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Simple Summary: Understanding the genetic architecture underlying milk production traits in cattle
is beneficial so that genetic variants can be targeted toward the genetic improvement. In this study,
we performed a genome-wide association study for milk production and quality traits in Holstein
cattle. In the total of ten significant single-nucleotide polymorphisms (SNPs) associated with milk fat
and protein, six are located in previously reported quantitative traits locus (QTL) regions. The study
not only identified the effect of DGAT1 gene on milk fat and protein but also found several novel
candidate genes. In addition, some pleiotropic SNPs and QTLs were identified that associated with
more than two traits, these results could provide some basis for molecular breeding in dairy cattle.

Abstract: High-yield and high-quality of milk are the primary goals of dairy production.
Understanding the genetic architecture underlying these milk-related traits is beneficial so that
genetic variants can be targeted toward the genetic improvement. In this study, we measured five
milk production and quality traits in Holstein cattle population from China. These traits included
milk yield, fat, and protein. We used the estimated breeding values as dependent variables to conduct
the genome-wide association studies (GWAS). Breeding values were estimated through pedigree
relationships by using a linear mixed model. Genotyping was carried out on the individuals with
phenotypes by using the Illumina BovineSNP150 BeadChip. The association analyses were conducted
by using the fixed and random model Circulating Probability Unification (FarmCPU) method. A total
of ten single-nucleotide polymorphisms (SNPs) were detected above the genome-wide significant
threshold (p < 4.0 × 10−7), including six located in previously reported quantitative traits locus (QTL)
regions. We found eight candidate genes within distances of 120 kb upstream or downstream to the
associated SNPs. The study not only identified the effect of DGAT1 gene on milk fat and protein,
but also discovered novel genetic loci and candidate genes related to milk traits. These novel genetic
loci would be an important basis for molecular breeding in dairy cattle.

Keywords: dairy; milk production; quality traits; DGAT1; FarmCPU

1. Introduction

Milk production and quality are the most important economic traits in the dairy industry.
Most milk phenotypes are quantitative traits that often controlled by both environmental factors and
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multiple genes. A large number of studies have revealed numerous quantitative traits locus (QTL)
regions for milk-related traits in dairy cattle population around the world over the past 20 years
(CatttleQTLdb: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index), and many researchers
conducted meta-analysis to identify genetic variants based on GWAS results for milk-related traits in
different cattle breeds [1–3]. Whereas, in Chinese Holstein population, a previous study used 50,000
single-nucleotide polymorphisms (SNPs) and revealed some SNPs associated with milk production
traits [4]. The aim of present study was to find new genetic loci in this population by using a higher
density marker information.

Research has shown that high-density genotype could provide markers close to the QTL and
help in fine mapping of causative mutations [5]. Vanraden et al. reported that high-density marker
increased the precision of QTL detection in cattle population [6]. In addition, a study reported that the
genomic prediction accuracy increased when the marker density was increased in cattle [7]; therefore,
it is necessary to use dense genotype to identify important genetic variation, and provide some useful
information for molecular breeding of dairy cattle and understanding the genetic architecture of
milk traits.

Genome-wide association studies (GWAS) are very helpful for further genomic selection (GS)
as they have proven to be a powerful method for identifying potential genetic variants, especially
single-nucleotide polymorphisms (SNPs) associated with complex traits in humans and animals [8–10].
Resende et al. suggested that the prediction accuracy reached maximum when the genomic relationship
matrix was constructed using causative quantities trait nucleotides (QTNs) [11]. Incorporating
significant markers from GWAS results can improve the prediction accuracy in dairy cattle [1,12–14].

In this study, we conducted GWAS using Illumina BovineSNP150 BeadChip which contains about
150,000 SNPs. The population was from Holstein cows raised in the Ningxia area of northwest China.
Our objectives were to identify new genetic variants associated with five milk production and quality
traits, including milk yield, fat and protein. We expect the newly identified genetic variants and
potential candidate genes would become valuable resources for genetic evaluation.

2. Material and Methods

2.1. Population and Phenotypic Data

The studied population was Holstein cows that were raised on 22 dairy farms in the Ningxia
area of China. In total, about 452,920 test-day records estimated breeding values from 61,600 cows
spanning a 9-year period (2011–2019) at their first lactation. The estimated breeding values (EBVs)
as phenotypes to implement association analysis, milk yield (MY), fat yield (FY), protein yield (PY),
fat percentage (FP), and protein percentage (PP) measurements were recorded once a month for each
cow after calving. The milk yield was automatically recorded by the milking system on each farm,
the milk components are tested by the Dairy Herd Improvement lab at Animal Husbandry of Extension
Station in Ningxia, using spectrometers. FY was calculated as (FP*MY)/100; PY was calculated as
(PP*MY)/100. The distribution of phenotypes and correlations between the different phenotypic traits
are illustrated in Figure S1.

2.2. Estimated Breeding Values

The Derivative-free approach to MUltivariate analysis (DMU) package [15] was used to estimate
breeding values using Random Regression Test-Day Model [16,17]. We considered herd-test day
and calving year-season as fixed effects, calving month-age as fixed regression effect, and individual
additive genetic effect and permanent environment effect as random regression effects. Both fixed and
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random regressions were modeled using a 4th order Legendre polynomial [18]. The model equation is
as follows:

yi jklm = HTDi + cays j +
4∑

m=0

bkmXm(ω) +
4∑

m=0

almXm(ω) +
4∑

m=0

plmXm(ω) + ei jklm (1)

where yi jklm is the test-day records; HTDi is the fixed effect of the ith herd-test day (i = 1, . . . , 1913);
cays j is the fixed effect of the jth calving year-season (j = 1, . . . , 36); bkm is fixed regression coefficient
for the kth class of calving month-age (k = 1, . . . , 8); alm is random regression coefficient for additive
genetic effects specific to cow l; plm is random regression coefficient for permanent environment effects
specific to cow l; Xm(ω) is the mth covariate of Legendre polynomial; ω is the days of lactation after
standardization; and ei jklm is the random residual effects, hypothesizing the residuals are homogeneous.
The variance–covariance matrix is as follows [19]:

Var


a
p
e

 =


G⊗A 0 0
0 I ⊗ P 0
0 0 R

 (2)

where a is additive genetic random regression coefficient vector; p is permanent environment
random regression coefficient vector; G is variance–covariance matrix of additive genetic random
regression coefficient; A is numerator relationship matrix; p is variance–covariance matrix of permanent
environment random regression coefficient; I is the identity matrix; R is diagonal matrix of residual
variance (Iσ2

e ), which hypothesizes the residuals are homogeneous. The homogeneous option
dramatically reduces computing time without sacrifice as there is a minimal difference between
the homogeneous model and the heterogenous model.

A heatmap of estimated breeding values for milk production traits is illustrated in Figure S2.

2.3. Genotypic Data

Blood samples from the 1220 cows were collected by cattle farm staff in this study. DNA was
extracted and genotyping was carried out by Compass Biotechnology (http://www.kangpusen.com/)
using the Illumina BovineSNP150 BeadChip. Bos_taurus_UMD_3.1 as the genome reference. In total,
there were 124,743 variants for the association analysis after conducting quality control using Plink
software [20]. Markers were removed if (1) the call rate of an individual genotype was less than 95%,
(2) the call rate of a single SNP genotype was less than 90%, and (3) if the minor allele frequency
(MAF) of an SNP was less than 0.05 and deviated from Hardy–Weinberg equilibrium (p < 1.0 × 10−6).
We calculated marker intervals and linkage disequilibrium (LD) to estimate R square for all markers
and plotted the marker distribution as show in Figure 1.

http://www.kangpusen.com/
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Figure 1. Properties of Single Nucleotide Polymorphisms (SNPs). A total of 1220 cows were 
genotyped by the Illumina Bovine 150 k BeadChip. After conducting quality control on both minor 
allele frequency (MAF, above 5%) and missing rate (<10%), 1220 individuals and 124,743 SNPs 
remained. The distribution of the filtered SNPs is displayed over the 30 bovine chromosomes except 
for Y chromosome (a). The MAFs of SNPs were re-calculated after the filtering and were displayed 
by a heat map. Consequently, the SNPs with MAF < 5% remained, as demonstrated by the histogram 
(c). The density of SNPs is displayed by the frequency of the distance between adjacent SNPs (b). The 
distances over 60 kb clustered into one group. The maximum distance was 100.06 kb. Pairwise 
Linkage Disequilibrium (LD) was calculated as the R square for SNPs within the 100 kb window. The 
decay of LD over distance (red line) is displayed by the pairwise LD and moving average (d). 

2.4. Principal Component Analysis 

Principal component analysis (PCA) was conducted using R function Prcomp() on 1220 cows 
genotyped with 124,743 markers covering the whole genome to study the population structure 
[21,22]. Most of these 1220 cows were the progeny of the frozen semen imported from multiple 
countries. 

2.5. Association Analysis 

We performed association analysis by a multi-locus linear mixed model using the FarmCPU 
(Fixed and random model Circuitous Probability Unification) [23]. FarmCPU method implements 
marker tests with associated markers as covariates in a fixed effect model and optimization on the 
associated covariate markers in a random effect model separately [23]. As we know, population 
stratification is an important factor that can cause false positive in association studies [22]. Therefore, 
the present study fitted the first three principal components (PCs) as covariate variables in the GWAS 
models [23], the fixed effect model is as follows: = + + +  (3) 

where  is the EBVs of individual;  is a matrix of fixed effect for the first three PCs;  is the 
genotype matrix of t pseudo Quantitative Traits Nucleotides (QTNs),initiated as an empty set;  
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Figure 1. Properties of Single Nucleotide Polymorphisms (SNPs). A total of 1220 cows were genotyped
by the Illumina Bovine 150 k BeadChip. After conducting quality control on both minor allele
frequency (MAF, above 5%) and missing rate (<10%), 1220 individuals and 124,743 SNPs remained.
The distribution of the filtered SNPs is displayed over the 30 bovine chromosomes except for Y
chromosome (a). The MAFs of SNPs were re-calculated after the filtering and were displayed by a
heat map. Consequently, the SNPs with MAF < 5% remained, as demonstrated by the histogram
(c). The density of SNPs is displayed by the frequency of the distance between adjacent SNPs
(b). The distances over 60 kb clustered into one group. The maximum distance was 100.06 kb. Pairwise
Linkage Disequilibrium (LD) was calculated as the R square for SNPs within the 100 kb window.
The decay of LD over distance (red line) is displayed by the pairwise LD and moving average (d).

2.4. Principal Component Analysis

Principal component analysis (PCA) was conducted using R function Prcomp() on 1220 cows
genotyped with 124,743 markers covering the whole genome to study the population structure [21,22].
Most of these 1220 cows were the progeny of the frozen semen imported from multiple countries.

2.5. Association Analysis

We performed association analysis by a multi-locus linear mixed model using the FarmCPU (Fixed
and random model Circuitous Probability Unification) [23]. FarmCPU method implements marker
tests with associated markers as covariates in a fixed effect model and optimization on the associated
covariate markers in a random effect model separately [23]. As we know, population stratification
is an important factor that can cause false positive in association studies [22]. Therefore, the present
study fitted the first three principal components (PCs) as covariate variables in the GWAS models [23],
the fixed effect model is as follows:

y = XbX + Mtbt + S jd j + e (3)

where y is the EBVs of individual; X is a matrix of fixed effect for the first three PCs; Mt is the genotype
matrix of t pseudo Quantitative Traits Nucleotides (QTNs),initiated as an empty set; bX and bt are
the corresponding effects of X and Mt, respectively; S j is the genotype of the j marker; d j is the
corresponding effect; e is the vector of residuals e ∼ N

(
0, Iσ2

e

)
. The random effect model is as follows:

y = u + e (4)
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where y and e stay the same as in the fixed effect model; u is the genetic effect of the individual and
u ∼ N

(
0, Kσ2

u

)
, in which K is the kinship matrix derived from the pseudo QTNs.

The genome wise threshold corresponding type I error of 1% was 4.0 × 10−7 after Bonferroni
multiple test correction (5%/124,743).

2.6. Annotation of Candidate Gene and Pathway Analysis

The genome reference Bos_taurus_UMD_3.1 was used to search candidate gene. The average
pairwise LD was 0.46 corresponding to adjacent marker distance of 120 kb. This range was used to
search candidate genes. The online websites “https://oct2018.archive.ensembl.org/Bos_taurus/Info/

Index”, “https://www.ncbi.nlm.nih.gov/gene/”, https://www.genome.jp/kegg/pathway.html, https:
//david.ncifcrf.gov/home.jsp were used for functional analysis and pathway analysis of the candidate
genes by GWAS.

3. Results

3.1. Phenotypic and Estimated Genetic Parameters

Phenotype distributions and correlations among phenotypic traits, estimated breeding values,
and residuals are shown in the Supplementary Material (Figure S1). There were strong positive
phenotypic correlations between “yield” type of traits, including MY, PY, and FY. Their phenotypic
correlations were 0.90 (MY and PY), 0.70 (MY and FY), and 0.74 (PY and FY).

We also found strong positive genetic correlations between MY and PY (rg = 0.92), MY and FY
(rg = 0.84), and PY and FY (rg = 0.88). In contrast, there were weak negative phenotypic and genetic
correlations between MY and FP (rp = −0.15, rg = −0.32), MY and PP (rp = −0.20, rg = −0.44).

In this study, we used EBVs as the dependent variables for GWAS, Figure S2 shows the heatmap
of EBVs for five milk traits. A test-day model is used to estimate the heritability for each trait and
breeding values for individuals. The heritability estimates for MY, FY, PY, FP, and PP are 0.12, 0.21,
0.23, 0.30, and 0.32, respectively (Table 1).

Table 1. Variance components and heritability of milk traits *.

Variance
Component MY FP FY PP PY

Genetic 1592.62 4.76 1.48 1.65 1.20
Permanent

environmental 4267.93 10.58 5.46 3.45 3.96

Residual 7413.63 0.49 0.08 0.07 0.03
h2(SE) 0.12(0.01) 0.30 (0.05) 0.21(0.02) 0.32(0.01) 0.23(0.02)

* MY, milk yield; FP, fat percentage; FY, fat yield; PP, protein percentage, PY, protein yield; SE, standard error.

3.2. Marker Information

We conducted GWAS analyses with 1220 Holstein dairy cows and 124,743 markers after quality
control (QC). Markers covered all 29 autosomes plus the X sex chromosome (Figure 1a). After the QC
filtering, we re-calculated the minor allele frequency (MAF) for all SNPs. The minimum MAF was
3.8%. There were only 0.1% of markers with MAF below 5% (Figure 1c). Marker density was high.
Majority of markers (56%) are within 20 kb distances to their adjacent markers (Figure 1b). Within such
distance, the LD was strong (average R2 = 0.46) (Figure 1d).

3.3. Population Structure

To determine the level of population stratification, we plotted the population structure by principal
component analysis (PCA). The population stratified into two unevenly sized groups (Figure 2). We also

https://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
https://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
https://www.ncbi.nlm.nih.gov/gene/
https://www.genome.jp/kegg/pathway.html
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
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produced a scatter plot of bull’s country source (Figure S3). To adjust for the population stratification,
the first three principal components (PCs) was fitted as covariate variables in the association analysis.
The first three PCs explain the 1.6%, 1.3%, and 1.1% of variation, respectively, about 4% of the variation
is explained by the first three PCs together. We also constructed a scatter plot between the first three PCs
and the five milk traits. There are weak correlations observed between the PCs and these phenotypes
(Figure S4).
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Figure 2. Population structure demonstrated by principal component analysis. Principal component
analysis (PCA) was conducted with the 124,743 SNPs for the 1220 cows. The population structure
is demonstrated by the pairwise scatter plots (a–c) and the 3D plot (d) of the first three principal
components (PCs).

3.4. Results of the Genome-Wide Associations

By drawing the Quantile-Quantile (QQ) plots, we found that the model for GWAS analysis in
this study was reasonable, and the point at the upper right corner also shown that some significant
markers were found that associated with four milk quality traits (Figure 3). We used p < 4.0 × 10−7

as the threshold, which corresponds to 1% of type I error after Bonferroni multiple test correction.
A total of ten highly significant SNPs are associated with fat and protein, but no threshold significant
SNP is associated with MY (Table 2, Figure 3). Three SNPs (rs42295213, rs136949224, and rs109421300)
associated with FP are located on BTA1, 8, and 14, four SNPs (rs43526055, rs137676276, rs109528658,
and rs135780687) associated with FY are located on BTA7, 11, 17, and X, respectively. Three SNPs
(rs109875012, rs109421300, and rs108996837) associated with PP are located on BTA5, 14, and 21,
respectively. One SNP associated with PY is located on BTA5. Four of these ten significant SNPs are
located inside genes EPH receptor A6 (EPHA6), solute carrier organic anion transporter family member
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1A2 (SLCO1A2), diacylglycerol O-acyltransferase 1 (DGAT1), and E1A binding protein p400 (EP400).
The SNP (rs109875012) on BTA5 is located close to the ZNF384 (zinc finger protein 384). The SNP
(rs10705865) on BTA8 is located close to SCARA5 (scavenger receptor class A member 5) gene. The SNP
(rs137676276) on BTA11 is located close to vitrin (VIT). The SNP (rs108996837) on BTA21 is located
close to EXOC3L4 (exocyst complex component 3 like 4), and the SNP (rs135780687) on X chromosome
is located close to GRPR (gastrin releasing peptide receptor). The most significant SNP (rs109421300)
associated with both FP and PP is located in the DGAT1 gene. Two SNPs (rs137676276, rs108996837)
exhibit notably smaller MAFs compared to other SNPs, 0.11 and 0.12, respectively (Table 2).
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Figure 3. Associations between 124,743 SNPs and milk traits. Milk traits include fat yield (FY),
protein yield (PY), fat percentage (FP), protein percentage (PP). The association analyses were conducted
by the FarmCPU R package. Manhattan plots display the negative logarithms of the observed p values
for SNPs across 30 bovine chromosomes (left panel). The green line indicates the Bonferroni multiple
test threshold at p = 4.0 × 10−7. The Quantile-Quantile (QQ) plots represent the negative logarithms of
the expected p values (X-axis) and observed p-values (Y-axis) (right panel).
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Table 2. Genome-wide significant SNPs associated with milk traits *.

Traits SNP CHR Position
(bp) MAF Nearest

Gene
Distance

(kb) p-Value Effect

FP rs42295213 1 41,061,715 0.36 EPHA6 within 1.50 × 10−7 0.007
PP rs109875012 5 104,120,905 0.45 ZNF384 2.6 4.03 × 10−8 −0.004
PY rs134480235 5 89,267,320 0.49 SLCO1A2 within 1.57 × 10−8 1.192
FY rs43526055 7 73,431,219 0.31 ADRA1B 179.8 4.48 × 10−9 −1.523
FP rs136949224 8 10,705,865 0.14 SCARA5 43.5 3.57 × 10−8 0.012
FY rs137676276 11 19,277,448 0.11 VIT 25 8.58 × 10−9 −2.281
FP
PP rs109421300 14 1,801,116 0.23 DGAT1 within 9.92 × 10−25

4.75 × 10−8
0.018
0.006

FY rs109528658 17 46,090,458 0.40 EP400 within 7.05 × 10−9 1.543
PP rs108996837 21 69,386,346 0.12 EXOC3L4 32.6 2.36 × 10−8 −0.008
FY rs135780687 X 134,726,985 0.42 GRPR 83 1.63 × 10−10 1.629

* FP, fat percentage (%); PP, protein percentage (%); PY, protein yield (kg); FY, fat yield (kg).

3.5. Pleiotropic QTLs for Milk Production Traits

We used the SNPs with p < 0.0005 to make a heatmap to look for markers associated with two
or more milk production traits because these milk traits are moderately or highly correlated (Figures
S1, S2, and S5). There are some SNPs and QTLs associated with three milk traits (MY, PY, and FY)
on BTA1, 2, 3, 11, 17, 20, and 22. QTLs associated with MY while PY on BTA1, 6, 14, and 17. A QTL
associated with FY and FY is on BTA20.

4. Discussion

4.1. Population Structure

Population stratification is an important confounding factor due to systematic ancestry differences
that can cause false positives in GWAS [24]. By the principal component analysis, the PCA scatter
plot showed that there is population structure in this studied population (Figure 2 and Figure S3).
Two probably reasons for this deviation, the first reason is that those Holstein semen from overseas is
not used by all cows in dairy farms, and there are still some local Holstein semen used by cows, as we
know most of the farms in this study participated in a dairy breeding project that introduced Holstein
semen from overseas annually from 2013 to 2018. Another reason is that some cows are introduced
from different countries and contain blood from other breeds. In general, not all the registered cattle
are purebreds. Especially in cattle population, this point can be explained by looking at the cattle
breed registration requirements in different countries. Here, we take the Holstein cattle as an example,
one of the requirements to register a Holstein cattle in China is that the cattle at least has 87.5% blood of
Holstein (Chinese Holstein, GB/T 3157 2008), all the animals with Holstein genetics can be registered in
Canada (https://www.holstein.ca/Public/en/Services/Registration/Registration_Eligibilities) and there
are similar clauses in the USA (http://www.holsteinusa.com/animal_id/register.html). According to
the above standards, we can see the common ground to register a Holstein cattle between different
countries is that not all the Holstein cattle are purebreds. Even most of the Holstein cattle are purebreds,
some of registered cattle could still contain a little other blood in the long-term breeding progress.
That is why the population structure analysis is necessary in this study.

As we observed the population structure, the principal components were fitted as covariance to
association analysis to correct population stratification. After adjusted PC factors, there are four SNPs
overlapped with the association model and not fitted PCs—results will be discussed in a later section.

4.2. GWAS for Milk Traits

Milk production and quality are important economic objectives in the dairy industry, good milk
production performance can bring greater economic benefits because of the milk pricing system and

https://www.holstein.ca/Public/en/Services/Registration/Registration_Eligibilities
http://www.holsteinusa.com/animal_id/register.html


Animals 2020, 10, 2048 9 of 15

production efficiency. Most of milk phenotypes are quantitative traits and are regulated by polygenic,
research on the relationship between genetics and milk traits began decades ago. As early as 1994,
a research identified a QTL significantly associated with FY was linked to kappa-casein and a QTL
for PY was linked to beta-lactoglobulin [25]. Subsequently, a growing number of studies detected
tens and thousands of QTLs through the 30 chromosomes associated with 653 different traits in cattle
(Cattle QTLdb) [26]. Even though there has been plenty of research in this filed, the available evidence
is still not enough to give a completed explanation of genetic mechanism for these traits, and more new
research samples will still be valuable to help lay groundwork in this aspect. Therefore, 1220 Holstein
cows with comprehensive herd-test data were genotyped for GWAS in this study. In the results,
we found ten SNPs were significantly associated with four milk quality traits (FP, FY, PP, and PY),
one of the most significant SNPs was located in the DGAT1 gene and shown closely related to milk fat
and protein percentage. No significant SNP passed the Bonferroni correction threshold for MY, the
small number of markers detected may be due to the limited sample size in the present study, which is
a critical factor limiting the statistical power.

A random regression test-day model was used to estimate breeding values in this study,
which eliminated environmental factors (herd-test-day, calving year-season and calving month-age),
and then EBV was used as a dependent variable to conduct association tests, whereas a study used the
deregressed EBV as phenotypic records for the bulls to estimate SNP effects by using a single-marker
regression model [27]. The deregressed EBV was proposed by Garrick et al., in which removing the
parental average effects is more valuable in genomic analysis [28]. The phenotypes used by association
analysis can be varied, raw phenotypes, adjusted phenotypes, EBVs, deregressed EBVs, and daughter
yield deviation (DYD) [29–34], and certainly different phenotypes are suitable for different scenarios.
In dairy breeds, EBVs or deregressed EBVs are preferred as the dependent variable of GWAS. Research
has shown that the deregressed EBVs could reliable in genomic analysis, but some studies showed that
the accuracy of genomic analysis when using EBVs was only slightly lower than using deregressed
EBVs [35,36]. In addition, a simulation study indicated that GWAS using EBVs or deregressed EBVs
as the dependent variable with polygenic effect modeled had similar performance in controlling the
false positive rates (FPR), even when using deregressed EBVs lowered the power in some degree [37].
Therefore, the present study prefers to use EBVs for analysis.

In this study, the three SNPs on BTA1, 8, 14 that were associated with FP were found, which are
within reported QTL regions [38–40]. The study used Bos_taurus_UMD_3.1 as a reference genome to
search the candidate genes at a distance of 120 kb upstream or downstream of the associated SNPs.
The SNP (0.007%; p = 1.50 × 10−7) associated with an increase of FP on BTA1 is located in the EPHA6
gene, which has functions of ATP binding (GO:0005524), protein binding (GO: 0005515), protein
tyrosine kinase activity (GO: 0004713), and has been proposed to participate in Axon guidance pathway
(KEGG: bta04360). The SNP (0.012%; p = 3.57 × 10−8) on BTA8 located close to SCARA5 gene resulted in
an increase of FP. This gene is a member of the scavenger receptor (SR) family, which is broad expression
in fat tissue in humans. Research showed that scavenger receptors involved in lipid accumulation and
inflammation [41]. Some studies reported the gene plays a critical role in progression and metastasis of
breast cancer [42] and is involved in breast carcinogenesis [43]. The SNP on BTA14 associated both with
an increase of FP (0.018%, p = 9.92 × 10−25) and PP (0.006%; p = 4.75 × 10−8), which is in the DGAT1 gene.
As we know, DGAT1 gene is widely reported associated with milk yield and composition, especially
K232A polymorphism affecting on milk fat and protein [38,44,45]. In this study, the SNP (rs109421300)
we identified is within an intron of DGAT1 gene and is the most significantly affecting FP and also
affecting PP, and a lot of studies have reported for milk yield and composition in Holstein, Jersey,
and Holstein–Friesian cattle [46–48]. DGAT1 gene as a key metabolic enzyme catalyzes the biosynthesis
of triacylglycerols [49], and glycerolipid metabolism (KEGG: bta00561), retinol metabolism (KEGG:
bta00830), metabolic pathways (KEGG: bta01100), and fat digestion and absorption (KEGG: bta04975)
by KEGG pathway analysis (https://www.genome.jp/dbget-bin/www_bget?bta:282609). The SNP
(−0.004%; p = 4.03 × 10−8) on BTA5 is associated with a reduction of PP and is within previously
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reported milk fatty acid content QTL [39]. This SNP is close to the ZNF384, which encodes a C2H2-type
zinc finger protein. It may function as a transcription factor and have DNA binding and metal ion
binding functions. Another SNP (−0.008%; p = 2.36 × 10−8) associated with a reduction of PP on
BTA21 at 69Mb is located near the EXOC3L4 gene. Four SNPs are associated with FY in the present
study. The SNP (−1.523 kg; p = 4.48 × 10−9) on BTA7 near the adrenoceptor alpha 1B (ADRA1B) gene
resulted in a reduction of FY, which is participated in the calcium signaling pathway (KEGG: bta04020),
cGMP-PKG signaling pathway (KEGG: bta04022), and neuroactive ligand–receptor interaction (KEGG:
bta04080). The SNP (−2.281 kg; p = 8.58 × 10−9) associated with a reduction of FY on BTA11 at 19Mb
located near the VIT gene. This gene encodes an extracellular matrix (ECM) protein and has been
suggested to contribute to normal brain asymmetry variation [50]. The SNP (1.543 kg; p = 7.05 × 10−9)
on BTA17 is located in the EP400 and resulted in an increase of FY, and also within previously reported
QTL for milk protein composition [51], EP400 gene participates in histone H2A acetylation, histone
H4 acetylation, and has the function of ATP binding, DNA binding, protein binding, and helicase
activity. The SNP (1.629 kg; p = 1.63 × 10−10) associated with an increase of FY on chromosome
X is located nearby the GRPR. This gene is a gastrin releasing peptide receptor. Gastrin-releasing
peptide regulates numerous functions of the gastrointestinal and central nervous system, which is
involved in calcium signaling pathway (KEGG: bta04020) and neuroactive ligand–receptor interaction
(KEGG: bta04080). These two pathways were enriched for FY in this study. A study revealed that
the calcium signaling pathway was related to milk coagulation properties and curd nutrient recovery
traits in dairy cattle [52], and interestingly, another study showed that these two pathways were
significantly correlated with lactation performance in mice [53]. Song et al. reviewed a lot of studies
on calcium signaling pathway that participated in the effect of the sympathetic nerve in regulating
adipose metabolism [54]. We suspect that ADRA1B and GRPR genes may affect milk fat through the
calcium signaling and neuroactive ligand–receptor interaction pathways. It is well known that the
biological mechanisms of quantitative traits are very complicated, and the present study is only based
on SNP data analysis. Some studies have shown that copy number variation and DNA methylation
are also related to milk production and quality traits [55–57]. The SNP (1.192 kg; p = 1.57 × 10−8) on
BTA5 is associated with an increase of PY and it is also within the previously reported QTL region,
which is associated with milk fatty acid content. This SNP is in the SLCO1A2 gene, which is encoding
solute carrier anion transporter family, member 1A2, the gene participating in the digestive system,
organic anion transport process, and bile secretion pathway (KEGG: 04976). Furthermore, when the
association model used not fitted PCs as covariance, four SNPs are overlapped with the model with
fitted PCs: rs109875012 (ZNF384), rs136949224 (SCARA5), rs109421300 (DGAT1), and rs109528658
(EP400), it is suggested that these significant SNPs could be more stable and reliable.

4.3. Correlations among Milk Traits and Pleiotropic QTLs

Estimates of heritability and genetic correlations are essential population genetic parameters
in animal breeding research and application of animal breeding programs [58]. Genetic correlation
can be useful for indirect selection, selection in different environment, and selecting multiple traits
simultaneously. We found there was relatively high genetic correlation between milk yield and protein
yield, and it is consistent with the results in Holsteins [59] and Jersey cattle [58]. We expect that
there are overlapping regions of genetic variation between different traits that are relatively high
correlation. A heatmap using p-values from GWAS results helped identify pleiotropic QTLs (Figure
S5). The QTL on BTA2 at 134Mb is associated with MY, PY, and FY, and also reported associated with
the milk composition in another Holstein study [60]. The MY- and PY-associated QTL is adjacent
to the ABCG2 gene on BTA6; previously, studies reported that a missense mutation in the ABCG2
gene is associated with milk yield and composition in Holstein, Braunvieh, and Fleckvieh cattle [2,61],
an intron variant affecting milk fatty acids in Chinese Holstein [62], and has also been reported to
affect body weight, calving ease direct in US cattle breed [63,64]. The QTL on BTA17 is associated with
MY, PY, and FY, with previous studies indicating that QTLs in this region are related to milk fatty acid
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and body weight [60,65]. A previous study reported a QTL on BTA20 is associated with PP and body
weight [63,66]. In this study, we found this QTL is associated with MY, PY, and FY. The QTL on BTA24
is pleiotropic and is associated with MY and FY, and previously reported for milk fatty acid [67] and
conception rate in Holstein cows [68].

5. Conclusions

The study performed genome-wide association analysis using test-day records for five milk
production and quality traits in Holstein cows. A total of ten significant SNPs associated with milk
fat and protein percentage, fat and protein yield were found, six of them located within previously
reported QTLs, including DGAT1 gene on milk quality. We also found some new genetic loci and
candidate genes related to milk fat and protein. In addition, some SNPs and QTLs associated with
more than two milk traits were found. These results could provide some basis for molecular breeding
and useful information to understanding the genetic architecture of milk production and quality traits
in dairy cattle.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/11/2048/s1,
Figure S1: Phenotype distributions and correlations among milk traits, Figure S2: Heatmap of estimated breeding
values for milk traits, Figure S3: The relationship between origins and the first two principle components, Figure
S4: Correlation between phenotypic values of milk traits and the first three principle components, Figure S5:
Heatmap of significant markers associate with five milk traits.
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