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Abstract
Premise: Most traits are polygenic and most genes are pleiotropic, resulting in
complex, integrated phenotypes. Polyploidy presents an excellent opportunity to
explore the evolution of phenotypic integration as entire genomes are duplicated,
allowing for new associations among traits and potentially leading to enhanced or
reduced phenotypic integration. Despite the multivariate nature of phenotypic
evolution, studies often rely on simplistic bivariate correlations that cannot accurately
represent complex phenotypes or data reduction techniques that can obscure specific
trait relationships.
Methods: We apply network modeling, a common gene co‐expression analysis, to
the study of phenotypic integration to identify multivariate patterns of phenotypic
evolution, including anatomy and morphology (structural) and physiology (functional)
traits in response to whole genome duplication in the genus Brassica.
Results: We identify four key structural traits that are overrepresented in the
evolution of phenotypic integration. Seeding networks with key traits allowed us to
identify structure–function relationships not apparent from bivariate analyses. In
general, allopolyploids exhibited larger, more robust networks indicative of increased
phenotypic integration compared to diploids.
Discussion: Phenotypic network analysis may provide important insights into the
effects of selection on non‐target traits, even when they lack direct correlations with
the target traits. Network analysis may allow for more nuanced predictions of both
natural and artificial selection.
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Most traits are polygenic and most genes are pleiotropic,
resulting in complex, integrated phenotypes. Whole genome
duplications, such as those that occur during polyploidiza-
tion, are a common event in plants and present an intriguing
avenue to explore the evolution of phenotypic integration
because multiple genes are simultaneously affected. However,
the subsequent evolutionary implications of polyploidy
remain controversial. Polyploidy can have deleterious effects
such as genomic instability, epigenetic changes, and altered
meiotic and mitotic outcomes that should leave polyploids at

a selective disadvantage compared to diploids (Comai, 2005).
Despite these issues, polyploidy is thought to confer a
selective advantage in unstable environments such as the
Cretaceous–Paleogene boundary (Carretero‐Paulet and Van
de Peer, 2020). Polyploidy can also confer the ability to
colonize new ecological niches (Clarkson et al., 2017). One
proposed mechanism contributing to the selective advantages
of polyploids in these environments is that they often exhibit
increased phenotypic plasticity, particularly in heterogeneous
environments (Wei et al., 2019). As a result, many plant
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species bear the genomic signature of previous polyploidiza-
tion events (Soltis et al., 2015).

Polyploidy can instigate immediate phenotypic changes.
For instance, newly formed polyploids may have altered
anatomy, morphology, and physiology compared to the
progenitor species (Hancock Jr. and Bringhurst, 1981; Cao
et al., 2018). Crop polyploids exhibit heterosis, presenting
improved traits compared to their diploid progenitors including
heightened disease resistance (Ha et al., 2009), enhanced
drought tolerance (Zhang et al., 2015), accelerated growth
(Zhao et al., 2005), increased fruit size (Wu et al., 2012), and
altered cell wall composition (Corneillie et al., 2019). These
attributes may help explain why polyploids have been
preferentially targeted for domestication (Salman‐Minkov
et al., 2016). Polyploidy continues to be an important avenue
for crop improvement as it can break down self‐
incompatibilities and can be used as a bridge to move beneficial
traits among individuals or even species (Chen et al., 2011).

Despite the multifaceted phenotypic consequences of
polyploidization, most modern studies have predominantly
focused on genomic rearrangements, subgenome silencing,
epigenetic changes, and the evolution of individual genes or
gene families (Soltis et al., 2016), where evolution is defined
as descent with inherited modification. When considering
phenotypic effects of polyploidy, focus often lies at the level
of individual traits. In some cases, the effects of polyploidy
on multiple traits are simultaneously examined, but these
studies are typically limited to a few traits, such as gas
exchange and anatomy (Vyas et al., 2007), or photosynthesis
and leaf area (Liao et al., 2016), which are analyzed
individually or in pairwise correlations. However, whole
genome duplication likely simultaneously alters multiple
phenotypes in a correlated manner (Baker et al., 2017),
potentially driving the evolution of phenotypic integration.

Complex multi‐trait phenotypic integration is pervasive
among organisms and can affect macroevolutionary trajec-
tories (Goswami et al., 2014) as well as microevolutionary
changes (Pigliucci, 2003). Interestingly, phenotypic integra-
tion, the pattern of covariation among traits within an
organism (Pigliucci, 2003), is one proposed mechanism for
constraining plasticity (Gianoli and Palacio‐López, 2009).
Consequently, phenotypic disintegration due to polyploidy
may elucidate how polyploids evolve to express adaptive
plasticity in heterogeneous environments (Wei et al., 2019).
This concept might also elucidate why polyploids frequently
exhibit increased diversity compared to diploids, as observed
within the Brassicaceae (Román‐Palacios et al., 2020). Alter-
natively, the increased phenotypic integration that may arise
from polyploidy may expedite evolution and crop improve-
ment by enabling concurrent selection on multiple traits (Shi
et al., 2011; Fischer et al., 2016; Fernandes et al., 2018; Paul
et al., 2020), provided that it does not contribute to trade‐offs
and constraints on target traits (Denison, 2015).

Within Brassicaceae, the classic “Triangle of U” model
describes three functional diploid species (Brassica rapa L.,
B. nigra (L.) W. D. J. Koch, and B. oleracea L.) that have
undergone repeated hybridization in all possible combinations

to produce three allotetraploid species (B. napus L., B. juncea
(L.) Czern., and B. carinata A. Braun) (Nagaharu and
Nagaharu, 1935). The allotetraploids have subsequently
undergone genome reorganizations, biased gene loss, biased
intron loss, and divergent evolution of small RNAs (Chalhoub
et al., 2014; Liu et al., 2021). Repeated artificial selection within
each species has yielded a vast array of morphological diversity
among Brassica sp., for example, specialized leafy greens
(cabbages, kale, bok choy), underground storage organs
(turnips), axillary branches (Brussels sprouts), floral parts
(cauliflower, broccolinis), and seeds (oil seeds) (Bonnema
et al., 2011). These six species provide ample opportunities to
investigate the evolution of phenotypic integration.

There is evidence that phenotypic integration exists within
the B. rapa diploid progenitor species, where leaf‐level
physiology is strongly associated with stomatal density, leaf
anatomy, and crop type (Yarkhunova et al., 2016). Yet,
bivariate analyses indicate separate evolution of structural
(e.g., anatomy and morphology) and functional (e.g., ecophy-
siological) traits in response to polyploidy (Baker et al., 2017).
Given the profound effects of whole genome duplication,
bivariate trait associations may be insufficient to explain
the elevated rates of multivariate niche differentiation in
polyploids compared to diploids (Baniaga et al., 2020).

Multivariate approaches to large, complex data sets often
involve aggressive data reduction steps such as principal
component analysis (PCA). While PCA is an important tool
for statistical analyses, frequently used to analyze the
phenotypic effects of polyploidization (Balao et al., 2011;
Baker et al., 2017), substantial information about the specific
relationships among traits can be obscured. Here, we apply
network analysis—a multivariate approach commonly associ-
ated with gene co‐expression data (Gallagher et al., 2016)—to
assess the evolution of phenotypic co‐expression (i.e., integra-
tion) in response to polyploidy. Despite their applications in
identifying anatomical traits (Esteve‐Altava and Rasskin‐
Gutman, 2018) and examining the evolution of phenotypic
integration (Rao et al., 2023), network analyses have not been
employed to explore the evolutionary potential of polyploidy.
We apply network analyses to a series of plant anatomical and
morphological (structural) as well as leaf‐level physiological
(functional) traits within the Brassica genus. We assess network
membership, rank, and topology with the aim of determining
the degree of phenotypic integration in diploids versus
tetraploids. Of particular significance, the application of
network analysis enables us to identify traits associated with
non‐target phenotypes. This methodology holds the potential
to offer more nuanced predictions of the outcomes of both
natural and artificial selection.

METHODS

Plant materials

We focus on six herbaceous Brassica species that are
annuals to biannuals. Of these, three are functionally diploid
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(B. nigra, n = 8, BB; B. oleracea, n = 9, CC; and B. rapa,
n = 10, AA). These three species have hybridized either
naturally or during domestication in every possible
combination, giving rise to three allotetraploids: B. carinata
(n = 17, BBCC), B. juncea (n = 18, AABB), and B. napus
(n = 19, AACC) (Østergaard and King, 2008). We studied
multiple accessions per species. Seeds for each accession
were obtained from either the U.S. Department of
Agriculture (USDA) Germplasm Information Network
(GRIN)'s North Central Region Plant Introduction Station
at Ames, Iowa, USA, or the Centre for Genetic Resources
(CGN) at Wageningen, The Netherlands.

The plants in this study were the same as those grown in
a controlled greenhouse environment and previously
described (Baker et al., 2017). Briefly, five blocks were
planted, each containing one replicate from all five accessions
of each species, with the exception of B. rapa, for which we
planted one replicate from each of the 10 accessions per
block. Unfortunately, limited germination led to data
collection from 2–5 individuals per species accession,
spanning three (B. oleracea, B. carinata, and B. nigra), four
(B. napus), five (B. juncea), or 10 (B. rapa) accessions
(see Table 1). We collected data on structural traits including
anatomy and morphology as well as functional traits
including ecophysiology from multiple replicates for each
species.

Data collection

In the present study, we reanalyze previously collected data
and collect novel data from the previously described plants
(Baker et al., 2017). In the previous study, physiological data
were collected from the third epicotylar leaf after it had fully
expanded (photosynthetic rate [Amax], stomatal conduct-
ance [gs], water use efficiency [WUE], and chlorophyll
fluorescence [minimum fluorescence in light (Fo′), variable
fluorescence level (Fv′), maximum fluorescence level (Fm′),
steady‐state fluorescence (Fs), and the ratio of variable to
maximal fluorescence (Fv′/Fm′)]). The third and fourth
epicotylar leaves were excised, and fresh weight measure-
ments were recorded for both; the fourth leaf was dried for
biomass determination, and the third leaf was subject to
scanning (for area, perimeter, and leaf dissection index)
and immediately fixed in formalin–acetic acid–alcohol
(FAA) for 24 h then stored in 70% ethanol. The remaining
aboveground biomass was dried and weighed. Internal
anatomy (palisade parenchyma, spongy mesophyll, and
adaxial and abaxial epidermis areas and epidermal mini-
mum and maximum depths) was assessed from one
side of the midrib of the third leaf. This preserved the
opposite side of the leaf for the additional collection of
micromorphological data first reported here.

In the current study, data from 21 novel leaf traits were
collected. Leaf venation data were collected from the base,
middle, and apex of each leaf lamina from the same third
epicotylar leaf as previously described (Newsome et al., 2020),

including branch end points, branch points, areole number,
skeleton length, vein density, and areole area, using
phenoVein 1.0 (Bühler et al., 2015). Stomatal densities were
estimated from a single location on both adaxial and abaxial
surfaces using differential interference contrast (DIC)
microscopy at 200× magnification. Leaf mass per area
(LMA) was approximated using the relationship between
wet and dry leaf mass for leaf 4 (R2 = 0.933) to predict the dry
mass of leaf 3 based on its wet mass (Appendix S1). Data are
available in the Supporting Information (Appendix S2).

TABLE 1 Accession information and sample sizes for Brassica
material used. Table reproduced from Baker et al. (2017).

Species Accession ID Numbera Source

B. carinata CGN03952 5 CGN

CGN03969 5 CGN

CGN03976 5 CGN

B. juncea PI 173857 5 GRIN

PI 257240 5 GRIN

PI 470241 5 GRIN

PI 633094 4 GRIN

PI 120923 5 GRIN

B. napus CGN06897 4 CGN

CGN07230 5 CGN

CGN14113 5 CGN

CGN17374 5 CGN

B. nigra CGN06619 5 CGN

CGN06620 5 CGN

CGN06627 4 CGN

B. oleracea CGN07129 5 CGN

CGN14031 5 CGN

CGN14070 5 CGN

B. rapa Ames 2795 2 GRIN

CGN06709 3 CGN

CGN06710 2 CGN

CGN06711 1 CGN

CGN06813 3 CGN

CGN07143 3 CGN

CGN07145 3 CGN

PI 459016 3 GRIN

PI 459018 3 GRIN

PI 459020 3 GRIN

Note: GRIN =USDA‐ARS Germplasm Resources Information Network; CGN = Centre
for Genetic Resources, The Netherlands.
aActual sample sizes for individual tests are indicated by degrees of freedom and may differ
for individual analyses because of failed sample processing or due to outlier removal.
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Data analysis

All data were subjected to a standard outlier analysis
(Baker et al., 2017), except for the areole area. Given the
right‐skewed distribution of areole areas, likely due to
biological relevance rather than a technical error, we opted
to square‐root transform the areole area data prior to
commencing any analyses. This transformation resulted in a
more closely approximated normal distribution.

Polyploidy and leaf traits along the leaf
proximal–distal axis

To examine whether the location along the proximal–distal
axis of leaf laminae affects leaf venation traits, linear mixed‐
effects models were employed using R (Kuznetsova et al.,
2018), as previously described (Newsome et al., 2020).
Whenever the location exhibited statistical significance, we
implemented planned contrasts to determine which loca-
tions differed using a series of penalized t‐tests or Z‐tests, as
appropriate (Lenth, 2020).

We also tested whether species or ploidy level had
significant effects on stomatal traits, leaf venation traits, or
LMA using a series of one‐way ANOVAs followed by
planned contrasts. For leaf venation traits where location
was significant, we performed separate planned contrasts at
each location.

Bivariate correlations

To explore potential phenotypic integration, we employed
bivariate correlations. We exclusively examined traits that
displayed significant species or ploidy effects including
those traits previously presented (Baker et al., 2017). Three
separate correlation analyses were conducted on the 31
traits, with each analysis adjusted for multiple testing
through the Holmes method. The first set of correlations
comprised correlations from all individuals (totaling 465
correlations); the second consisted of correlations among
parents, and the third among hybrids (465 correlations
each). We considered significant correlations (P < 0.05) as
evidence of phenotypic integration.

We examined the patterns of correlations among
diploids and polyploids. Trait correlations observed in
diploid progenitors but absent in allotetraploid hybrids were
interpreted as a loss of phenotypic integration. Conversely,
trait correlations absent in diploid progenitors but present
in allotetraploids were interpreted as a gain of phenotypic
integration. We refer to both scenarios as “state changes.”
First, we used a χ2 test to ask whether stable states (no
change in correlations) or state changes (either gain or loss)
were more common when comparing diploid traits and
polyploid traits. Using a χ2 test, we also asked whether,
among correlations that experienced state changes, loss or
gain of significant correlations representing phenotypic

integration was more likely. We then asked whether specific
traits were over‐represented in bivariate correlations
involved in state changes. To do so, we first determined
the frequency with which each trait participated in a state
change. A log transformation was applied to the distribution
of state‐change frequencies to improve normality, subse-
quently allowing the computation of Z‐scores. Any trait
with a Z‐score >1.645 (P < 0.05) was considered over‐
represented in bivariate correlations associated with state
changes. We term these traits “key traits.”

Unbiased network analyses

Because phenotypic integration can, and in practice often
does, include the covariance of suites of traits, rather than the
covariance of only two traits, we employed network analyses
to simultaneously examine multiple traits (He et al., 2020).
We interpret larger, more cohesive (i.e., “robust” or
“connected”) networks as evidence of phenotypic integration.
To further explore the evolution of phenotypic integration, we
calculated a mutual rank (MR) matrix independently for
diploid and tetraploid species (Obayashi and Kinoshita, 2009;
Poretsky and Huffaker, 2020). We used the mutrank.wrap()
function from the netbenchmark package, which we modified
to accept complete pairwise observations (Bellot et al., 2015).
We first calculate a Pearson's correlation between each of the
31 traits previously analyzed via bivariate correlations with
every other trait and rank the correlations. This rank (r)
describes how closely the traits are associated with one
another. Following Bellot et al. (2015), for every trait i, the
Pearson's correlation (corr) with all other traits l is computed
and ranked:

Ɐr rank corr X X i l= ( ( , ), ≠ )ij
j

i l

This expression is not symmetric and so the final MR
score between traits i and j is calculated as the geometric
mean of the ranks between traits i and j and traits j and i
(adapted from Bellot et al., 2015):

MR
r r

=
∙
2ij

ij ji

Next, we performed a series of network analyses (Csardi
and Nepusz, 2006) where phenotypic traits were considered
nodes and the edges connecting them were weighted based
on the mutual rank of their association. First, we generated
a “full network” independently for diploids and tetraploids.
Because these full networks consider the relationships
between all traits, they are topologically identical, that is,
the number, identity, and connections (edges) between the
nodes (traits) are the same. The strength of the connections
(or weight of the edges), however, varies. We then applied
two methods to assess network robustness. Considering just
edges with weights greater than the mean edge weight, we
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applied a percolation algorithm that iteratively removed the
edge with the greatest weight until the network disinte-
grated into multiple disconnected subnetworks and we
retained the largest of these subnetworks (“percolation
networks”; Savory et al., 2021) for further analysis. In a
separate analysis, we took an aggressive approach and
pruned all but the top 10% of edges from the full network
and again retained the largest networks (“90% networks”).

We compared the topologies of the diploid and
polyploid networks including trait membership and ranked
each trait within the networks using a closeness metric that
considers both edge weight and edge number (Csardi and
Nepusz, 2006). We interpret larger, more cohesive networks
as assessed by the closeness metric as evidence of
phenotypic integration. We also assessed the diploid and
polyploid percolation and 90% networks for community
structure including the number of communities, commu-
nity membership, and modularity using a hierarchical
agglomerative method (Clauset et al., 2004).

Targeted network analyses

Because we had a priori knowledge of the four traits that were
“key traits,” we generated a series of 12 diploid and 12 tetraploid
networks based on these four traits. Each network was seeded
with a key trait. Because some trait relationships may be
spurious, we sought to pare down the networks and retain only
informative nodes and edges (Li et al., 2022). To do so, we
included only edges in the top 5%, 10%, or 20% of the full
network (“MR5,” “MR10,” and “MR20”). We constructed the
MR5 network to approximate a “95% confidence” network
because it retains just the top 5% of network edges. Because the
95% confidence threshold is somewhat arbitrary and effects
below this threshold may have biological significance, we
also constructed networks that approximate a 90% threshold
(MR10) and 80% threshold (MR20). We allowed these networks
to expand to the second order to include traits directly and
indirectly connected to key traits. We evaluated network
topology using a clustering coefficient (network transitivity)

that corresponds to the probability of adjacent vertices being
connected, rather than the rank‐based importance of traits
(Csardi and Nepusz, 2006). We assessed the differences between
diploid and tetraploid networks across the MR5, MR10, and
MR20 levels. Enhanced clustering coefficients were interpreted
as indicative of increased phenotypic integration.

RESULTS

Polyploidy and proximal–distal leaf traits

We tested whether there were significant differences in
venation patterns at the base, middle, and apex of leaves and
found that in all cases patterns of venation significantly
differ across the proximal–distal axis (Table 2). Addition-
ally, parameters at the apex of the leaf were always
significantly different from those at the middle and base
of the leaf. Vein density, areole number, and areole area
were significantly different at the base and middle, while
venation skeleton length, branch points, and end points
were not (Table 2). Next, we asked whether there were
significant differences in patterns of venation and stomatal
density due to either species or ploidy level (Table 3).
Although we found significant effects of species for many
aspects of venation and stomatal density, the effects of
ploidy were confined primarily to areole number and areole
area. There were marginally significant effects (P < 0.1) for
stomatal density traits and vein density at the base of leaves
(Table 3).

Bivariate correlations

Phenotypic integration can be an important aspect of
organismal function. Therefore, we examined the bivariate
correlation among traits that were significantly (or margin-
ally significantly) different either among species or ploidy
level (Appendix S3). Of the original 48 traits, 31 (64.5%)
met this criterion (see Appendix S3 and Baker et al., 2017).

TABLE 2 The effects of lamina location on venation patterning. In all cases, the model including location was significantly better than the model
without, indicating that there is a significant effect of location on the venation traits. Post‐hoc contrasts were adjusted for multiple comparisons.a

Trait Final model Significance of location (χ2) B‐M B‐A M‐A

Vein density F(2,196.13) = 29.963*** χ2(2) = 52.498*** t(202) = 3.211** t(202) = 7.709*** t(203) = 4.414***

Skeleton length (mm) F(2,206.34) = 20.232*** χ2(2) = 37.399*** t(207) = 0.374 NS t(206) = 5.698*** t(207) = 5.284***

Areole number F(2,204.01) = 28.573*** χ2(2) = 51.267*** t(204) = 2.437* t(205) = 7.424*** t(206) = 4.915***

Branch points F(2,205.77) = 28.7*** χ2(2) = 51.096*** t(206) = 2.083 t(206) = 7.362*** t(207) = 5.178***

Endpoints F(2,207.4) = 11.223*** χ2(2) = 21.544*** t(207) = 0.489 NS t(207) = 4.336*** t(207) = 3.804***

Areole areab F(2,197.78) = 82.22*** χ2(2) = 122.47*** Z = −5.288*** Z = −12.884*** Z = −7.468***

Note: B‐M = compares the base of the lamina to the middle of the lamina; B‐A = compares the base of the lamina to the lamina apex; M‐A = compares the middle of the lamina to
the lamina apex.
aSignificance codes: ***, <0.00; **, <0.01; *, <0.05; NS, >0.1.
bAnalyses were performed on square‐root transformed data.
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When considering data from both diploids and tetraploids,
a total of 215 correlations (49.4%) were significant
(P < 0.05). Among just the diploids, there were 188
significant correlations (43.2%), while for the polyploids
there were 217 significant correlations (49.8%).

When comparing diploids and polyploids, our investi-
gation revealed a significant preference for stable states of
phenotypic integration (382 instances) over evolutionary
changes (gain or loss, 53 instances total or 12.1% of all
correlations) in phenotypic integration (χ2(df=1) = 241,
P < 0.0001). However, 15 trait correlations were significant
in the diploid parent species yet absent in the allotetraploid
hybrids, indicating a loss of phenotypic integration. In

contrast, 53 correlations that lacked significance among the
diploids exhibited significant correlation after whole
genome duplication, indicating a gain of integration. When
considering just bivariate trait comparisons involved in
phenotypic integration state changes, the gain of integration
was significantly more likely than expected (χ2(df=1) = 9.98,
P < 0.01).

We identified four “key traits” that were disproportionately
involved in the gain or loss of phenotypic integration. Traits
that participated in nine or more correlations demonstrated a
significantly higher propensity to engage in these evolutionary
transitions (P = 0.029). These four key traits include leaf area
(15 state changes; 13 gains and two losses, P < 0.0001), leaf
dissection index (12 state changes; nine gains and three losses,
P < 0.001), and spongy mesophyll area (11 state changes;
11 gains and 0 losses, P < 0.005). Additionally, palisade
parenchyma area (eight state changes; seven gains and one
loss, P = 0.06) was marginally significant and was also included
as a key trait.

Unbiased network analyses

To explore complex patterns of integration, we constructed
mutual rank correlation networks based on our 31
phenotypic traits independently for diploids and tetraploids.
The topology of the full networks for diploids and
tetraploids is identical, but the weights of the network
edges vary (Appendices S4 and S5). For the full networks,
only the diploid network had a “key trait” (leaf area) within
the top 25% of ranked traits (Appendix S6).

To assess the network robustness (or “connectedness”;
Rao et al., 2023), we applied a percolation algorithm. The
diploid percolation network had a smaller number of
conserved links (73 vs. 123) and a lower maximum
conserved edge weight than the allotetraploid network
(220 vs. 300; Figure 1). The diploid and tetraploid
percolation networks had identical membership and
included all 31 traits, but the rank order of traits differed
(Appendix S6). Each percolation network had a set of
unique traits that ranked in the top five. Of the key traits,
only leaf dissection index appeared in these top 25% of
ranked traits and only in the diploid percolation network
(Appendix S6). Interestingly, we identified five separate
communities in the diploid percolation networks and only
two communities in the tetraploid networks (Figure 1),
indicating that tetraploids are more phenotypically inte-
grated than diploids. Specifically, the diploid percolation
network exhibited an average of 6.2 members (σ = 2.4)
within each community, and the four key traits were
dispersed across three communities. Three communities
included both structural and functional traits, and two of
these structure–function communities also contained one of
the key traits. In contrast, the tetraploid percolation
network consisted of only two communities with 15 and
16 members each. Three of the four key traits were included
in the same community, and this community contained

TABLE 3 The effects of individual species and ploidy level on leaf
traits. Significant and marginally significant effects (based on planned
contrasts) included in subsequent analyses are indicated in bold.a

Trait Species effectb Ploidy‐level effectb

Adaxial stomatal density 4.355(5,100)** 2.498(1,100)NS

Abaxial stomatal density 2.82(5,100)* 3.112(1,100).

Abaxial to adaxial stomatal
ratio

2.735(5,100)* 0.696(1,100)NS

Abaxial–adaxial density 0.795(5,100)NS 0.486(5,100)NS

LMA 1.887(5,94)NS 2.066(5,94)NS

Vein density (base) 1.508(5,98)NS 2.976(5,98).

Vein density (middle) 3.923(5,95)** 1.826(1,94)NS

Vein density (apex) 1.964(5,99). 0.263(1,99)NS

Vein skeleton length (base) 1.434(5,100)NS 0.061(1,100)NS

Vein skeleton length
(middle)

1.58(5,98)NS 0.397(1,98)NS

Vein skeleton length (apex) 2.360(5,100)* 1.424(1,100)NS

Areole number (base) 2.962(5,99)* 0.262(1,99)NS

Areole number (middle) 3.239(5,96)** 0.026(1,96)NS

Areole number (apex) 3.891(5,100)** 2.045(1,100)NS

Vein branch points (base) 4.054(5,100)** 0.669(1,100)NS

Vein branch points
(middle)

3.753(5,96)** 0.051(1,96)NS

Vein branch points (apex) 5.100(5,101)*** 2.451(1,101)NS

Vein end points (base) 3.178(5,100)* 0.430(5,100)NS

Vein end points (middle) 4.556(5,97)*** 0.001(5,97)NS

Vein end points (apex) 3.823(5,100)** 0.097(5,100)NS

Areole area (base)c 213.7(5,21301)*** 177.3(1,21301)***

Areole area (middle)c 244.43(5,19442)*** 29.68(1,19442)***

Areole area (apex)c 159.87(5,15499)*** 10.27(1,15499)**

Note: LMA = leaf mass per area.
aSignificance codes: ***, <0.001; **, <0.01; *, <0.05; ., <0.1; NS, >0.1.
bValues are F (df numerator, df denominator).
cAnalyses were performed on square‐root transformed data.
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both structural and functional traits. The second commu-
nity consisted of only structural traits and included the key
trait of leaf dissection (Figure 1). These results suggest that
tetraploids displayed greater phenotypic integration com-
pared to diploids.

In a more aggressive approach to assessing network
robustness, we pruned edges from the full networks and
retained only the top 10% of edges (“90% networks”). This
caused the diploid network to decompose into three
disconnected networks with 16, 13, and two traits each. In
contrast, the tetraploid network decomposed into five
disconnected networks containing 15, 12, two, one, and
one trait each. In both cases, the largest network was
retained and contained all four key traits. For the diploid
networks, the top four ranked traits included three of the
key traits. In contrast, within the tetraploid 90% network,
only one key trait (palisade parenchyma) was within the top
four traits (Appendix S2). We identified three communities
in both the diploid and tetraploid 90% networks. In both
networks, structural and physiological traits fell into
separate communities (Figure 2).

Targeted network analyses

We also examined the networks built by starting with the
key trait and then expanding to the second rank using
edges within the top 5%, 10%, and 20% of edge weights,

designated as MR5, MR10, and MR20, respectively. We
observed no significant clustering differences between the
MR5 diploid and tetraploid networks (t = 1.0, df = 3,
P = 0.465), likely because of the limited membership
within these clusters. However, we found that the
tetraploid networks exhibited greater phenotypic integra-
tion as ascertained by a clustering coefficient in both the
MR10 (t = −6.13, df = 3, P = 0.008) and MR20 (t = −16.2,
df = 3, P = 0.0005) networks. Interestingly, all eight MR20
networks included both structural and functional traits
(Appendices S7 and S8). In the case of the MR10 networks,
with the exception of the tetraploid leaf area network, all
other networks consisted of both structural and functional
traits (Figure 3). Intriguingly, even at the MR5 level,
several diploid and one tetraploid network included both
structural and functional traits (Appendices S9 and S10).
Taken together, these results suggest that tetraploids had
greater phenotypic integration compared to diploids in
trait‐targeted networks.

DISCUSSION

Polyploidy is a common feature among plant taxa that has
been implicated in increased rates of evolutionary diversifi-
cation, niche differentiation, colonization, and domestica-
tion (Wickett et al., 2014; Soltis et al., 2015; Salman‐Minkov
et al., 2016; Clarkson et al., 2017). Despite a rich literature

F IGURE 1 Scale‐free diploid percolation networks (A) exhibit more communities and less phenotypic integration than tetraploid networks (B) in
Brassica. Node colors indicate trait community membership. Lines between nodes indicate mutual rank correlations with widths proportional to the strength
of the association. Trait abbreviations: adaxial, adaxial stomatal density; abaxial, abaxial stomatal density; ab_ad, abaxial to adaxial stomatal density ratio;
B_ends, vein end points (base); M_ends, vein end points (middle); A_ends, vein end points (apex); B_branch, vein branch points (base); M_branch, vein
branch points (middle); A_branch, vein branch points (apex); B_areole_num, areole number (base); M_areole_num, areole number (middle); A_areole_
num, areole number (apex); A_skel, vein skeleton length (apex); B_areole_area, areole area (base); M_areole_area, areole area (middle); A_areole_area,
areole area (apex); B_density, vein density (base); M_density, vein density (middle); A_density, vein density (apex); Photo, photosynthetic capacity (Amax);
Cond, stomatal conductance (gs); WUE, intrinsic water use efficiency; Fo, minimum fluorescence in light (Fo′); Fv, variable fluorescence level (Fv′); FvFm,
ratio of variable to maximal fluorescence (Fv′/Fm′); Palisade, palisade parenchyma areas; Spongy, spongy mesophyll area; Palisade_spongy, ratio of palisade
parenchyma to spongy mesophyll areas; Leaf_area, the surface area of the leaf in mm2; perimeter, leaf perimeter; dissection, leaf dissection index.
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F IGURE 2 After pruning all but the top 10% of trait associations, scale‐free networks based on diploid (A) and tetraploid (B) Brassica species have the
same number of communities, but different network and community membership. In both networks, structural and functional traits are isolated in separate
communities. Node colors indicate trait community membership. Trait abbreviation: ab_ad, abaxial to adaxial stomatal ratio; B_areole_area, areole area
(base); M_areole_area, areole area (middle); A_areole_area, areole area (apex); Photo, photosynthetic capacity (Amax); Cond, stomatal conductance (gs);
WUE, intrinsic water use efficiency; Fo, minimum fluorescence in light (Fo′); Fv, maximum fluorescence level (Fv′); FvFm, ratio of variable to maximal
fluorescence (Fv′/Fm′); Palisade, palisade parenchyma areas; Spongy, spongy mesophyll area; Leaf_area, surface area of the leaf in mm2; perimeter, leaf
perimeter; dissection, leaf dissection index.

F IGURE 3 Eight independent scale‐free diploid (A–D) and tetraploid (E–H) MR10 phenotypic co‐expression networks were constructed starting with
key traits (red) and allowed to expand to the second rank to identify traits both directly and indirectly associated with the key traits (gray). Trait
abbreviations: ab_ad, abaxial to adaxial stomatal ratio; B_areole_area, areole area (base); M_areole_area, areole area (middle); A_areole_area, areole area
(apex); Photo, photosynthetic capacity (Amax); Cond, stomatal conductance (gs); WUE, intrinsic water use efficiency; Fo, minimum fluorescence in light
(Fo′); Fv, maximum fluorescence level (Fv′); FvFm, ratio of variable to maximal fluorescence (Fv′/Fm′); Palisade, palisade parenchyma areas; Spongy, spongy
mesophyll area; Palisade_spongy, ratio of palisade parenchyma to spongy mesophyll areas; Leaf_area, surface area of the leaf in mm2; perimeter, leaf
perimeter; dissection, leaf dissection index.
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on the genomic implications of polyploidy, there is a relative
scarcity of information about the effects of polyploidy on
complex, interrelated, and multivariate plant phenotypes
(Soltis et al., 2016). Many studies that address multiple traits
consider relationships among traits as a series of individual
bivariate correlations, which may fail to capture the
complexity of potential phenotypic integration (Baker
et al., 2017; Rao et al., 2023). A common approach to
simultaneously analyzing multiple traits is PCA (Murren
et al., 2002). However, PCAs can involve substantial data
reduction and obscure the specific relationships among
traits. Furthermore, the biological interpretation of axes in
PCAs can be problematic. We use network analyses to
quantitatively assess phenotypic integration by examining
multi‐trait associations. We identify suites of anatomical
and morphological (collectively, termed structural) and
ecophysiological (functional) traits that evolve in concert in
response to polyploidy within the Brassica genus. Further-
more, we identify four key traits leading to differences in
phenotypic integration among allotetraploids and their
diploid progenitors. Our network analyses allow us to
identify traits associated with but not directly correlated
with key traits and provide a more detailed understanding
of phenotypic integration and the potential off‐target
implications for selection than either bivariate correlations
or PCA can provide.

Artificial selection following polyploidy may
favor phenotypic integration

Phenotypic integration is implicated in constraining plas-
ticity and may limit organismal flexibility and fitness in
fluctuating environments (Wei et al., 2019). However,
cultivated species may experience relatively stable environ-
ments as a result of management practices such as
irrigation. Our study focuses on six cultivated species from
the classic Brassica Triangle of U (Nagaharu and
Nagaharu, 1935). Three of these species are functional
diploids (B. rapa, B. oleracea, and B. nigra) that have
hybridized in all possible combinations to generate three
allotetraploids (B. napus, B. carinata, and B. juncea).
Members of the Triangle of U were most likely domesti-
cated about 5000 years ago, and all six species have
undergone substantial artificial selection (Qi et al., 2017).
Interestingly, we observed that even among traits that were
significantly affected by whole genome duplication, most
bivariate trait associations remained unaffected. Of the traits
that did exhibit changes in phenotypic integration,
increased phenotypic integration was significantly favored
over disintegration after allopolyploidization. This result is
largely congruent with similar studies, including those in
Brassica, suggesting that hybrid species tend to have more
correlated traits than their progenitors (Murren et al., 2002).
A well‐documented period of genomic instability in early‐
generation Brassica allotetraploids (Gaeta et al., 2007; Xiong
and Pires, 2011) may have allowed the evolution of

increased phenotypic integration compared to their diploid
progenitors. Selection imposed after whole genome dupli-
cation may be responsible for the increased phenotypic
integration observed in the allopolyploid compared to the
tetraploid species. Phenotypic integration may enable rapid
crop improvement especially if the target traits for artificial
selection are closely associated with non‐target components
of yield (Denison, 2015).

We used mutual rank network analyses to examine the
multivariate evolution of phenotypic integration. When
multiple traits are simultaneously considered, allotetraploids
had more tightly integrated phenotypes than their diploid
progenitors. We constructed networks using all traits and
examined their cohesiveness as an indicator of phenotypic
integration using a percolation algorithm that iteratively
prunes strong trait associations until the networks dis-
integrate into two disconnected networks (with the larger
retained). We identified consistent trends in the networks:
tetraploid network topology indicated increased phenotypic
integration relative to diploid networks, even when the
retained percolation networks had identical membership. For
instance, tetraploid percolation networks had more trait
associations, and the average strength of these associations
was greater than in diploid networks. Additionally, fewer
sub‐communities were identified in the tetraploid percolation
networks. The increased phenotypic integration we observed
may be caused by the evolution of linkage disequilibrium or
increases in pleiotropy (Saltz et al., 2017).

Structural traits are more evolutionarily labile
than functional physiology

To home in on important changes between diploids and
allopolyploids, we compared the bivariate trait correlations
in diploids and tetraploids and identified four key traits that
were significantly over‐represented in the evolution of
phenotypic integration (or disintegration): leaf area, pali-
sade parenchyma, spongy mesophyll, and leaf dissection.
Interestingly, all four key traits were structural rather than
physiological traits. One plausible explanation is that
multiple different combinations of structural trait values
could result in the same functional physiology (Belluau and
Shipley, 2018). In that case, structural traits may be
relatively free to vary even in the face of consistent
directional selection, while the evolutionary trajectory of
physiological traits may be more constrained.

Targeted network analyses identify
structure–function relationships

Despite weak associations between structural and functional
traits identified via bivariate analyses, these suites of traits are
expected to evolve in concert at least under certain
environments (Chapin et al., 1993). Therefore, we leveraged
our information about key traits involved in the evolution of
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phenotypic integration to build a series of mutual rank
networks. Each network started with a key trait and was
allowed to expand to include traits not directly connected to
the key traits. The most stringent networks consisted of only
the top 5% of all trait associations and exhibited no differences
in phenotypic integration between diploids and tetraploids
based on clustering metrics. These similarities may be caused
by low network membership and poor power to assess
network topology. Consistent with our previous results, as the
number of associations permitted was relaxed (top 10% and
20% of trait associations, termed MR10 and MR20,
respectively) and network membership increased, we found
that tetraploid networks bore hallmarks of increased pheno-
typic integration compared to diploid networks including
significantly tighter clustering. Our network analysis of
phenotypic integration confirmed the relative independence
of structural and functional traits. We aggressively manually
pruned full diploid and tetraploid networks by retaining only
the top 10% of all trait associations, resulting in multiple
disconnected networks for each ploidy level. For both diploids
and tetraploids, the largest disconnected networks contained
all four key traits. These largest networks in both diploids and
tetraploids contained three distinct communities and, inter-
estingly, structural and functional traits fell into different
communities. Separate trait communities may indicate that
there is less integration of structural and functional traits than
predicted based on previous bivariate correlation analyses
(Murren et al., 2002; Vyas et al., 2007; Baker et al., 2017) or
experimental investigation of, for instance, leaf dissection
indices and water use efficiency (Petrov et al., 2018).

When we built networks based on the key traits involved
in the evolution of phenotypic integration, we identified clear
connections between structural and functional traits. At the
MR20 level, all key traits (which are all structural) were
associated with functional traits. This trend held true even at
the MR10 level, where all key traits except leaf area in
tetraploids were associated with aspects of functional physiol-
ogy. Interestingly, we observed this structure–function rela-
tionship despite a lack of significant bivariate correlations
between some of the structural key traits (e.g., palisade
parenchyma and spongy mesophyll) and any functional traits.
Even though structural and functional traits fell into separate
sub‐communities in previous analyses, they are clearly still part
of the same connected network. When exploring complex and
multivariate phenotypes, one benefit of network analyses is the
ability to leverage a priori information to identify previously
unobserved trait associations.

Conclusions

Most traits are polygenic and most genes are pleiotropic,
resulting in the complexity of integrated phenotypes.
Polyploidy affords an excellent opportunity to explore the
evolution of phenotypic integration as entire genomes are
duplicated, potentially allowing for new trait combinations
and either increased or decreased phenotypic integration.

Although most bivariate trait correlations we observed did
not change with respect to polyploidization, the changes
that were observed tended to result in increased integration.
We identified several key traits that were more likely to be
involved in the evolution of phenotypic integration, and
these traits were all structural traits. This indicates that
structural traits may be more evolutionarily labile than
physiological traits, perhaps because multiple different
combinations of anatomic and morphological structures
can contribute to the same physiological endpoint. Despite
divergences between structural and functional traits, our
network analysis allowed us to identify associations between
structural and functional traits, and these associations
indicate that the results of natural or artificial selection
may be more complex than previously thought. In general,
phenotypic network analyses are an excellent approach for
identifying potential changes in non‐target traits.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. The linear relationship between wet and dry
mass of leaf 4 used to predict leaf 3 dry mass based on leaf 3
wet mass.

Appendix S2. Replicate level phenotypic data generated for
the present study.

Appendix S3. Correlation matrix for all individuals (black
text), diploid parent species (blue text), and polyploids

(red text). For each scatterplot, diploids are blue and
polyploids are red. Histograms indicate trait distributions
for diploids (blue) and tetraploids (red). Correlation
coefficients with Holmes adjusted P < 0.05 are presented.
Blue boxes indicate loss of phenotypic integration while red
boxes indicate gain of phenotypic integration.

Appendix S4. Scale‐free diploid mutual rank phenotypic
network. Each node is a trait and lines connecting nodes
indicate trait associations.

Appendix S5. Scale‐free tetraploid mutual rank phenotypic
network. Each node is a trait and lines connecting nodes
indicate trait associations.

Appendix S6. Mutual rank phenotypic networks member-
ship, closeness, and rank order for full diploid networks
(Appendix S4), full tetraploid networks (Appendix S5),
diploid percolation networks (Figure 1A), tetraploid perco-
lation networks (Figure 1B), diploid 90% networks
(Figure 2A), and tetraploid 90% networks (Figure 2B).

Appendix S7. Four independently constructed mutual rank
networks for diploid species constructed using only the top
5% of trait associations (MR5). Each network is seeded with
a key trait (red).

Appendix S8. Four independently constructed mutual rank
networks for tetraploid species constructed using only the
top 5% of trait associations (MR5). Each network is seeded
with a key trait (red).

Appendix S9. Four independently constructed mutual rank
networks for diploid species constructed using only the top
20% of trait associations (MR20). Each network is seeded
with a key trait (red).

Appendix S10. Four independently constructed mutual
rank networks for tetraploid species constructed using only
the top 20% of trait associations (MR20). Each network is
seeded with a key trait (red).

How to cite this article: Baker, R. L., G. L. Brock,
E. L. Newsome, and M. Zhao. 2024. Polyploidy and the
evolution of phenotypic integration: Network analysis
reveals relationships among anatomy, morphology,
and physiology. Applications in Plant Sciences 12(4):
e11605. https://doi.org/10.1002/aps3.11605

12 of 12 | EVOLUTION OF PHENOTYPIC INTEGRATION

https://doi.org/10.1002/aps3.11605

	Polyploidy and the evolution of phenotypic integration: Network analysis reveals relationships among anatomy, morphology, and physiology
	METHODS
	Plant materials
	Data collection
	Data analysis
	Polyploidy and leaf traits along the leaf proximal-distal axis
	Bivariate correlations
	Unbiased network analyses
	Targeted network analyses


	RESULTS
	Polyploidy and proximal-distal leaf traits
	Bivariate correlations
	Unbiased network analyses
	Targeted network analyses

	DISCUSSION
	Artificial selection following polyploidy may favor phenotypic integration
	Structural traits are more evolutionarily labile than functional physiology
	Targeted network analyses identify structure-function relationships
	Conclusions

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION




