plumes of white smoke.
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Figure 7. Collapse of New York World Trade Center 11 September 2001.

When the aircraft became jammed inside layers of building debris, the mainly aluminum bodies
rather than the buildings themselves absorbed most of the heat from the burning aircraft fuel. This
vast amount of heat would melt approximately all the 30 tons of aluminum in the aircraft fuselage and
increase the molten aluminum temperature. The fluidity, i.e., reciprocal viscosity, of liquids increases
exponentially with temperature; molten aluminum above 1000 ◦C is more fluid than water, and it is
also highly volatile. The aluminum poured downwards within the tower blocks through staircases
and gaps in the floor, undergoing the chemical reaction with water from sprinklers. All floors of
the twin towers’ 80 stories were equipped with an automatic water sprinkler system, which was
triggered by rise in temperature. A mix of the sprinkler system water and hot molten aluminum and
aluminum carbide formed from the combustion of the cabin interior and office furniture reacted to
produce hydrogen and methane. This caused the rapid and powerful spread of the high-temperature
fire vertically. When the hydrogen/methane mixture reached explosive limits, a number of loud and
powerful explosions occurred, which were heard by both firefighters and many witnesses at the scene.
This combination of high temperatures that weakened the supporting beams and powerful explosions
led to the collapse of the upper floors and rapidly to the total collapse of the building in accord with
well-accepted principles of mechanical failure analysis.

Finally, we mention that there have also been several high-profile fires involving buildings known
to have been refurbished with aluminum roof panels (Figure 8). In all these cases, there is the evidence
from video footage, which is still available on YouTube, of accelerated conflagration and white smoke
when the water is applied as an extinguisher. It is essential that the fire testing of these aluminum
and composite aluminum plastic materials include the spraying of water on the molten burning
research samples.
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Figure 8. Catastrophic building fires that occured after or during roof refurbishment where aluminum
paneling may have played a role.
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