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Abstract: An easy-to-prepare pH sensor based on electrochemically obtained polypyrrole doped
with methyl orange ions is described. It enables the determination of a pH value in the 3–13 range for
volumes below 1 µL. In a wide pH range, resonance and pre-resonance methyl orange Raman spectra,
excited with the 514.5 nm line of an Ar+ laser, changed noticeably in function of H+ concentration.
Two types of measurements were performed. In the first case, Raman spectra of the analyzed solutions
were collected for samples placed on the sensor surface using a confocal microscope equipped with a
10x objective. Next, measurements were conducted for the same samples without the sensor. On the
basis of these spectra, partial least-squares models were elaborated and validated. Relative standard
errors of prediction for calibration, validation, and test samples were found to be in the 3.7%–3.9%
range. An analogous model build using spectra registered without the sensor was characterized by
slightly worse parameters.
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1. Introduction

One of the most intensively explored areas of analytical chemistry is the design and preparation
of optical sensors, which can be used to monitor chemical reactions in different environments.
A variety of spectroscopic techniques are used for this purpose. Fluorescence [1–3], ultraviolet–visible
spectroscopy [4], and surface-enhanced Raman scattering [5,6] are the most popular techniques, while
spontaneous and resonance Raman methods are rarely applied [7,8]. The electropolymerization of
pyrrole in the presence of an anionic dye, a one-step synthetic procedure, results in the deposition
of a conducting polypyrrole–methyl orange (PPy–MO) composite on an electrode surface, which
is similar to the reported cases of chemical polymerization of pyrrole [9,10]. The polymerization
process preserves the acid–base properties of the dye dopant in the polypyrrole phase. Therefore,
the obtained polymer can function as a solid-state platform for quantitative sensing of protons in
solutions. Modifications of the dye molecule reflecting changes of the analyte concentration can be
monitored using Raman spectroscopy, which is not a very sensitive method. On the other hand,
similar information can be obtained more easily from resonance or pre-resonance Raman spectra due
to significant enhancement of their intensity [11].

In this study, we describe a pH sensor composed of electrochemically prepared fibres of polypyrrole
doped with methyl orange, which enables the determination of a pH value in the 3–13 range for
volumes below 1 µL, based on resonance and pre-resonance MO Raman spectra.
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2. Materials and Methods

2.1. Chemicals and Samples

Pyrrole (Sigma-Aldrich, Saint Louis, MO, USA) was distilled under reduced pressure; MO
(Alfa Aesar, Karlsruhe, Germany), phosphoric acid (Sigma-Aldrich, Saint Louis, MO, USA), sodium
hydroxide (POCH, Gliwice, Poland), and nitrogen 99.9999 % (Air Liquide, Paris, France) were used as
supplied. Forty-six samples with pH in the 3–13 range were prepared by titrating a 0.2 M phosphoric
acid solution with a 0.2 M sodium hydroxide solution.

2.2. Electrochemical Synthesis

An Autolab PGSTAT potentiostat (Metrohm, Utrecht, Netherlands) under GPES (4.8) and FRA
(2.4) software control was used for all electrochemical procedures. Cell solutions were deoxygenated
by nitrogen flow for 15 minutes and thermostated at 25 ◦C. A standard three-electrode cell was
used. A polycrystalline disc gold electrode without or with deposits was used as the working
electrode, and a platinum rod and a saturated silver chloride electrode served as counter and reference
electrodes, respectively. MO-doped fibrous polymer was deposited using a potentiostatic method
(chronoamperometry) at 0.7 V until a 250 mC/cm2 charge had passed in the solution containing 0.15 M
pyrrole and 10 mM MO (Figure 1). After electrosynthesis, the resulting polymer electrode was washed
with demineralised water.
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Figure 1. Sensor’s design (left) and SEM image of the sensor surface (right).

2.3. Surface Morphology

The surface morphology of the PPy–MO films was monitored by a Hitachi S-3400N scanning
electron microscope (SEM) (Hitachi, Tokio, Japan) at 10 kV and a back-scattered electron detector.

2.4. Spectra

Raman spectra were recorded using a Horiba Jobin Yvon T64000 spectrometer (Horiba Scientific,
Kyoto, Japan) equipped with a N2-cooled CCD camera, an argon–krypton ion laser operating at
514.5 nm, and a confocal microscope with a 10× objective. The studied solutions were placed on the top
of the electrode covered by PPy–MO composite. The scattered radiation, which passed through a notch
filter, was analyzed by a spectrograph equipped with a holographic grating with 1800 grooves/mm.
Resonance and pre-resonance spectra excited with a power of 5 mW at the sample were recorded in the
800–1800 cm−1 range. Electrodes were kept in a glass holder filled with a phosphate-buffered solution.

2.5. Chemometrics Models

Partial least-squares (PLS) regression is a popular chemometric tool used for the quantitative
modeling of multidimensional spectroscopic data. In this technique, statistically significant factors or
latent variables are used to build a regression model between the dependent variables (Y), in our case,
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the Raman spectra of the samples, and the independent variable (X), which, in this analysis, were the
pH values, according to the formula:

Y = XB + E (1)

where B is the matrix of regression coefficients, and E is the error matrix. During the decomposition of
the X and Y matrices, the PLS algorithm models the independent and dependent variables maximizing
the covariance between the calculated factors. As a result, these matrices can be expressed using the
following equations:

X= TPT + EX (2)

Y = UQT + EY (3)

where T and U are the scores’ matrices, and P and Q are the loadings. Usually, only the first few factors
are retained [12,13].

PLS models were constructed using Nicolet TQ analyst ver. 7 software. The samples were divided
into calibration, validation, and test sets. For each sample set, relative standard errors of prediction
(RSEP) were calculated according to the equation:

RSEP (%) =

√√√∑n
i=1 (Xi −XA

i )
2∑n

i=1 XA2

i

× 100% (4)

where XA is the pH value determined using a pH meter and a glass electrode, X is the pH value found
from the PLS model, and n is the number of samples. The optimal number of PLS factors was found
from the root-mean-square error of cross validation (RMSECV) plots [12–14].

3. Results

Methyl orange sodium 4-{[4-(dimethylamino)phenyl]diazenyl}benzene-1-sulfonate is a
well-known acid–base indicator that changes colour from red to yellow-orange between 3.1 and
4.4 pH value [15]. In an acidic environment, a strong absorption band in the UV–Vis spectrum with a
maximum at 508 nm is observed. Increasing the pH of the solution, causes the appearance of a new band
with a maximum at 465 nm [16]. When excited with the 514.5 nm Ar+ line, protonated/unprotonated
MO species produced resonance and pre-resonance Raman spectra which differed noticeably (Figure 2).
In the MO Raman spectra collected at pH = 3, a number of vibrational features connected with the
protonated forms of a dye molecule were present, including bands with maxima at 1625, 1499, 1272,
and 1181 cm−1. Increasing the pH value was associated with the disappearance of these bands and with
pronounced changes in the position and shape of some others, for example, at 1604, 1417, 1148, and
1117 cm−1. For strongly alkaline samples, bands with maxima at 1046 and 927 cm−1 gained intensity.
The most visible changes in the recorded Raman spectra were observed at the two extreme pH values,
although some modification in the position, intensity, and shape of Raman bands couold be noticed in
the whole pH range studied [16,17]. Two types of measurements were performed for the same sample
set. In the first case, 100 µL of the prepared solutions was placed on the obtained composite.

Spectra were recorded focusing the laser beam, using a 10×microscope objective on the sensor
surface, and collecting the scattered radiation. Analogous measurements were carried out for the same
samples without the PPy–MO sensor. To do so, 10 µL of 0.1% MO water solution was added to 200 µL
of each analyzed sample, and Raman spectra were registered under the same objective. To check the
possibility of pH determination in small-volume samples, additional measurements were performed
on 0.1 µL sample volumes. First, Raman spectra of the composite were recorded, and then a 0.1 µL
drop was placed on the sensor surface. The Raman spectra of such small samples strongly resembled
the spectra recorded using 100 µL volumes but were less intense. It follows that reliable spectra can be
recorded for a drop with a diameter comparable to that of the laser spot on the sensor’s surface. This
creates the possibility of pH determination for samples as small as a few nanoliters in volume. Sensor
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stability was checked by recording several series of spectra of the selected samples within a few weeks.
Additionally, spectra were recorded using a sensor that, during the same time period, was not stored
in the buffer solution but in air. No spectral changes were observed. On the basis of spectra in the
1130–1685 cm−1 range recorded using a PPy–MO sensor, PLS models were elaborated. Thirty samples
were used to construct calibration models, eight were selected to validate them, and eight were treated
as test samples. The number of latent variables, determined from RMSECV plots, was set to five. The
prediction plot and regression residuals for pH determination are shown in Figure 3. The details of the
prepared calibration models and the results of the analysis are presented in Table 1.Polymers 2019, 11, x FOR PEER REVIEW 4 of 6 
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Figure 2. Raman spectra of methyl orange registered at selected pH values. 108 
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Figure 3. Prediction plot (left) and regression residuals (right) for pH determination based on Raman
spectra registered with PPy–MO sensor.

Table 1. Parameters of the partial least-squares (PLS) models. PPY–MO: polypyrrole–methyl orange,
RSEP: relative standard errors of prediction.

Parameter PPy-MO Sensor MO in Solution

R a 0.9942 0.9903
Rcv

b 0.9724 0.9543
RSEP calibration 3.91 5.11
RSEP validation 3.68 5.37

RSEP test 3.66 4.94
Number of PLS factors 5 5

a correlation coefficient, b correlation coefficient of cross validation
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As mentioned before, MO was used as a pH indicator in the 3.1–4.4 range. Separate models
obtained for low and a high pH ranges of 3.1–7.0 and 7.1–13.50, respectively, were characterized by
RSEP errors to be nearly two times smaller than those found for the full-range model. An analogous
PLS model was built using spectra registered without a PPy–MO sensor. This model was characterized
by slightly worse parameters, and quantification errors were higher compared to those obtained using
the PLS model for a PPy–MO sensor (Table 1).

4. Conclusions

This report confirms a high potential of the PPy–MO composite for pH determination. The
preparation of such a sensor is easy, fast, and inexpensive. In combination with Raman spectroscopy
and chemometric methods, it allows to perform an accurate determination of pH values for a wide
range for small-volume samples.

Author Contributions: T.C. performed Raman measurements and chemometric analysis and prepared a draft of
the text. K.W. designed, synthesized, and characterized the polypyrrole–MO composite. M.G. discussed and
revised the text. R.S. supervised the work and prepared the final version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, T.H.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K.T.V.; Taylor, S.E.; Basheer, P.A.M.; Long, A.E.
Fluorescence based fibre optic pH sensor for the pH 10–13 range suitable for corrosion monitoring in concrete
structures. Sens. Actuators B Chem. 2014, 191, 498–507. [CrossRef]

2. Heider, E.C.; Myers, G.A.; Harris, J.M. Spectroscopic Microscopy Analysis of the Interior pH of Individual
Phospholipid Vesicles. Anal. Chem. 2011, 83, 8230–8238. [CrossRef] [PubMed]

3. Malhotra, D.; Casey, J.R. Intracellular pH Measurement. In eLS; John Wiley & Sons, Ltd: Chichester, UK,
2015; pp. 1–7.

4. Ferreira, J.; Girotto, E.M. Optical pH sensitive material based on bromophenol blue-doped polypyrrole.
Sens. Actuators B Chem. 2009, 137, 426–431. [CrossRef]

5. Bishnoi, S.W.; Rozell, C.J.; Levin, C.S.; Gheith, M.K.; Johnson, B.R.; Johnson, D.H.; Halas, N.J. All-Optical
Nanoscale pH Meter. Nano Lett. 2006, 6, 1687–1692. [CrossRef] [PubMed]

6. Jamieson, L.E.; Jaworska, A.; Jiang, J.; Baranska, M.; Harrison, D.J.; Campbell, C.J. Simultaneous intracellular
redox potential and pH measurements in live cells using SERS nanosensors. Analyst 2015, 140, 2330–2335.
[CrossRef] [PubMed]

7. Bisset, A.; Dines, T.J. Resonance Raman spectroscopic studies of pH indicators adsorbed on γ-Al2O3. J. Raman
Spectrosc. 1995, 26, 791–798. [CrossRef]

8. Gicevicius, M.; Celiesiute, R.; Kucinski, J.; Ramanaviciene, A.; Bagdziunas, G.; Ramanavicius, A. Analytical
Evaluation of Optical pH-Sensitivity of Polyaniline Layer Electrochemically Deposited on ITO Electrode.
J. Electrochem. Soc. 2018, 165, H903–H907. [CrossRef]

9. Stejskal, J.; Trchová, M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018, 72, 1563–1595.
[CrossRef]
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