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ABSTRACT

Eukaryotic chromosomal DNA is assembled into reg-
ularly spaced nucleosomes, which play a central role
in gene regulation by determining accessibility of
control regions. The nucleosome contains ~147 bp
of DNA wrapped ~1.7 times around a central core
histone octamer. The linker histone, H1, binds both
to the nucleosome, sealing the DNA coils, and to
the linker DNA between nucleosomes, directing chro-
matin folding. Micrococcal nuclease (MNase) digests
the linker to yield the chromatosome, containing H1
and ~160 bp, and then converts it to a core particle,
containing ~147 bp and no H1. Sequencing of nucle-
osomal DNA obtained after MNase digestion (MNase-
seq) generates genome-wide nucleosome maps that
are important for understanding gene regulation. We
present an improved MNase-seq method involving
simultaneous digestion with exonuclease lll, which
removes linker DNA. Remarkably, we discovered two
novel intermediate particles containing 154 or 161 bp,
corresponding to 7 bp protruding from one or both
sides of the nucleosome core. These particles are de-
tected in yeast lacking H1 and in Hi-depleted mouse
chromatin. They can be reconstituted in vitro using
purified core histones and DNA. We propose that
these ‘proto-chromatosomes’ are fundamental chro-
matin subunits, which include the H1 binding site and
influence nucleosome spacing independently of H1.

INTRODUCTION

Eukaryotic DNA is organized into chromatin, which is es-
sentially an array of regularly spaced nucleosomes that is
occasionally interrupted by non-histone protein complexes
bound at regulatory regions, such as promoters, enhancers
and replication origins. The nucleosome core is composed
of a core histone octamer around which is wrapped ~147
bp of DNA in ~1.7 superhelical turns (1-4). The linker his-
tone (H1) binds externally to the nucleosome core, where it
interacts with the linker DNA between nucleosomes to di-
rect the folding of the chromatin fibre (5,6) and also seals
the DNA turns at the nucleosomal DNA entry/exit points
(7), forming a stem-loop structure (8,9). The nucleosome is
a compact and stable structure capable of inhibiting tran-
scription, DNA replication and repair. Accordingly, the cell
contains various chromatin remodelling activities that can
modify histones or move nucleosomes. Accurate maps of
nucleosome positions in cells are therefore essential to an
understanding of gene regulation and other processes.

The DNA in the nucleosome core is strongly protected
from digestion by micrococcal nuclease (MNase), which has
a strong endonuclease activity and a relatively weak exonu-
clease activity (10). MNase cuts primarily in the linker DNA
between nucleosome cores and then its exonuclease activity
slowly trims the DNA ends from the initial cut sites. MNase
digestion is temporarily impeded by H1, resulting in the
transient formation of chromatosomes (~160 bp), which
contain the nucleosome core, Hl and some linker DNA
(11). Eventually, MNase digests the linker DNA in the chro-
matosome, H1 dissociates, and the result is the nucleosome
core particle (~147 bp), which corresponds to the crystal
structure (1-4). The protection of nucleosomal DNA from
MNase digestion is made use of in MNase-seq, which in-
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volves massively parallel sequencing of mono-nucleosomal
DNA (12). Paired-end sequencing represents a major ad-
vance in MNase-seq because it provides reads from both
ends of each DNA molecule, such that the length of each
molecule can be deduced after alignment to the genome
sequence, resulting in more accurate position information
(13-16).

Ideally, MNase digestion would involve cutting the linker
on both sides of the nucleosome core, followed by digestion
of the protruding linker DNA, resulting in DNA fragments
of 145-147 bp. Such fragments would provide a very accu-
rate and precise map of nucleosome positions throughout
the genome. In practice, paired-end sequencing has shown
that nucleosomal DNA is heterologous in length (13-16),
often with a significant fraction of nucleosomes contain-
ing DNA longer than 147 bp, primarily due to incomplete
trimming by MNase. To solve this problem, we have aug-
mented the slow exonuclease activity of MNase with E. coli
exonuclease IIT (ExollIl). We have shown previously that
this approach is effective on a reconstituted nucleosome in
vitro (17). Here, we apply it to budding yeast chromatin. We
observe a major, sharp, core particle peak at 145-147 bp,
which provides very accurate nucleosome position data. We
also observe clearly defined intermediate nucleosomal par-
ticles containing 154 bp or 161 bp. Surprisingly, these par-
ticles are not chromatosomes because they are observed in
yeast lacking H1 and in mouse liver chromatin from which
HI has been removed. Furthermore, they can be reconsti-
tuted in vitro using just purified core histones and DNA. We
propose that these novel particles, which we term ‘proto-
chromatosomes’, play a critical role in nucleosome spacing
by fixing the minimum distance between nucleosomes at 15
bp, independently of H1.

MATERIALS AND METHODS
Plasmids and strains

p685 was constructed by inserting HHOI (from —111 to
+812 with respect to the start codon) as a Kpnl-Pmel frag-
ment obtained by PCR into pNEB193 (New England Bi-
olabs) cut with the same enzymes. p687 was constructed
by replacing the BamHI-Stul HHOI fragment in p685
with the BamHI-Pmel URA3 fragment from pNEB-URA3
(18). pPRS-ARGI1-B (p688) was obtained by insertion of a
PCR fragment containing A RGI and flanking regions, from
—1283 to +2936, relative to the start codon, at the No¢I site
in pRS414 (Stratagene),a CEN ARS TRPI plasmid (ARG!
and TRPI are transcribed in opposite directions). YVN381
(MATa canl-100 his3—11 leu2-3,112 lys2 A trpl—1 ura3—1
hhol A:: URA3) was constructed by transforming wild type
strain JRY4012 (19) with a Kpnl-Pmel digest of p687.

MNase-ExollI digestion of yeast nuclei

Yeast cells (250 ml culture) were grown to log phase (Agoo
~0.8) and harvested. Nuclei were prepared (20) and re-
suspended in 5.2 ml Digestion Buffer (10 mM HEPES
pH 7.5, 35 mM NaCl, 2 mM MgCl,, 2 mM CaCl,, 5
mM 2-mercaptoethanol, with protease inhibitors (Roche
04693159001)). Two series of six MNase digestions (15, 30,
60, 120, 240 and 480 Worthington units) were set up, with

either 150 or 300 units of Exolll (New England Biolabs).
Nuclei (400 wl aliquots) were digested for 2 min at room
temperature. The reaction was stopped by addition of Na-
EDTA to 10 mM and SDS to 0.8%, mixing and incubating
at room temperature for 5 min, before adding more SDS to
a final concentration of 1.8%. The DNA was purified; 10%
of each sample was analysed in an agarose gel. Appropri-
ately digested samples were chosen for preparative gel elec-
trophoresis.

MNase-ExollI digestion of mouse chromatin

Livers were dissected from female NIH/S mice (E13.5)
and stored at —80°C. All buffers contained 15 mM 2-
mercaptoethanol and protease inhibitors as above. One liver
(0.8 g) was disrupted in 6 ml Buffer A+ (0.34 M sucrose,
60 mM KCI, 15 mM NacCl, 15 mM TrisHCI pH 8.0, 0.5
mM spermidine-HCI, 0.15 mM spermine-HCI, 1 mM Na-
EDTA) in a glass homogeniser on ice by 10 strokes with a
teflon pestle and filtered through four layers of cheese cloth.
The homogenate was adjusted to 12.5 ml Buffer A+ with
0.92 M sucrose in a 30-ml polycarbonate high-speed cen-
trifuge tube and spun for 15 min at 2°C in a Sorvall SA600
rotor at 12 500 rpm. The pellet was resuspended in 5 ml
Buffer A+ and spun for 5 min as above. The washed nu-
clei were resuspended in Buffer A+ to Aygy = 50 measured
in 1 M NaOH (~4 ml). A 1.4 ml-aliquot of nuclei in a mi-
crofuge tube was adjusted to 2 mM CaCl, ( = 1 mM ex-
cess over EDTA), warmed briefly to 37°C, and digested with
MNase (20 Worthington units) for 3 min. The digestion was
terminated by adding 0.1 M Na-EDTA pH 7.5 to a final
concentration of 10 mM. The digested nuclei were recov-
ered by a 5 min spin in a microfuge at 4°C and lysed by
thorough resuspension in 1 ml 0.2 mM NaEDTA pH 7.5.
The debris was removed by a 5 min spin. The chromatin
concentration in the supernatant was measured by Asgg in
1% SDS. Two 400-pl aliquots of chromatin at ~0.2 mg/ml
were diluted with an equal vol. of 160 mM NaCl, 2 mM
Na-phosphate pH 7.2, 0.4 mM Na-EDTA. To remove H1
(21), 200 w1 AGS0W-X2 resin (BioRad 142-1241; washed
and equilibrated in 80 mM NaCl, | mM Na-phosphate pH
7.2,0.2 mM Na-EDTA as described (22)) was added to one
aliquot. Both aliquots were subjected to gentle rotation for
I h at 4°C. The resin was allowed to settle and the HI-
depleted chromatin was removed to a fresh tube on ice. The
NaCl concentration was reduced to 50 mM by a 1.6-fold di-
lution in a pre-mixed buffer resulting in final concentrations
of 10 mM HEPES pH 7.5, 2 mM MgCl,, 2 mM CaCl,. Hi-
stones in 100 .l aliquots were TCA-precipitated and anal-
ysed in a protein gel stained with Coomassie Blue. The chro-
matin was depleted of ~85% of its H1 (estimated by pro-
tein gel analysis of H1 extracted by 5% perchloric acid). Six
100 pl-aliquots (~5.5 pg) of native and H1-depleted chro-
matin were warmed briefly to 30°C and digested with 0, 0.1,
0.2, 0.4, 0.8 or 1.6 units MNase and 16.5 units ExolII (all
aliquots) for 3 min at 30°C. The digestion was stopped by
adding 20 wl 50 mM Na-EDTA pH 7.5, 5% SDS. DNA was
extracted as described above (nucleosomal DNA was not
gel-purified).



Reconstituted chromatin

Reconstituted nucleosomes were made using recombinant
yeast H3, H4, H2A and H2B purified from E. coli (23).
Histone octamers were formed and purified by gel filtra-
tion (23). The octamer concentration was determined ini-
tially by amino acid composition analysis and then corre-
lated with Bradford protein assay measurements using IgG
as standard (BioRad): 1 mg/ml in the Bradford assay cor-
responds to an actual concentration of 0.36 mg/ml. pRS-
ARGI1-B was purified from E. colilacking DNA methylases
(dam- dem-; New England Biolabs C2925). Briefly, 10 g
DNA and 4 pg octamer were mixed in 100 wl 2 M NacCl,
10 mM HEPES-K pH 7.5, 0.1 mM Na-EDTA and trans-
ferred to a Slide-A-Lyzer mini-dialysis unit with a molecu-
lar weight cut-off of 10 000 (ThermoScientific 69574). The
solution was dialysed overnight at 4°C against 500 ml of 2 M
NacCl in R-buffer (10 mM HEPES-K pH 7.5, 0.1 mM Na-
EDTA, 0.05% NP40, 1 mM 2-mercaptoethanol) and then
against R-buffer containing 1.5 M NaCl (2 h), 1 M NaCl
(2 h), 0.75 M Nacl (3 h), and finally against 50 mM NaCl
in R-buffer overnight. Alternatively, nucleosomes were re-
constituted on pRS-ARGI1-B at the same ratio using na-
tive chicken erythrocyte histones, as described (17). Recon-
stituted chromatin (1 pg) in 30 pl R-buffer containing 50
mM NaCl, 2 mM CacCl,, 2 mM MgCl,, was digested with
3.125 units ExollI plus either 0.1, 0.125 or 0.2 units MNase
for 3 min at 30°C. Reactions were stopped by addition of
Na-EDTA pH 7.5-6.7 mM and cooling on ice. Libraries of
gel-purified nucleosomal DNA were subjected to Illumina
paired-end sequencing (20). The length of each sequenced
DNA fragment was deduced after alignment of each pair
of 50-nt reads to the yeast genome (SacCer2) or the mouse
genome (mm10) using Bowtie 2 (24). A summary of the data
is provided in Supplementary Table S1.

RESULTS

MNase-ExollI digestion yields precisely trimmed core par-
ticles

We added Exolll to facilitate removal of linker DNA pro-
truding from nucleosomes liberated from yeast nuclei by
MNase. Exolll is a partly processive 3'-to-5 exonuclease
which hydrolyses only one DNA strand, leaving a single-
stranded 5-overhang (25). Its activity is mildly sequence-
dependent, in the order C > A, T > G (26). To remove the
5" overhang, we initially included mung bean nuclease in
the digestions, but it was found to be unnecessary, presum-
ably because MNase digests single-stranded DNA much
more rapidly than double-stranded DNA (10). Thus, the en-
donuclease activity of MNase cuts the linker DNA, ExolIl
rapidly removes one strand of the linker until it is blocked by
the histones, and then MNase destroys the single-stranded
overhang (Figure 1A). Nuclei were digested at different
MNase concentrations in the presence of a fixed concen-
tration of Exolll (Figure 1B) and paired-end sequencing li-
braries were prepared from gel-purified mono-nucleosomal
DNA.

The length distributions for an MNase-only sample and
two levels of MNase-Exolll digestion are plotted as his-
tograms (Figure 1C, D, E). The MNase-only sample has a
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Figure 1. Simultaneous digestion of yeast chromatin with MNase and Ex-
olII results in a set of DNA fragments of discrete lengths, correspond-
ing to the nucleosome core particle and its intermediates. (A) Digestion
of chromatin with MNase and ExolIl. Ovals: nucleosome cores; black
arrows: cut sites. (B) Agarose gel electrophoresis of chromatin digested
with MNase and Exolll. Markers: 1-kb ladder (M1); pBR322 Mspl di-
gest (M2). (C) Length distribution histograms for nucleosome sequences
obtained by paired-end sequencing of the mono-nucleosome band from
wild type strain JRY4012: MNase-only. (D, E) Length histograms for
MNase-ExollI at two different MNase concentrations, corresponding to
the mono-nucleosome bands in the gel.

typical length distribution with a fairly broad peak at 149
bp, corresponding to core particles, and a weak hump at
~160 bp corresponding to particles with protruding linker
DNA, as well as a set of poorly resolved peaks around 130
bp, corresponding to internally digested nucleosomes, sub-
nucleosomes (i.e. nucleosomes lacking one or both H2A-
H2B dimers; 27) and perhaps non-histone complexes (16).
In the presence of Exolll, much sharper peaks were ob-
served in the length distribution, which shifted to slightly
lower values with increased MNase digestion (Figure 1D,
E). The major peak was at 147 bp or 146 bp, corresponding
to precisely trimmed core particles. There were also minor
peaks at sub-nucleosomal lengths of 134, 124, 114 and 104
bp, which show a 10 bp periodicity. This observation is con-
sistent with internal digestion of nucleosomes by MNase
and/or invasion of the nucleosome by ExolIll (28). Unex-
pectedly, there were also sharp peaks at 153/154 and 161
bp, apparently corresponding to defined nucleosomal par-
ticles containing more DNA than is present in the core par-
ticle. The periodicity in this case was 7 or 8 bp. The rela-
tive amounts of these particles decreased with MNase diges-
tion, consistent with the hypothesis that they were eventu-
ally converted into core particles. Thus, the effect of Exolll
is to resolve and sharpen the peaks observed in the MNase-
only digest; the resolution of the weak hump at ~160 bp in
the MNase-only digest into sharp peaks at 154 and 161 bp
is particularly striking.
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Figure 2. The 154-bp and 161-bp nucleosomal particles are present in yeast
cells lacking linker histone and can be reconstituted in vitro using only core
histones and DNA. (A) The 154-bp and 161-bp particles are not chromato-
somes. Length distribution histograms for nucleosome sequences obtained
by sequencing of mono-nucleosomes from /hol A cells. (B, C) The 154-
bp and 161-bp particles can be formed using recombinant yeast core hi-
stones or native chicken erythrocyte core histones and plasmid DNA in
vitro. Length distribution histograms for nucleosome sequences obtained
at two different levels of MNase-ExollI digestion.

Proto-chromatosomes

The structural explanation for the pauses in digestion ex-
ternal to the nucleosome core is of interest. The most obvi-
ous possibility is that they represent chromatosomes: nucle-
osomes with additional linker DNA protected by the globu-
lar domain of histone H1, typically ~160 bp (11,29). How-
ever, unlike higher organisms, yeast has much less H1 than
nucleosomes (30), implying that it could not protect a large
fraction of the total nucleosomes. Nevertheless, we tested
the possibility that the 154-bp and 161-bp particles are chro-
matosomes by repeating the experiment using a strain in
which the gene for H1 had been deleted (440l A). The length
distribution was very similar to that of wild type nucleo-
somes, yielding the same peaks, including those at 153/154
and 161 bp (Figure 2A). Since the 154-bp and 161-bp par-
ticles were observed in the absence of H1, they cannot be
chromatosomes. Accordingly, we will refer to the particles
that contain 154 bp and 161 bp as ‘proto-chromatosomes’,

because they contain a precise amount of linker DNA but
lack HI.

Proto-chromatosomes might result from protection of
linker DNA by non-histone proteins, but this explanation is
difficult to eliminate in vivo. Instead, we determined whether
the 154-bp and 161-bp particles are observed after diges-
tion of chromatin reconstituted in a purified system in
vitro. We assembled nucleosomes on a large yeast plasmid
using recombinant yeast histones and subjected them to
MNase-ExolII digestion (Figure 2B). Less digested mono-
nucleosomes included a weak peak at 147 bp, correspond-
ing to core particles, and stronger peaks at 155 bp and 162
bp, corresponding to proto-chromatosomes. More digested
nucleosomes gave the expected sharp core particle peak at
145 bp and only a very minor peak at 153 bp. Some inva-
sion of the nucleosomes was also observed (peaks at 133,
123 and 114, again with a ~10 bp period). Clearly, the 162-
bp and 155-bp particles were converted to core particles
(145 bp) after extended digestion. We obtained the same
result when native chicken erythrocyte core histones were
used to reconstitute nucleosomes on the same plasmid, in-
dicating that recombinant yeast histones are not atypical
(Figure 2C). Thus, protection of the extra DNA in proto-
chromatosomes requires only core histone-DNA interac-
tions.

We explored the relationship between native yeast proto-
chromatosomes (152-155 bp) and core particles (144-147
bp) by comparing their sequences using cross-correlation
analysis (31). The ends of the core particle and proto-
chromatosome sequences were compared with one another:
for every core particle sequence, the distance ‘d” of its
right-hand end (with respect to the chromosome) to the
first nucleotide of all proto-chromatosome sequences was
summed. If the core particle and the proto-chromatosome
have the same right-hand end, d = 0 (Figure 3A). A com-
parison of core particles (145-147 bp) and 152-155 bp
proto-chromatosomes from wild-type cells (Figure 1E) re-
vealed strong peaks at 0 and +8 bp, indicating that proto-
chromatosomes tend to have one end that is identical to that
of the corresponding core particle and a 7 or 8-bp extension
at the other end (Figure 3B). That is, the extra 8 bp in the
154-bp particles are asymmetrically located on one side of
the nucleosome. The additional correlation peaks at 19 and
30 bp etc. (Figure 3B), are shifted by 10 bp and represent the
ends of rotationally related translational positions (31). A
similar analysis of 161-bp proto-chromatosomes supports
the proposal that, in most cases, the extra 15 bp in these
particles correspond to 7 or 8 bp protruding from both sides
of the nucleosome core (Figure 3C). There might be a frac-
tion of asymmetric 161-bp particles, with 15 bp protrud-
ing from one side of the core, because the peak at 16-17
bp is quite wide, but such particles cannot be reliably dis-
tinguished from particles shifted translationally by 10 bp,
which give rise to a peak at 19 bp, as observed for 154-
bp particles (Figure 3B). The same results were obtained
by cross-correlation analysis of core particles and proto-
chromatosomes from less digested nucleosomes (Supple-
mentary Figure S1).

In conclusion, MNase and Exolll pause during diges-
tion of the linker at a point ~7 bp from the bound-
ary of the nucleosome core, resulting in metastable proto-
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Figure 3. Proto-chromatosomes have a 7 or 8-bp extension on one side
(154-bp particles) or both sides (161-bp particles) of the nucleosome core
in wild type cells. (A) Calculation of cross-correlation between the right-
hand end of a core particle sequence (black line) and the right-hand end of
a proto-chromatosome sequence (grey line). The right-hand end refers to
the location of the sequence with respect to the chromosome. (B) Cross-
correlation between nucleosome core particles (145-147 bp) and proto-
chromatosomes (152-155 bp) (data in Figure 1E). (C) Cross-correlation
between core particles (145-147 bp) and proto-chromatosomes (160162
bp) (data in Figure 1E).

chromatosomes, which are eventually digested to core par-
ticles. This scenario implies that proto-chromatosomes have
the same genomic distribution as core particles, and do not
derive from specific regions of the genome. We confirmed
that this was the case by comparing the nucleosome phasing
patterns of core particles and proto-chromatosomes relative
to the transcription start site (TSS) (12,32). Both core par-
ticles and proto-chromatosomes showed very similar phas-
ing profiles (Supplementary Figure S2). Since genes are very
close together in the budding yeast genome, most nucleo-
somes are represented by these phasing patterns.

Proto-chromatosomes are present in mouse liver

We determined whether proto-chromatosomes are present
in the chromatin of higher organisms by MNase—ExollII di-
gestion of native and H1-depleted chromatin prepared from
mouse liver. Nuclei were initially digested with MNase only
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to obtain long chromatin fragments. Some of this chro-
matin was depleted of HI using a cation exchange resin;
another aliquot was mock-treated (‘native’ chromatin). H1-
depleted chromatin was digested more rapidly by MNase
and Exolll than native chromatin, consistent with protec-
tion of linker DNA by H1 (Figure 4A). Nucleosomal DNA
was sequenced and aligned to the mouse genome to ob-
tain the length distributions, which revealed the presence
of the 154-bp and ~161-bp peaks in both native and H1-
depleted chromatin (Figure 4C). In native chromatin, the
broad chromatosome peak at 163-166 bp is converted into
154 bp-particles and core particles (146 bp). Particles of
the same size were observed in H1-depleted chromatin. The
154-bp and 161-bp particles were converted into a strong,
sharp, core particle peak at 146 bp, consistent with conver-
sion of proto-chromatosomes into core particles as diges-
tion proceeds. Thus, the chomatosome is simply the proto-
chromatosome with bound H1, which confers additional
protection to the 7-bp extensions on either side of the clas-
sical core particle.

Enhanced WW and SS patterns in MNase—ExolII yeast nu-
cleosome sequences

The initial aim of this study was to increase the accuracy
of nucleosome position data by eliminating linker DNA
protruding from mono-nucleosomes. This should improve
alignment of nucleosomal DNA sequences and enhance the
periodicities in the distributions of various dinucleotide and
trinucleotide motifs relative to the nucleosome dyad (33).
The strongest patterns are the 10 bp periodicities displayed
by the distributions of A or T-containing dinucleotides (AT,
TA, TT and AA = WW) and G or C-containing dinu-
cleotides (GC, CG, GG and CC = SS), which are exactly
out of phase with one another (33). The patterns have been
attributed to the relative ease with which A-T base pairs can
bend into the minor groove and the tendency for G-C base
pairs to bend into the major groove, as the DNA is strongly
bent around the core histone octamer (1,33).

We compared the WW and SS patterns for MNase-only
and MNase—ExollI core particle DNA by aligning the se-
quences by their midpoints and calculating the frequencies
of WW and SS dinucleotides within the nucleosome (Fig-
ure 5A) (34). The MNase-only data were restricted to the
sequences in the major peak (147-152 bp), close to core
particle length; likewise, the MNase—Exolll data were re-
stricted to the major peak (144-147 bp). In the case of the
WW motif, both MNase-only and M Nase—ExollI core par-
ticles showed a clear ~10 bp modulation in frequency across
most of the nucleosome, with peaks at 7, 17, 27, 38, 48 and
59 bp from the boundary (i.e. 14, 25, 35, 46, 56 and 66 bp
from the dyad). The amplitudes of all of these peaks were
enhanced by Exolll. In addition, two weak peaks at 64 and
70 bp in the MNase-only data, located near the dyad at 73
bp, were clearly enhanced by ExollIl. Although the peak at
70 bp is in phase with the other 10 bp-modulated peaks, the
peak at 64 bp is exactly out of phase with them and therefore
represents an anomaly, or ‘rogue’ peak, observed previously
in chemical maps (35,36).

The amplitude of the SS signal was weaker than the WW
signal, and is centered on lower dinucleotide frequencies be-
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Figure 5. Enhanced dinucleotide periodicities and strand-specific prefer-
ences in MNase—Exolll nucleosomes. (A) WW versus SS sequence pat-
terns in MNase—Exolll nucleosomes aligned at their dyads. WW versus
SS patterns for MNase-Exolll and MNase-only nucleosomes in wild type
cells. (B) Single-nucleotide distributions in MNase—-ExolIl and MNase-
only nucleosomes (derived from the peaks in Figure 1C, E). The data were
smoothed using a 3-bp running average.

cause the yeast genome is AT-rich. SS dinucleotides showed
a clear 10-bp modulation, with peaks at 12, 22, 34, 43 and 54
bp in both data sets (i.e. 19, 30, 39, 51 and 61 bp from the
dyad), which are ~5 bp out of phase with the WW peaks
and enhanced by Exolll. Additional peaks at 62 and 67 bp
emerged in the MNase-ExollIl data, which flank the addi-
tional peaks observed in the WW profile. Thus there is a
weak alternation between WW and SS with a ~5 bp period
close to the dyad (WW at 59, SS at 62, WW at 64, SS at 67,
WW at 70 and SS at the dyad).

At the nucleosome border (set at 0 in Figure 5), the
MNase-only data show a large WW peak at —2 and sim-
ilarly large trough at +2, which are resolved by ExolIl into
two relatively small flanking peaks at —4 and +1 (Figure
SA). Neither of these peaks is in phase with the 10-bp WW
period. Similarly, the large SS peak at +2 in the MNase-only

data are absent from MNase—-ExolIl nucleosomes, and the
trough at —2 decreased in amplitude and shifted to —2, re-
sulting in two new weak SS peaks at —1 and 4 bp in MNase—
ExolllI nucleosomes, neither of which are in phase with the
10-bp signal. The MNase-only nucleosome boundary peak
coincides with the MNase cut site and has therefore been
attributed to its preference for AT-rich DNA (31,35), al-
though this seems unlikely given its absence from MNase—
ExollIl nucleosomes. In summary, the increased accuracy
of nucleosome positions deduced from the MNase—ExolIl
data results in a more accurate alignment of nucleosome
sequences, enhancing the dinucleotide signals, such that
strong peaks are sharpened and weak peaks are resolved.

Strand-specific preferences for A versus T

We also determined the distributions of all four mono-
nucleotides within nucleosomes (Figure 5B). Intriguingly,
all four nucleotides showed quite strong 10-bp periodicities,
in line with those observed for the relevant dinucleotides,
with A and T out of phase relative to G and C, although
the amplitudes of the signals were not as strong as those
observed for WW and SS. Surprisingly, the distributions of
A and T are not identical, and neither are those of G and C.
In the case of G and C, the differences are small, except near
the dyad, where the weak G and C peaks are out of phase
with one another; there is a G-peak at 63 that is not matched
in the C profile, and a C peak that is stronger than the G
peak at 67. These differences occur in the region next to the
dyad, where the SS distribution shows a 5-bp period. The
A and T distributions are more different from one another
than the G and C distributions. The A profile is more peri-
odic than that of T, such that A shows stronger peaks than
T at 7, 27, 50, 59 and 64, essentially because the T peaks
at these locations are split in two, suggesting that T tends
to flank an A on both sides at these locations. Furthermore,
the region near the dyad shows weak A and T peaks that are
out of phase with one another, analogous to those observed
for G and C in this region. The A peak at 64 is relatively
strong and coincides with the rogue WW peak that is out of
phase with the other WW peaks, indicating that WW at this
location tends to be AA rather than TT (33).



DISCUSSION

We present a significant improvement on the MNase
method for mapping nucleosomes, involving the combina-
tion of MNase and ExollI for efficient removal of resid-
ual linker DNA from mono-nucleosomes. This results in a
sharply defined peak of core particles (144147 bp). More
accurate nucleosome position data will facilitate nucleo-
some sequence analysis and may be critical in deciding
whether a specific sequence, such as a transcription factor
binding site, is located inside a nucleosome or in the more
accessible linker DNA. The quality of MNase-ExollI data
is comparable with that of data obtained from the chemi-
cal mapping method, which involves sequencing DNA frag-
ments generated by chemical nicking of DNA near the nu-
cleosome dyad in cells carrying the S47C mutation in H4
(35,37). We find that dinucleotide periodicities are enhanced
and that the WW signal at 64 is now apparent. Further-
more, the artifactual MNase-associated WW and SS peaks
at the boundary of the nucleosome core are largely elimi-
nated by ExolIl. The only significant discrepancy concerns
the A peak located 3 bp from the dyad in chemically mapped
nucleosomes (35). Given that this A-peak is far from the
MNase cleavage sites, it may reflect a problem with the
chemical cleavage method, perhaps involving the assign-
ment of minor cleavage sites, or perhaps from an unexpected
sequence preference of the DNA cleavage reagent and/or a
structural alteration due to the H4-S47C mutation (38).

We also observe a striking preference for A over T in the
top strand at 7, 27, 50, 59 and 64 bp relative to the nucleo-
some boundary (Figure 5B), where A is located on the in-
side of the bend, just after the small kinks directed into the
minor groove (Supplementary Figure S3). A differential dis-
tribution of A and T mono-nucleotides was reported previ-
ously, although the period was irregular, perhaps because
the data were reduced to relatively few, idealized, nucleo-
some positions prior to analysis (39). The preference may
reflect wedge formation by AA:TT dimeric steps, which oc-
curs because the TT strand is slightly more extended than
the AA strand (40), perhaps facilitating anisotropic bending
(41). Alternatively, the fact that most arginine residues con-
tacting DNA are closer to the bottom strand than the top
strand may be important (42,43). However, neither of these
explanations account for the opposite preference, for T over
A, at 38 bp from the border. Thus, an additional factor is
required to account completely for the A versus T strand
asymmetry.

We have identified clearly defined particles larger than
the core particle, which have 7 or 8 bp projecting from one
side (154-bp) or both sides (161-bp) of the nucleosome core.
These proto-chromatosomes contain a similar amount of
DNA to the chromatosome, but do not contain H1 and
can be reconstituted in vitro using just DNA and core his-
tones. Our observation is consistent with early papers show-
ing that MNase digestion of H1-depleted chromatin yields
a weak, transient band similar in size to the chromatosome
(17,44-46). We propose that a steric block to MNase and
Exolll is located in the linker ~7 bp from the nucleosome
core (Figure 6A). In the case of the typical yeast linker of
~15 bp, the putative steric blocks between two nucleosomes
would coincide in the middle of the linker, as shown (Fig-
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Figure 6. Nucleosome core particles, proto-chromatosomes and linker
length. (A) Provenance of proto-chromatosomes. The endonuclease activ-
ity of MNase (solid red arrows) cuts the linker DNA between nucleosome
cores (grey ovals). Exolll and the exonuclease activity of MNase (open
red arrows) trim the linker, stopping either at the border of the nucleosome
core, or at a putative block to digestion (black box), located in the linker ~7
bp from the border of the nucleosome core. Another cut by MNase in the
linker between the block and the core allows the exonucleases to remove
the remaining linker and convert proto-chromatosomes to core particles.
The typical linker length in yeast is 15 bp (= 10n +5; n = 1); in this case, the
block due to each flanking nucleosome would be at the same location (in
the middle of the linker, as shown). (B) Views of core particle and proto-
chromatosomes from above, drawn approximately to scale, based on the
nucleosome structure (1). The final 10 bp on each side of the nucleosome
core are almost straight, projecting a short distance out of the particle.
Proto-chromatosomes are shown with an extra 7 bp on one side (154 bp)
or both sides (161 bp) with a continuing straight trajectory. (C) Potential
role of the proto-chromatosome in determining linker length. The average
nucleosome spacing is 161 bp (Supplementary Figure S4B). We propose
that the proto-chromatosome fixes the minimum distance between nucle-
osomes at 15 bp, independently of HI.

ure 6A). The ‘10n +5’ rule for the linker length (35,45) pre-
dicts linker lengths of 5, 15, 25 bp, etc. If the linker is 25 bp
then the steric blocks would be separated by 10 bp. We en-
visage that MNase cuts within one of the linkers, between
the block and a core, resulting in one nucleosome with some
protruding DNA that is trimmed away by MNase and Ex-
olII until it is stopped by the core particle boundary, and a
second nucleosome which is trimmed until the exonucleases
reach the block, resulting in a proto-chromatosome. Even-
tually, MNase cuts the proto-chromatosome between the
block and the core, and the residual linker is digested, re-
sulting in a core particle (Figure 6B).

The 161-bp proto-chromatosome is significant for two
reasons. Firstly, 161 bp is sufficient to complete two turns
of DNA in the nucleosome. This observation might be coin-
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cidental, particularly in view of the tetra-nucleosome struc-
ture, which does not show additional DNA coiled around
the nucleosome (47), but it is intriguing. Secondly, the av-
erage distance between MNase—Exolll core particles de-
termined by auto-correlation analysis of core particle se-
quences is also 161 bp (Supplementary Figure S4), suggest-
ing that the proto-chromatosome might determine the dis-
tance of closest approach between two nucleosome cores,
which corresponds to a minimum linker of ~15 bp (Figure
6C) and may account for the ‘10n +5’ rule, setting n > 0.
What is the structural nature of the steric block? One
possibility is a histone-DNA contact located ~7 bp exter-
nal to the nucleosome core, possibly involving the histone
tail domains, since they interact with linker DNA and af-
fect chromatin folding in vitro (48,49). In particular, it has
been shown recently using ChIP-exo, a technique for map-
ping protein—-DNA contacts genome-wide, that H3 makes
a major contact with the linker in vivo, which is partly de-
pendent on its N-tail domain (50). We are currently inves-
tigating whether the H3 tail domain is involved in proto-
chromatosome formation. It should be noted that ChIP-exo
works on a different principle to MNase—ExollII: the loca-
tions of histone-specific cross-links on immuno-precipitated
DNA are mapped using \-exonuclease, which digests one
strand until it is blocked by a histone-DNA cross-link.
The method provides valuable information on individual
histone occupancy at relatively high resolution. However,
it cannot be used to obtain an accurate nucleosome dyad
or boundary because the histone residue involved in each
cross-link is unknown. Instead, the method provides an av-
erage dyad position, corresponding to the weighted average
of the various rotationally related overlapping nucleosome
positions within each nucleosome occupancy peak.
Alternatively, the block might be due to a steric clash be-
tween the nucleosome core and the approaching MNase or
ExollI as it rotates around the DNA helix. The outer 10
bp on each side of the nucleosome core are almost straight
and therefore deviate from the superhelix (Figure 6B) (1).
If the linker maintains this straight trajectory in proto-
chromatosomes, then a clash between Exolll and the DNA
at the dyad may occur (Supplementary Figure S5). On the
other hand, MNase is smaller than Exolll, reducing the
probability of a clash, but it still detects the steric block, al-
beit less precisely. Irrespective of the structural origin of the
steric block to exonuclease digestion, the binding of tran-
scription factors to cognate sites located within 7 bp of the
core (i.e. within the proto-chromatosome) may be inhibited,
particularly if the rotational setting of the site is such that
the factor must bind to the inner surface of the linker DNA.
We propose that a critical function of the proto-
chromatosome is to fix the linker length and geometry of
the yeast chromatin fibre, resulting in compaction (51), even
though it is Hl-deficient (30). The proto-chromatosome
would provide the correct DNA topography for H1 bind-
ing. In higher eukaryotes, longer linkers tend to de-stabilize
the chromatin zigzag (52); this effect is offset by the binding
of H1 (6), which forms a stem-loop structure in the linker
(8,9). Nevertheless, linker histone is not essential for chro-
mosome condensation or cell viability in vertebrates; com-
plete loss of H1 results in chromatin with closely-spaced nu-
cleosomes (53), as observed in yeast and in vitro (54). Thus,

the proto-chromatosome discovered here may represent an
essential chromatin subunit, influencing both H1 binding
and nucleosome spacing.
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