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The incidence of sporadic Alzheimer’s disease (AD) is increasing in recent years.

Studies have shown that in addition to some genetic abnormalities, the majority of

AD patients has a history of long-term exposure to risk factors. Neuroendocrine

related risk factors have been proved to be strongly associatedwith AD. Long-term

hormone disorder can have a direct detrimental effect on the brain by producing

an AD-like pathology and result in cognitive decline by impairing neuronal

metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may

regulate the complex process of endocrine disorders, and improve metabolic

abnormalities, as well as the resulting neuroinflammation and oxidative damage

through a variety of pathways. TCM has unique therapeutic advantages in treating

early intervention of AD-related neuroendocrine disorders and preventing

cognitive decline. This paper reviewed the relationship between neuroendocrine

and AD as well as the related TCM treatment and its mechanism. The advantages

of TCM intervention on endocrine disorders and some pending problems was also

discussed, and new insights for TCM treatment of dementia in the future

was provided.

KEYWORDS

neuroendocrinology, alzheimer disease, traditional chinese medicine, hypothalamic–
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1 Introduction

Alzheimer’s disease (AD), a neurodegenerative disease with worldwide increasing

prevalence, morbidity and mortality in recent years, is the fifth leading cause of death in

adults over 65 years old now (1). The number of reported deaths from AD has increased

by more than 145% in the past decade (2). In addition to the sharply rising number of
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deaths,AD is also burdening patients socially and economically

year by year with the social aging process. In recent years, the

prevention and treatment of AD has become a hot topic in

medical research (3).

Since the neurological damage at late stage of AD is difficult

to reverse, the current interest of AD treatment is mainly on

early diagnosis, symptomatic treatment, slowing down the

development of AD and improving cognitive function. AD as

defined in the 2011 NIA-AA guidelines has three stages. Among

them, MCI identifies individuals who do not have dementia, but

who do have some deficits in cognition (4). 40%-75% of MCI

patients may develop AD, and the risk of AD increases with the

accumulation of amyloid beta (Ab) and neurodegeneration.

Although AD has a certain genetic tendency, the incidence of

AD caused by the combination of multiple etiologies is

increasing in recent years (5). Studies have shown that

cardiovascular diseases, metabolic disorders, endocrine

disorders, anxiety and depression are all risk factors for the

development of AD. Early intervention of related risk factors

have been proved to have an effect on reducing the risk of AD,

even reversing the cognitive loss of MCI patients and delaying

the progress of the disease (6, 7).

Previous studies on AD have found that cognitive loss is a

cumulative process. Although human brain has a great potential

and sufficient cognitive reserve, the onset of sporadic AD is often

the result of the joint action of genes and environment, and the

continuous accumulation of risk factors often leads to worse

outcomes (8). Despite the complex pathogenesis of AD, studies

have shown that some endocrine related factors show a

significant correlation in the early stage of the disease. The

effects of the nervous system and the endocrine system are

bidirectional, and both of them jointly regulate brain functions

such as nervous system homeostasis, emotion and cognition (9).

On the one hand, many metabolic disorders appear before

cognitive disorders, so some scholars believe that endocrine

disorders are one of the pathogenesis of AD. On the other

hand, other scholars believe that due to the regulation effects of

the nervous system on endocrine, neurological diseases

themselves can also lead to abnormal hormone levels, and

some endocrine specific markers have been used for early

diagnosis of AD (10). Regulating neuroendocrinology related

factors is a promising treatment for people who need to control

AD symptoms or reduce the risk of suffering from AD (11).

In traditional Chinese medicine(TCM), Alzheimer’s disease

is classified as “forgetfulness”, “fatigue” and “ idiocy”. Based on

TCM theory, marrow is an essence for the formation and

maintenance of the human body, and is directly related to the

functions of the five viscera such as kidney and spleen. Some

scholars believe that the marrow can be understood as the

connection between endocrine organ and nervous system, and

it follows the dynamic balancing process of extraordinary fu
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organs. Modern studies have also found that the functions of

kidney and spleen in TCM are closely related to neuro-

endocrine-immune functions. Studies have shown that the

deficiency of kidney essence is related to the dysfunction of

HPA axis. The role of HPA-mediated BDNF in regulating

neuroplasticity is consistent with the traditional notion that

the kidney intervenes in brain function by affecting the brain

marrow (12). In TCM, the spleen governs transportation and

transformation of grain and water and distribution of its essence.

Spleen and stomach disorders to cause phlegm and dampness,

which blocks the operation of qi and blood. When phlegm and

blood stasis stays in the brain for a long time, it is easy to develop

AD. Here, the function of the spleen is adapted to the digestive

and endocrine functions of the pancreas in modern medicine.

Both of them regulate the metabolism of substances and energy

in the body. The abnormal metabolism of substances and energy

in AD also leads to the deposition of metabolic wastes in the

brain, affecting neurological functions and leading to the

pathogenesis of AD, which is also consistent with the theory

of TCM (13). Therefore, the relevant treatments in traditional

medicine are likely to have a good treatment effect on AD.

Screening effective TCM treatment by modern technology and

further studying of relevant mechanisms can promote TCM

modern application.

The course from neuroendocrine disorders to cognitive

impairment is a long and cumulative process (14). A variety of

factors interact with each other in this process. It is difficult to

treat a single target and achieve specific efficacy without having

any side effects. This makes TCM have unique advantages over

other treatments in AD. Natural chemicals have the

characteristics of multi-target and multi-mechanism in living

body, and can control the various nerve injury caused by AD.

Mechanisms of action of TCM have become the focus of

academic attention in recent years (15). Compared with the

existing treatment methods of Western medicine for AD, TCM

can intervene in early stage of cognitive decline and prevent the

progression of AD without causing side effects such as sleep

disorders, hallucinations and movement disorders, so it is widely

welcomed by most patients (16).

Nerve cells are very sensitive to stress, and the immediate

reaction of the nervous and endocrine systems is the survival

mechanism during evolution. These organisms respond to

changes in the outside world. Chronic stress leads to

endocrine disorders, promotes inflammation and oxidative

stress, and makes harmful environment continuously act on

nerve cells. This also results in the accumulation of toxic

substances in the nervous system. Many natural ingredients of

TCM can not only restore hormone levels, but also have anti-

inflammatory and antioxidant features. This exactly corresponds

precisely to the role TCM played in cutting off the vicious cycle

in AD (17). Flavonoids are rich in many TCMs. They can reduce
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neuroinflammatory reactions and regulate oxidative stress

related reactions by regulating the autosecretory of nerve cells

and the active factors secreted by glial cells. Albiflorin (AL) can

reduce AD pathology and improve cognitive impairment by

regulating oxidative stress and inflammation in the brain (18).

Nobiletin(NOB) can regulate microglia and relieve

neuroinflammation (19). Interestingly, TCM can also regulate

the level of inflammation in circulation through systemic action,

and cut off the harmful communication between peripheral and

central organs, thus achieving a fundamental effect in treating

AD (20). Studies have shown that some flavonoids themselves

have antioxidant and inhibitory effects on amyloid protein

aggregation, which is generally related to the position of

flavonoid hydroxyl group (21). Abnormal amyloid protein

aggregation is also an important pathology of islet dysfunction

and AD (22). Flavonoids anthocyanins can enhance insulin

sensitivity, weaken insulin resistance at target tissue, and

inhibit free aliphatic acid oxidation (23–25). Overlapping

mechanisms create preconditions for the dual effects of TCM

in endocrine and nervous system (26, 27). In addition to

improving the downstream effects of the endocrine axis, some

TCM recipes such as ZiBuPiYin Recipe can also ameliorate the

imbalance of the hypothalamic-pituitary-adrenal (HPA) axis.

On the one hand, it can reduce the hormone level released by the

hypothalamus. On the other hand, it can regulate the adrenal

gland and peripheral immune organs, and effectively restore the

normal hormone level (28).

Apart from regulating endocrine related levels, TCM also

has a valid neuroprotective effect (29, 30). For one thing,

bioactive compounds in TCM or TCM compound can reduce

the synthetize of neurotoxic substances such as Ab and Tau

phosphorylation (31). For another thing, they can promote the

clearance of toxic substances by increasing the toxic substance

degradation enzyme, improving the blood-brain barrier function

and promoting microglia phagocytosis (32, 33). TCM also

reduces neuronal apoptosis and loss of neurons caused by

excessive autophagy (34, 35). Beyond that, TCM can improve

the pathways related to memory storage, and relieve the

symptoms of memory loss by protecting the normal energy

metabolism of the brain, restoring the structure and function

of synapses and restoring neurotransmitter related

neurotransmission (36, 37).

TCM can not only reduce memory loss of AD, but also treat

mood disorders of AD, such as anxiety and depression, by

regulating the stress-related endocrine axis (38). Studies have

shown that acupuncture can also restore the circadian rhythm of

the HPA axis well, and is an ideal TCM treatment for sleep

disorders and emotional anxiety in AD (39). Some Chinese

medicines can further regulate the intestinal flora of AD patients

and relieve memory disorders through brain-gut axis (40).
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2.1 The relationship between
neuroendocrine and Alzheimer’s disease

2.1.1 HPA axis and AD
Patients with AD often have HPA axis dysfunction. On the

one hand, the release of glucocorticoid (GC), the main product

of the HPA axis, promotes changes in metabolic processes in the

body by increasing inflammatory response and oxidative stress

(41). On the other hand, the brain is highly sensitive to stress,

and anxiety enhances amygdala function, alters neural circuits,

and leads to structural changes in the frontal lobe and

hippocampus (42). These can all be reversed when the

physiological level of corticosterone recovers to normal (43).

Studies have shown that the elevated cortisol of the AD patient

has diagnostic and prognostic value for AD (44).

The hippocampus and frontal lobe are important structures

in the brain for learning and memory (45). When the brain is

overloaded with glucocorticoids, hippocampal Rab35 (the

enzyme required for Tau degradation by endlysosomal

sorting) is down-regulated, and Ab and highly phosphorylated

Tau accumulate in large quantities (46). Accumulated toxic

substances can eventually lead to cognitive loss by promoting

inflammatory response, oxidative stress, energy metabolism

disorders and memory related neuron atrophy and synaptic

loss (47). GC in the brain is a key regulator of synaptic plasticity

and microglial cell activity (48). Excessive release of GC under

stress can lead to reduction of glucocorticoid receptor (GR) and

down-regulation of its regulated anti-inflammatory effect,

promoting neuroinflammation (49). These changes often occur

before the onset of AD symptoms. Studies have shown that the

HPA axis, circadian, and episodic memory are impaired in the

early symptomatic stages of AD (50). Studies have also shown

that the application of partial glucocorticoid receptor

antagonists can improve neurotransmitter dysfunction and

synaptic dysfunction, thus promoting memory storage (51, 52).
2.1.2 Cerebral insulin signal transduction and
AD

The insulin signaling pathway itself as well plays an

important role in memory and cognition. Insulin receptors

(IRs) are widely distributed in the nervus centralis and parts of

brain are able to secrete insulin themselves (53). Recent studies

have shown that IRs play an important role in the significant

links related to AD, including emotion, behavior, cognition,

regulation of energy metabolism, regulation of neuronutrition

and synaptic plasticity (54). A growing number of clinical studies

have also shown that the longer the course of type 2 diabetes
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(T2D), the higher the risk of getting AD (55). Careful

management of cholesterol and glucose from early adulthood

can reduce the risk of AD (56). Improving glucose metabolism in

MCI patients can reverse cognitive impairment and reduce the

risk of developing dementia (57).

Activation of the cerebral insulin signaling pathway begins

with the binding of ligand insulin to IR, and subsequent

phosphorylation of IRS-1 affects PI3K/AKT signaling. PI3K/

AKT signaling is regulated by hormones and connects to a

variety of downstream AD-related effects by regulating a variety

of transcription factors and cellular functions.PI3K/AKT

signaling, which regulates many transcription factors such as

CREB and NFkB, is associated with neuronal survival and

inflammation. In addition, the following pathways are also

involved: autophagy pathways like mTOR; apoptosis pathways

like FoxO1, Bax, Bcl-2, JNK, ERK1/2; cerebral vasodilation

factors like eNOS and NO. All of these effects can mediate

neuron survival and synaptic plasticity, which is a popular

pathway related to cognition in recent years (58). PI3K/AKT

signaling is also related to pathways that mediate energy

metabolism. Various factors that block PI3K/AKT signaling

can lead to inactivation of GSK-3b, which further leads to tau

phosphorylation and NFT formation. The activation of GSK-3b
leads to CDK5 activation through regulation of P25. It is known

that these two signal cascades are closely related to abnormal

phosphorylation of Tau and play a main role in the pathological

process of AD. Under normal circumstances, GSK3b
inactivation causes Glut4 to be released from storage vesicles

and move to the cell membrane. Hippocampal neurons increase

glucose uptake and memory-related activities through this way

(59). It has also been confirmed that when AD occurs,

inflammation of the nervous system and activation of cellular

stress can damage insulin signal transduction and result in brain

BBB insulin resistance (60). Insulin resistance affects glucose

metabolism and energy homeostasis in the brain, which

constitute a vicious cycle and promote the pathological

development of AD (61).

Some active factors associated with the insulin pathway are

also involved in the development of AD. Glucagon-like peptide-

1 (GLP-1) can be produced in the brain and acts like GSK-3b
inhibitor (62, 63). GLP-1 activates the GLP-1 receptor signaling

pathway and enhances hippocampus learning and memory,

promoting neurogenesis, reducing inflammation and apoptosis

by activating protein kinase A (PKA), phosphorylating Akt and

CREB and reducing Ab (64, 65). Decreased peripheral and

cerebrospinal fluid IGF-1 levels may be a potential marker of

cognitive decline and progression in AD (66). Insulin-degrading

enzyme (IDE) has a great ability to degrade insulin and Ab42
(67). IDE acts as an important regulator of Ab clearance and

diabetes, which is associated with neurodegeneration in AD (68).
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2.1.3 HPG axis and AD
Being female is second only to advanced age as a risk factor

for AD. AD affects more women than men, approaching 2:1 in

many countries. Studies have shown that HPG axis changes are

an important risk factor for AD. HPG axis hormones include

Gonadotropinreception hormone(Gn RH), Luteinizing

HRMone (LH), human Chorionic gonadotropin(h CG) and

sex hormones. They are extensively involved in neuronal

development, structure and brain function.

Studies in animal models and in patients with AD have

shown that GnRH administration increases local estrogen levels,

protects neural function from amyloid beta (Ab) neurotoxicity,
and prevents cognitive decline (69). Estrogen has been proved to

have good neuroprotective effects and to prevent the pathologic

development of Alzheimer’s disease (70). On one hand, estrogen

has ideal neurotrophic effects. It can reduce neuroinflammation

by inhibiting glial inflammatory activation, and thus reduce Ab
accumulation and pathological conformational changes of Tau

to prevent memory disorders (71). On the other hand, estrogen,

as a regulator of brain energy metabolism, restores normal

glucose metabolism and brain mitochondrial function in AD,

and significantly improves brain structural abnormalities and

cognitive impairment (72, 73).

Recent studies have suggested that lifetime cumulative

estrogen exposure may be related to the occurrence of AD.

Although most of the brain is local synthetic estrogen, and the

added exogenous estrogen therapy by factors such as age, family

history, brain health, existing research shows that the

menopausal women can improve cognitive function by taking

supplementary estrogen. This suggests that individualized

assessment is key to the successful prevention of AD in

estrogen therapy (74). Similarly, androgens such as

testosterone are regulated by the HPG axis. As the

physiological level of testosterone decreases with aging in AD,

androgen can prevent Ab plaque formation and reduce Tau

phosphorylation (75). The protective effect of testosterone has

been proved to be related to the glycogen synthase pathway (76).

In addition, LH has also been confirmed to be involved in APP

metabolism and Ab plaque formation in the hippocampus, and

reducing LH can improve cognitive impairment (77, 78).

2.1.4 Brain gut axis and AD
The functions of the brain and gastrointestinal system are

interlinked with each other. This bi-directional communication

involves neuro-endocrine-immune changes and is strongly

associated with the onset of AD (79). Studies have shown that

improving intestinal flora can improve glucose tolerance,

intestinal barrier dysfunction and dyslipidemia in AD model

mice. This delayed brain pathological changes in ADmodel mice

in many ways and relieved spatial learning and memory
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disorders, showing a bright prospect for treating AD (80).

Intestinal microbiome studies in patients with AD suggest

that the unique microbiome changes in AD can be a predictor.

Studies on the mechanism of AD induced by the microbiome -

gut - brain axis changes suggest that intestinal microbes can

create an inflammatory environment, promote protein

misfolding, and cause inflammation to spread to the brain and

cause pathological changes of AD (81). On the other hand,

neuroinflammation can also affect the vagus nerve, resulting in

intestinal dysbiosis (82). The microbiome - gut - brain axis is

also an important link in the metabolism of substances in AD

and can serve as an important link between glucolipid

metabolism, insulin sensitivity, inflammation and the

pathology of AD (83). Microbiome metabolism can also

regulate the biosynthesis of neurotransmitters or their

precursors, thus affecting the microbiome - gut - brain axis

through the neuroendocrine pathway. Tryptophan metabolism

regulates brain neurotransmitter signaling through the

microbiome - gut - brain axis.

2.1.5 Interaction of neuroendocrine axes in AD
Recent studies have shown that imbalances in various

neuroendocrine related systems, such as the HPA axis, HPG

axis, insulin and brain-gut axis, can be observed in people with

early stage AD, while related hormone therapy has been proved

to achieve better results only in the early stages of aging (84, 85).

This suggests that the intervention of AD through the

neuroendocrine related axis needs to be carried out before the

irreversible accumulation of neurotoxic substances, and there is
Frontiers in Endocrinology 05
still a large gap in the relevant early drug treatment in western

medicine intervention.

During the process of AD, various neuroendocrine related

axes interact and connect with each other through energy

metabolism, oxidative stress and inflammation. There is a

strong association between diurnal cortisol imbalance and

insulin resistance (86). Glucocorticoids can mobilize liver

nutrient metabolism and inhibit insulin secretion, and targeting

stress-mediated glucocorticoid oversecretion is an effective way to

restore the balance of insulin secretion (87). In the brain,

hippocampal corticosteroid exposure promotes Tau

phosphorylation by activating glycogen synthase kinase 3b
(GSK3b), a pathway that intersects with insulin signaling (88,

89). Similarly, the HPG axis intersects with the HPA axis and

insulin-related pathways. Estrogen inhibits 11b -hydroxysteroid

dehydrogenase type 1, an enzyme involved in the synthesis of

bioactive glucocorticoids from its inactive precursor. Estrogen-

mediated neuroprotection also interconnects with the IGF-1

signaling pathway (90). Peripherally, either HPA axis imbalance,

islet dysfunction or HPA axis imbalance can affect intestinal flora

balance and promote chronic expression of peripheral

inflammatory markers (91, 92) (Blue circle in Figure 1).

Brain-gut axis, peripheral-central immune communication

or neuroendocrine related factors can act directly on the brain

and alter the internal environment of the nervous system,

leading to energy metabolism disorders, oxidative stress, and

inflammation in nerve cells (93, 94). In this case, AD-related

mitochondrial dysfunction, ER stress, and autophagy related

pathways are activated (95). Amyloid precursor protein (APP)
FIGURE 1

The relationship between neuroendocrine and Alzheimer's disease.
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secretion increases, while Ab-degrading enzymes such as

enkephalin and insulin-degrading enzymes decrease. This

contributes to the accumulation of toxic substances such as Ab
plaques and hyperphosphorylated Tau, resulting in the

progression of AD pathology (Pink circle in Figure 1).
2.2 The neuroendocrine mechanism of
TCM treating AD

2.2.1 The neuroendocrine mechanism of TCM
regulating HPA axis
2.2.1.1 TCM alleviates the toxic effects of
glucocorticoids

Many researches have proved that TCM can regulate the

HPA axis, and different medicines can interfere with different

sites of glucocorticoid action to improve cognition. Dawn

saponin D (ASD) is a widely used TCM monomer that can

resist AD, hyperlipidemia, diabetes and osteoporosis. Studies

have shown that ASD can reduce the plasma corticosterone and

ACTH levels in AD rats, improve memory deficits and anxiety

symptoms. ASD shows a good brain protection effect by

regulating the HPA axis hormone level (96). Astragaloside

(AST) is the main active ingredient extracted from Chinese

traditional herb Astragalus membranaceus. Studies have shown

that AST can protect hippocampal nerves from glucocorticoid

and Ab25-35 injury, and improve learning and memory

disorders. Its mechanism is related to the down-regulation of

APP and b secretase mRNA levels. They subsequently caused the

decrease of APP and Ab expression in the hippocampus (97).

Mitochondrial regulation is also an important function of

glucocorticoids (98). Chronic cellular stress will activate

apoptosis signal transduction, which can promote Ab
production and lead to nerve cell death (99). Some TCMs

have been confirmed to protect mitochondrial function and

reduce nerve cell apoptosis by fighting ER stress. Ginsenoside Rd

(Rd) can inhibit ACTH-induced corticosterone production by

blocking the MC2R-cAMP/PKA/CREB pathway in adrenal

cortical cells (100). Water extract of ginseng(WEG) can up-

regulate the expression of GR and its related functional proteins

HDAC6 and Hsp90 to restore mitochondrial function and

reduce the succedent expression of ER stress-related proteins.

This has followed with reductive nerve cell apoptosis and has

shown treatment effects on anxiety and other mental disorders

(101). The water extract of Sedum Takesimense (WEST) also has

a similar effect (102) (Table 1 and Figure 2).

2.2.1.2 TCM regulates glucocorticoid receptors and
related pathways

Glucocorticoid receptors (GR) in the hippocampus are

important for memory formation (108). TCM can regulate

toxic Ab -producing enzymes to protect the brain with

elevated stress hormones. They can also promote the
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production of brain-derived neurotrophic factors(BDNF),

which promotes neuronal survival, through glucocorticoid-

receptor (GR) related signaling pathways. Icaritin (ICA), the

active component of Herba epimedium, has the properties of

nerve cell regeneration and anti-apoptosis. Studies have shown

that ICA promotes the expression of BDNF and Bcl-2 through

GR, thereby inhibiting Bax and caspase-3 and reducing nerve

cell apoptosis. ICA can also inhibit the release of lactate

dehydrogenase (LDH) and promotes the activity of

superoxidase dismutase (SOD), thereby reducing the level of

oxidative stress in nerve cells. Its effect can be abolished by GR

inhibitors (109). Puerarin (PU) has also been proved to be able

to effectively improve learning and memory deficits in mice by

promoting GR and BDNF gene expression in the hippocampus

and induce neurogenesis (110). Existing studies have reduced

the neurotoxic effects of glucocorticoids through selective

inhibition of GR, but it has poor application prospects due to

the wide distribution and diversity of glucocorticoid receptors.

TCM can promote the recovery of normal pathways through the

GR pathway. This may be related to the limited activation of the

GR can promote cell survival, indicating that the treatment of

AD regulated by TCM may be a promising means to reverse

brain aging.

Reducing the Chronic activation of the HPA axis can

maintain the normal operation of the neurotransmitter system

and keep the structure and function of synapses in good

condition. Dendrobium officinale alkaloid (DNLA) is an

extract of Dendrobium officinale, which has been used in AD,

anxiety and depression. DNLA can reduce neuron loss and

increase Nissl bodies in the hippocampus CA2 and cortex by

attenuating HPA activation and increasing GR expression.

Beyond that, DNLA also has reduced the activity of

monoamine neurotransmitters and metabolic enzymes

elevated by CUS in the brain, and has alleviated the anxiety

and depression-like behavior of rats under chronic stress (104).

Yokukansan is also a traditional herbal medicine that can

counteract the effects of corticosterone, reverse its cytotoxicity

to hippocampal neurons and increase neuronal survival in

chronic stress rats (111). Its effect of anti-anxiety and

alleviation of aggressive symptoms may be mediated by 5-HT

receptors (105). Glutamatergic neurological dysfunction is an

important link in the pathology of AD, and glutamate receptor is

related to nerve excitability. Accumulation of toxic substances in

AD will damage receptor function, resulting in calcium

imbalance and excitability toxicity. In the end, these will cause

autophagy and apoptosis of neurons (103). Tenuifolin (TEN),

the main component of Polygala tenuifolia, has neuroprotective

performance. TEN can up-regulate the expressions of

glucocorticoid receptor, glutamate receptor 1 and synaptic

related proteins (107).

Some TCMs can also reduce stress-related inflammation,

showing a good effect against inflammatory damage. TEN can

reduce serum adrenocorticotropic hormone and corticosterone
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levels, inhibits Toll-like receptor 4(TLR4)/NFkB mediated

inflammation, and regulates the levels of IL-6 and IL-10 in the

hippocampus. TEN can also promote the increase of brain-

derived neurotrophic factor and myosin kinase B, showing great

improvement effect on memory loss caused by chronic stress

(107). Ginsenoside Rg1 (Rg1) is the active ingredient in ginseng.

Rg1 can protect cerebrovascular endothelium and increases

neuronal survival through the GR-ERK signaling pathway,

indicating its possible anti-glucocorticoid injury effect (112). In

addition, Rg1 decreased NLRP1 inflammasome and ASC and

reduced the expression of apoptosis-related factors by activating

GR, showing a good cognitive protective effect (113).

It is worth mentioning that in the pathological development of

AD, HPA axis and insulin-related pathway show extensive cross-

influence. Some Traditional Chinese medicines regulate these

cellular endocrinology by affecting their overlapping downstream

pathways. JiAmarogentin (AMA) is a dicyclic glycoside isolated

from Gentiana rigescens Franch, which has similar effects of nerve

growth factor (NGF). Studies have shown that AMA may reduce

neuroinflammation and nerve apoptosis through Ras/Raf/ERK and

PI3K/AKT signaling pathways regulated by insulin. Interestingly,

GR/PLC/PKC signaling pathway has also been found to be involved
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in the neurogenic effects of AMA. This has indicated possible

interactions between GR and insulin-related pathways (114). 5,6,7,4

‘-tetramethoxylflavanone (TMF) is one of the active ingredients in

Chromolaena odorata (l.),and it can reduce BACE1 and PS1

expression to reduce toxic production and synaptic protection. In

dexamethasone(DEX) model mice, TMF promoted the expression

of proteins associated with neurogenesis, proliferation,

differentiation, and maturation through a mechanism similar to

AMA (115). Studies have shown that quercetin also decreased

serum corticosterone and serum insulin in mice, and increased the

expression of GLUT4 in neurons. This indicates its potential to

promote neuronal survival by improving energy metabolism, which

happens to be an important part of the co-regulation of HPA axis

and insulin (116). These studies suggest that TCM intervention in

the tandem between glycoskin and insulin pathwaysmay be a better

medical option for endocrine-related cognitive risks than mono-

acting drugs. Liuwei Dihuang decoction (LW) is a classical TCM

prescription, which has potential therapeutic effect on AD. The

addition of LW-AFC restores the balance of HPA and HPG axis,

enhances the proliferation of spleen cells and corrects the disorder

of lymphocyte subsets. It can also regulate abnormal cytokine

production in SAMP8 mice, showing superior neuroendocrine
TABLE 1 TCM treats AD by regulating the mechanism related to HPA axis.

TCM Method Animal Cell Mechanism Related pathways Nerve protection
effect

Reference

ASD Ab25-35 Rats / Serum ACTH↓CORT↓ / Reduce anxiety
symptoms

(92) Y. Wang, et al, 2017

ICA Ab25-35 / HT22 GR↑/BDNF↑ SOD↑、LDH↓、Bcl-2↑、Bax↓、Caspase-
3↓

/ (100) C. Tang, et al, 2020

DNLA 12M
CUS

Rats / Cortex CORT↓/CRF1↑/
ACTH↓/GR↑

5-HT↓5-HIAA↓MAO↓、
DA↓DOPAC↓COMT↓

CA2/cortex neural
survival↑
Nissl body↑

(102) T. W. Xiong, et
al,2021

AMA / / PC12 GR/PLC/PKC↑ INSR/PI3K/AKT/ERK↑、TrkB/Ras/Raf/
MEK/ERK↑

Neurogenesis and
differentiation↑

(103) L. Cheng, et al,
2021

TEN CRS Mice / Serum ACTH↓CORT↓
GR↑/TLR4/MyD88/
TRAF6/NFk B

PSD95↑SYN↑ / (104) H. Wang, et al,
2022

PU D-gal Mice / GR↑/CREB↑/BDNF↑ / Neurogenesis and
differentiation↑

(101) X. Y. Li, et al, 2017

Rg1 DEX Mice / GR↑/NLRP1↓/ASC↓ IL-1b↓、IL-18↓、Caspase-1↓、Caspase-5↓ Cortex/CA1/CA3
neural survival↑

(105) Y. Zhang, et al,
2017

WEG corticosterone / PC12 GR↑/Hsp90↓/HDAC6↑
CHOP↓、GRP78↓、
XBP-1↓

Caspase-12↓、LDH↓
Cytochrome C↓、ICAD↓、Caspase-3↓、
Caspase-9↓

Neural survival↑ (97) Y. Jiang, et al, 2015

WEST corticosterone / PC12 CHOP↓、GRP78↓、
Bax↓、Bcl-2↑

LDH↓、ROS↓、Cytochrome C↓、Caspase
-3↓、Caspase -9↓

Neural survival↑ (98) H. Y. Yun, et al,
2020

TMF DEX Mice / BACE1 ↓、Ab↓
Gsk3b↓/p-Tau↓
Raf↑/ERK1/2↑/NF-kB↓

AChE↓
PSD95↑、ADAM10↑、Caspase-3↓

Neuronal apoptosis↓
Neurogenesis and
differentiation↑

(106) (107)K. Pakdeepak,
et al, 2020

AST Ab25-35
DEX

Rats / / APP↓BACE1↓Ab↓ CA1 neural survival↑ (93) W. Z. Li, et al, 2012
chronic restraint stress, CRS; dexamethasone, DEX; Brain Derived Neurotrophic Factor, BDNF.
The '↑' means up-regulation and '↓' means down-regulation.
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immune network regulation over memantine and Donepezil

(117) (Table 1).

2.2.2 The neuroendocrine mechanism of TCM
regulating insulin-related pathways
2.2.2.1 TCM promotes neuronal survival through
insulin signaling pathway and related downstream
pathways

TCM can reduce oxidative stress. Insulin signaling pathway

is related to oxidative stress pathways. TCM can reduce oxidative

stress by regulating insulin signaling pathway and activating

antioxidant downstream pathways, thus reducing the

accumulation of toxic substances and promoting neuronal

survival (Figure 2). Studies have shown that Lychee seed and

Astragalus Membranaceus have beneficial effects on regulating

blood glucose, lipids, and anti-oxidation. They can alleviate

insulin resistance and oxidative stress in the brain, and show

sufficient cognitive benefits (118, 119). Xuefu Zhuyu decoction

(XZD) is a tried and tested TCM formula for treating metabolic

syndrome, cardiovascular and cerebrovascular diseases. XZD

can reduce body weight, insulin resistance, and leptin levels in

APP/PS1 mice, thereby improving neuroinflammation and AD-

related pathology, demonstrating favorable neuroendocrine

regulatory effects (120). In AD patients, insulin receptor

substrate 1 (IRS-1) deficiency down-regulates Nrf2/HO-1

signaling, thereby increasing oxidative stress in the brain and

ultimately causing nerve cell damage. Thymol is a monoterpene

phenol isolated from herb, which has strong neuroprotective

effect. Thymol has shown beneficial effects on high fat diet

induced cognitive deficits by improving insulin resistance in

the hippocampus and activating Nrf2/HO-1 signaling (121).

Peganum Harmala (P. Harmala) enhanced Nrf2 through

insulin signaling, while reducing lipid peroxidation and adding

glutathione (122). Dianxianning (DXN) is a traditional Chinese

formula that has been reported to have anti-Alzheimer’s disease

activity. Studies have shown that Ab -induced pathologic

features are improved by the insulin-like pathway in

transgenic worms treated by DXN (123) (Table 2 and Figure 2).

TCM can reduce neuronal apoptosis. Neuronal apoptosis is

an important part of AD pathology. Neuroinflammation can

activate insulin signaling pathway and promote the initiation of

apoptosis process. TCM can simultaneously intervene the

insulin signaling pathway and its downstream endocrine

mechanism about apoptosis, showing a good prospect in the

treatment of AD. Silibinin, a polyphenolic flavonoid extracted

from silythistle seeds, can significantly inhibit streptozotocin

(STZ)-induced neuronal apoptosis, up-regulate insulin signal

transduction pathway, and reduce the morphological and

structural damage of hippocamal neurons (128). JNK/c-Jun

pathway promotes pro-apoptotic protein transcription in AD

brain neurons. Treatment with Genistein can increase insulin

sensitivity and the expression levels of the neurotrophic factors

nerve growth factor (NGF) and brain-derived neurotrophic
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factor (BDNF) (138). Genistein can also reduce c-Jun N-

terminal kinase(JNK) activity and alleviated AD-related

pathology in ApoE knockout high fat diet mice (133).

Isorhynchophylline (IRN) can inhibit JNK signaling in

primary hippocampal neurons treated with Ab, reducing Ab
production and deposition, and Tau hyperphosphorylation

(139). Quercetin-3-o-glucuronide (Q3G), a flavonol

Glucuronide, also has similar down-regulation of JNK/c-Jun

pathway. In addition, Q3G can also regulate intestinal

microbiome ecological imbalance, alleviates cerebral insulin

resistance and improves cognitive dysfunction through

intestinal brain axis (132). Magnolol also has been proved to

have a similar effect on reducing apoptosis and regulating

intestinal microbes (140). FoxO1 regulates the transcriptional

activity of apoptotic proteins in the nucleus. Studies have also

shown that FoxO1 overexpression promotes GSK-3b activity

and ERK activity by increasing phosphorylation of GSK-3b (S9),

and participates in the process of Tau phosphorylation (131).

Forsythia fruit (FF) is a Chinese medicine widely used in treating

inflammation. Studies have shown that FF regulates insulin-

related pathways and reduces neuronal apoptosis and injury by

decreasing FoxO1 activity, thereby improving cognition in rats

(129). Luteolin also has a similar effect (130, 141).Endoplasmic

reticulum(ER) stress is a major factor of AD nerve apoptosis.

ERK activation increases mitochondrial superoxide production

and impairs mitochondrial homeostasis. This induces ER stress

through the pERK-eIF2a-ATF4-CHOP axis, ultimately leading

to neuronal apoptosis (134). ATF4 can guide the transcription of

autophagy genes such as Beclin-1, CHOP. The upregulation of

CHOP transcription factors is related to neuronal degeneration.

The inhibition of insulin signaling pathway caused by increased

PTP1B protein is also related to the activation of this pathway.

Sodium tanshinone IIA sulfonate (STS) can reduce the level of

oxidative stress in SH-SY5Y cells, and reduce ER stress levels by

decreasing pERK-eIF2a-ATF4-CHOP axis activation. By

protecting ER structure and function, STS has provided

cognitive protection (142). Dendrobium officinale can also

reduce endoplasmic reticulum stress and Ab production

through a similar pathway (135). EGCG can increase PTP1B

protein and reduces activation of this pathway (143) (Table 2

and Figure 2).

TCM can reduce excessive autophagy. Excessive autophagy

of nerve cells is a pathogenesis of AD, and the Beclin-1 complex

is indispensable in the formation of autophagosome (144).

Bergapten (BG) is a TCM with neuroprotective potential.

Studies have shown that BG regulates the insulin pathway by

stimulating Wnt3a, reduces the activity of GSK-3b, and

increases the expression of BDNF. In addition, BG reduces

autophagy of nerve cells through the AMPK/mTOR/Beclin-1

pathway, reverses intracerebellar (ICV) STZ injection-induced

cognitive impairment, and alleviates AD related pathological

manifestations. Huang-Lian-Jie-Du formulae (HLJDD) is a

traditional Chinese formula, which has been used in diabetes
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TABLE 2 TCM promotes neuronal survival through insulin signaling pathway and related downstream pathways.

Effects TCM Method Animal Cell Insulin signaling
pathway

Related downstream
pathways

Toxic substances Reference

Reduce
Oxidative
stress

LSE ICV-STZ
HGPD

Rats / serum insulin↓、HOMA-IR↓ SOD↑、GSH↑、MDA↓、
caspase-3↓

Ab↓、p-tau↓ (113) Y. Tang,
et al, 2018

APS APP/PS1
STZ/HFD

Mice / serum insulin↓、HOMA-IR↓ SOD↑、GSH↑、MDA↓、
caspase-3↓

/ (114) Y. C.
Huang, et al,
2017

Thymol HFD Mice / p-IRS-1↓/p-AKT↑/GSK-3b↓ Nrf2↑/HO-1↑、SOD↑、
MDA↓

Ab↓、p-tau↓ (116) H. Li, et al.
2017

P.harmala AlCl Rats / HI↑/p-IRS-1↓/AKT↑/GSK-3b↓ Nrf2↑、GSH↑、
Lipoperoxides↓

Ab↓、p-tau↓ (117) R. Saleh,
et al, 2021

Improve
synaptic
function

EFAD HFD Mice 3T3-
L1

p-IRS-1↓/p-AKT↑/p-AMPK↑
TNF-a↓、SOD↑、GSH↑、
MDA↓、MMP↑

ACh↑、AChE↓ Ab↓、p-tau↓ (124) S. Bin Park,
et al, 2019

Hup A HFD Mice / HI↑/p-AKT↑ ACh↑、AChE↓ BACE1↓
Ab↓

(125) H. Ying
Wang, et al, 2020

BS ICV-STZ
HFGD

Rats / GSK-3b↓、serum insulin↓、
HOMA-IR↓
TNF-a↓、IL-1b↓、SOD↑、
GSH↑、MDA↓、caspase-3↓

ChE↓
GluR1↑、NR1↑、NR2 A↑

p-Tau↓ (126)
A.A.Gomaa,et
al,2019

EC ICV-STZ
HFGD

Rats / Gsk3b↓、serum insulin↓、
HOMA-IR↓
TNF-a↓、IL-1b↓、SOD↑、
GSH↑、MDA↓、caspase-3↓

AChE↓
GluR1↑NR1↑NR2A↑NR2B↑

Ab↓、p-tau↓ (127) A. A.
Gomaa, et al,
2019

Reduce
neuronal
apoptosis

Genistein Apoe-/-
ob/ob

Mice / p-IRS-1↓/p-AKT↓/GSK-3b↓ p-JNK-c-Jun ↓、NGF↑、
BDNF↑

BACE1↓、PS1 ↓
Ab↓、p-tau↓、

(120) R. Z. Li, et
al. 2020
(121) Y. J. Park,
et al. 2016

Q3G Ab1-42 Mice SH-
SY5Y

p-IRS-1↓/p-AKT↑/p-AMPK↑/
GSK-3b↓/
TNF-a↓、IL-1b↓、IL-6↓、
INF-g↓、IL-10↑、 IL-5↑

p-JNK↓、CREB↑、
BDNF↑

Ab↓、p-tau↓ (123) M. Xu, et
al, 2021

Magnolol TgCRND8 Mice / p35/CDK5↓/Gsk3b↓
IL-6↓、IL-1b↓、TNF-a↓、
CCR2↑

p-JNK ↓/JNK=↓、Bcl-2↑、
Caspase-3↓

APP↓BACE1↓
APH1↓PS1↓
Ab↓、p-tau↓

(128) C. Qu, et
al, 2021

IRN TgCRND8
Ab42

Mice PRHN IDE↑
IL-6↓、IL-1b↓、TNF-a↓

p-c-Jun↓/c-Jun=↓p-JNK
↓/JNK=↓

APP↓BACE1↓APH1↓PS1↓
Ab↓、p-Tau↓

(122) H. Q. Li,et
al,2019

EGCG APP/PS1
HFD

Mice / PTP1B↓/GSK3b↓ pERK↓、JNK↓
pEIF2a/ATF4/CHOP↓

ADAM10↑FURIN↑
Ab↓

(129) M.
Ettcheto, et al,
2020

DNLA SAMP8 Mice BV2 Gsk3b↓ pERK↓
ER morphology↑、pEIF2a/
ATF4/CHOP↓

Ab↓、p-tau↓ (130) C. Z. Feng,
et al, 2019

STS Ab / HT22 NEP↑ 、IDE↑ pEIF2a/ATF4/CHOP↓p-
PERK↓

Ab↓ (131) D. P.
Zhang, et al,
2020

T.chebula Ab25–35
HFD

Rats / p-Akt↑/GSK-3b↓
TNF-a↓、IL-1 b↓

pFOXO1↑ p-tau↓ (132) S. Park,
et al. 2018

FF Ab25–35
HFD

Rats PC12 p-AKT↑/GSK-3b↓
TNF-a↓、IL-1 b↓

p-FOXO1↓ / (133) D. S. Kim,
et al, 2022

Silibinin STZ Rats / IGF-1↑ Bax↓、Bcl-2↑、caspase 3↓ p-tau↓ (118) P. Liu,
et al, 2020

Reduce
nerve
autophagy

BG ICV-STZ Mice / p-Akt↑/Gsk3b↓
cGMP↑/PKG↑/NF-ĸB↓/
BDNF↑、IL-23↓、IL-27↓

AMPK↑、mTOR↓、
beclin-1↓
Wnt3a↑/b-catenin↓/cyclin
D1↑

Ab↓、p-tau↓ (134) M. A.
Salem, et al, 2021

(Continued)
Frontiers in
 Endocrino
logy
 09
 frontiersin.org

https://doi.org/10.3389/fendo.2022.955618
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Deng et al. 10.3389/fendo.2022.955618
and Alzheimer’s disease for a long time. HLJDD has been shown

to take neuroprotective effects through regulation of glucose and

lipid metabolism, up-regulation of autophagy and inhibition of

NLRP3 inflammasome signaling pathways (145) (Table 2).

TCM can improved energy metabolism. The Glucose

transporter protein (GLUTs) family consists of a large group

of membrane proteins that transport glucose along a

concentration gradient without energy expenditure. GLUT1

and GLUT3 are widely expressed in the central nervous

system and are responsible for most glucose uptake and

utilization in the brain. Decreased glucose metabolism and

energy deficiency associated with GLUTs were observed in AD

pathology, which was associated with high Tau phosphorylation

and oligomer Ab production (146). Insulin signaling pathway is

closely related to glucose metabolism, and TCM induces GLUTs

expression through insulin signaling pathway, alleviates the

accumulation of toxic substances induced by energy

metabolism disorders, and protects neurotransmitters.

Memory impairment has been proved to be related to glucose

uptake or metabolism in the medial prefrontal cortex. Berberine

can cross the blood-brain barrier and up-regulate GLUT3,

promote glucose uptake in the brain, and reduce the

expression of amyloid precursor protein and BACE-1, as well

as oligomeric Ab42 production (136, 147, 148). Its cognitive

improvement benefit may also be related to the activation of

PI3K/Akt/mTOR and MAPK signaling pathways (137, 149).

Acteoside can ameliorate STZ-induced oxidative stress and

learning and memory impairment caused by GLUT1, GLUT3,

and GLUT4 pathways and regulate intracranial metabolism

(150). Curcumin has antioxidant and anti-inflammatory

properties and can reduce amyloid pathology in AD.

Curcumin can increase glucose levels in plasma and brain, and

significantly increase GLUT3 and GLUT4 levels (151).

Micropositron emission tomography (PET) has shown that

curcumin treatment improved cerebral glucose uptake in AD
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mice (124, 125). Banxia Xiexin decoction (BXD) treatment can

not only restore insulin signal transduction, but also increase the

expression of glucose transporter 1 (GLUT1) and GLUT3 levels,

which had a good effect on the improvement of cognitive ability,

synaptic volume and ultrastructure of AD (126) (Table 2).

TCM can protect synaptic function. Synaptic loss caused by

inflammation and oxidative stress in AD is a major factor related

to the progression of the disease. Loss of cholinergic neurons

leads to memory and attention deficits, and neurotransmission

of glutamate is crucial for synaptic plasticity and neuronal

survival (127). TCM can improve chronic stress induced

neuroendocrine, neuromicroenvironment, synaptic structure

and function disorders through insulin signaling pathway, and

relieve patients ’ memory loss. Aruncus Dioicus var.

kamtschaticus (EFAD) and Huperzine A (Hup A) are both

extracts of TCM, which can improve cerebral insulin

resistance and cognitive impairment in AD animals. Both of

them can increase Ach and decrease AchE and improve synaptic

function (152, 153). Polyphenol rich frankincense(BS) gum has

been proven to have anti-inflammatory, anticancer and anti-

apoptotic effects. BS extracts can significantly enhance glutamate

receptor expression (GluR, NR1, NR2 A and NR2B) and reduced

Ab deposition and Tau phosphorylation (154). Cardamom

extract (EC) has anti-diabetic, antioxidant and anti-

inflammatory properties. In addition to improving cognitive

function in rats, EC can also increase the expression of

suppressed glutamate receptors (AMPA GluR1 subunit and

NMDA receptor subunit NR1, NR2A, NR2B) (155) (Table 2).

2.2.2.2 TCM regulates the generation and metabolism
of insulin-related enzymes and toxic substances

In the transmission of insulin signaling pathway, the

activation of GSK-3b leads to CDK5 activation through the

regulation of P25, and both of these signaling cascades are

closely related to the abnormal phosphorylation of Tau and
TABLE 2 Continued

Effects TCM Method Animal Cell Insulin signaling
pathway

Related downstream
pathways

Toxic substances Reference

Improved
energy
metabolism

Berberine STZ
HFGD

Rats / p-IRS-1↓/PI3K↑/p-AKT↑/GSK-
3b↓
PKC↑/IKK↓/NF-kB↓、TNF-
a↓、IL-1 b↓

GLUT3↑ BACE1↓、APP↓
Ab↓

(135) Q. Chen,
et al, 2017

Acteoside STZ Rats / HI↑/IR↑/IRS1↑ Glu T1↑、Glu T3↑、Glu
T4↑
ROS↓、ATP/ADP↑

/ (136) J. Chen,
et al. 2021

Curcumin APP/PS1 Mice / p-IRS-1↓/PI3K↑/p-AKT↑、
IR↓/IGF-1R↑

GLUT1↑、GLUT3↑ / (137) P. Wang,
et al, 2017

P.harmala AlCl Rats / HI↑/p-IRS-1↓/p-AKT↑/GSK-
3b↓、GLP-1↑
ACh↑、AChE↓

GLUT4↑ Ab↓、p-tau↓ (117) R. Saleh,
et al, 2021
High fat diet, HFD; High sugar and fat diet, HFGD; Streptozotocin, STZ; Amyloid cleavage enzyme 1, Bace1; PRHN, primary rat hippocampal neurons; primary cultured rat hippocampal
neurons, PCRHN.
The '↑' means up-regulation and '↓' means down-regulation.
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play a key role in the pathological process of AD. The total

alkaloids from Coptis chinensis Franch (ACF) are widely used in

traditional Chinese medicine to treat diabetes and dementia.

ACF treatment can significantly increase pIRS, PI3K, and pAkt,

restrain GSK3b overactivation, thus reducing Ab deposition

(156). Catechins, proanthocyanidins A1, A2 in Lychee seed

and Huperzine A can inhibit hyperphosphorylated Tau

through A similar pathway (153, 157). Ginseng has many

active components against AD. Pseudoginsenoside-f11 (PF11)

is a root and leaf extract of ginseng subspecies. It can ameliorate

STZ-induced learning and memory deficits and reduce neuronal

loss by regulating insulin signaling and calproteinase I/CDK5

signaling pathways in the hippocampus and thus reducing

phosphorylated Tau (158). Dendrobium officinale and

ginsenoside Rb1(Rb1) have similar effects (143). CDK5

mediates phosphorylation and inactivation of PPARg, which
has antioxidant and neuroprotective effects (140). Ginsenoside

Rg1(Rg1) is one of the main components of ginseng. Studies

have shown that Ginsenoside Rg1 can act like CDK5 inhibitor

and inhibit PPARg phosphorylation, thus down-regulating

BACE1 and APP expression (159). Notoginsenoside R1

(NTR1), the main active ingredient of ginseng, a well-known

traditional Chinese herb, can induce increased levels of

peroxisome proliferator-activated receptor g (PPARg) and

decreases Ab production (160) (Figure 2).
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Overexpression of PTP1B negatively regulates insulin

signaling by binding to specific phosphorylation residues of IRS-

1 (161). Researches have shown that it is also possible that PTP1B

itself regulates central nervous system processes associated with

neurological diseases. Ferulic Acid(FA) is a phenolic compound

can commonly found in a series of plants. Through reducing

PTP1B, Ferulic Acid can promote insulin signal transmission,

improve spatial memory of middle diabetic rats, increase

hippocampal capillary density and reduce aAD-like pathological

changes in hippocampus (162, 163) (Table 3 and Figure 2).

Insulin-degrading enzyme(IDE) and enkephalinase(NEP)

have strong ability to degrade insulin and Ab42, which are

associated with neurodegeneration in Alzheimer’s disease (132).

EGCG can inhibit NEP expression in astrocytes by activating

extracellular signal-regulated kinase (ERK) and phosphoinositol

3-kinase (PI3K) (38, 165). This has promoted Ab degradation

(166). Paeoniflorin (PF) significantly inhibited NO production

and secretion of IL-6, IL-1b and tumor necrosis factor-a(TNF-
a) in glial cells by up-regulating the NF-kB pathway and the

activity of Ab -degrading enzymes such as IDE and NEP (164).

Isorhynchophylline (IRN) has been shown to have significant

anti-Alzheimer’s disease activity. In addition to increasing IDE

expression, Isorhynchophylline can also inhibit the activation of

microglia and astrocytes, reduce tau hyperphosphorylation and

neuroinflammation, and improve cognitive impairment, which
TABLE 3 TCM reduces toxic substances through insulin signaling pathway.

TCM Method Animal T Cell Mechanism Toxic substances Reference

ACF STZ
HFGD

Rats MWM
Y

/ p-IRS-1↓/p-PI3K↑/p-AKT↑/GSK-3b↓ Ab↓ (152) J. C. Li, et al, 2018

lychee seed DXM / / HepG2
HT22

p-IRS-1↓/p-PI3K↑/p-AKT↑/GSK-3b↓ p-tau↓ (153) R. Xiong, et al, 2020

Hup A23 HFD Mice MWM
NOR

/ HI↑/p-AKT↑ BACE1↓
Ab↓

(125) H. Ying Wang, et al, 2020

PF11 STZ Rats NB
Y
MWM

/ p-IRS-1↓/PI3K↓/p-AKT↑/GSK-3b↓
calpain I↓/CDK5↓

Ab↓、p-tau↓ (154) L. Zhu, et al, 2021

Rg1 Ab1−42 / / PCRHN CDK5↓、p-PPARg↓ APP↓、BACE1↓
Ab↓

(155) Q. Quan, et al. 2020

NTR1 APP/PS1 Mice / N2a-APP695sw PPARg↑ Ab↓ (156) Z. Li, et al, 2015

Magnolol TgCRND8 Mice MWM / Gsk3b↓/p35/CDK5↓ APP↓BACE1↓APH1↓PS1↓
Ab↓、p-tau↓

(128) C. Qu, et al, 2021

FA APP/PS1 Mice MWM / PTP1B↓/p-IRS-1↓/p-Akt↑/GSK3b↓
NFKABAB/

BACE1↓
Ab↓

(158) N. Y. Wang, et al, 2021

EGCG APP/PS1
HFD

Mice MWM
ORT

/ PTP1B↓/GSK3b↓ ADAM10↑FURIN↑
Ab↓

(129) M. Ettcheto, et al, 2020

DNLA SAMP8 Mice Y
NOR

BV2 Gsk3b↓
Calpain I↓/p35/CDK5↓

Ab↓、p-tau↓ (130) C. Z. Feng, et al, 2019

Rb1 STZ Mice MWM
SDT

/ IDE↑、p35/CDK5↓
NMDAR1↑

/ (164) R. Yang, et al, 2020
TAnimal cognitive tests; peroxisome proliferator−activated receptor gamma: PPARg.
Hippocampal insulin: HI; Nest building: NB; Morris water maze: MWM; Y-maze: Y; Open field test: OFT; Novel object recognition task: NOR; Step-down latency test: SDL; passive
avoidance test: PA; Step-Down Test: SDT.
The '↑' means up-regulation and '↓' means down-regulation.
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has a good potential for further development into drug therapy

for AD (139). Sarsasapogenin-AA13 can convert pro-

inflammatory M1 microglia into anti-inflammatory M2

microglia and increase the expression of IDE and NEP, thus

reducing toxic substance deposition (167). A new kind of pectin

RP02-1 extracted from the roots of Polygala Tenuifolia, pectin

LBP1C-2 purified from the fruits of Lycium berries, Notoginseng

Saponin Rg1(Rg1), Rb1 and ginsenoside F1 can up-regulate the

expression of Ab -degrading enzyme in a similar way (106, 152,

168–171) (Table 4). LBP1C-2 and Rg1can also decrease the

expression of APP, BACE1 and PS1 and increase the expression

of a secretase(ADAM10) (172). This leads to the reduction in

the APP processing and effectively saves cognitive impairment

and neuronal loss (173). Cornel Iridoid Glycoside (CIG) is an

active ingredient from cornus officinalis that can also increase

ADAM10, NEP and IDE levels in the brain of AD model mice.

CIG can also increase the expressions of NGF, BDNF and

phosphorylated camp-reactive element binding protein (p-

CREB) in the brain of 3×Tg mice, alleviating plaque
Frontiers in Endocrinology 12
deposition and cognitive impairment (174). Kai Xin San, a

Chinese Herbal formula composed of Radix Ginseng, Poria,

Radix Polygalae and Acorus Tatarinowii Rhizome, can induce

IDE and result in at least partial remission of hippocampal

neuronal injury in rats (175) (Table 4).

2.2.3 The neuroendocrine mechanism of TCM
regulating HPG axis

Estrogen treatment has been proved to have potential nerve

protective effect. But except the nervous system, it may endanger

the cardiovascular system and other system. In recent years,

some traditional Chinese medicines have been proved to be rich

in phytoestrogens, which have a natural similarity with estradiol

structure. They can selectively activate estrogen receptors and

activate specific neuroprotective effects such as anti-

inflammatory, antioxidant and anti-apoptosis, and can be used

in AD treatment.

Chinese medicine can reduce toxic substances by activating

estrogen receptors. Curcumin can selectively activate estrogen
TABLE 4 TCM increase insulin signaling pathway related toxic degradation enzymes.

TCM Method Animal Cell Mechanism Toxic substances Reference

PF Ab25–35 / C6 glial NEP↑ 、IDE↑
NOS↓、COX2↓、NO↓
IL-6↓、IL-1b↓、TNF-a↓

Ab↓ (162) E. J. Cho, et
al,2020

DNLA SAMP8 Mice BV2 NEP↑ 、IDE↑ Ab↓、p-Tau↓ (130) C. Z. Feng,et
al,2019

NTR1 APP/PS1 Mice N2a-APP695sw IDE↑、 Ab↓ (156) Z. Li, et al,2015

Magnolol TgCRND8 Mice / NEP↑ 、IDE↑
Astrocyte and microglia density↓

APP↓BACE1↓APH1↓PS1↓
Ab↓、p-Tau↓

(128) C. Qu,et al,2021

IRN TgCRND8
Ab42

Mice PRHN IDE↑
Astrocyte and microglia density↓、IL-6↓、IL-1b↓、
TNF-a↓

APP↓BACE1↓APH1↓
Ab↓、p-Tau↓

(122) H. Q. Li,et al,2019

AA13 Ab1-42 Mice PMA NEP↑ 、IDE↑
Microglia convert from M1 to M2↑

Ab↓ (163) C. Huang,
et al,2017

RP02-1 / / CHO/
APPBACE1

NEP↑ 、IDE↑ Ab↓ (165) H. Zeng,
et al,2020

LBP1C-2 / / CHO/
APPBACE1

IDE↑ BACE1↓ADAM10↑
Ab↓

(166) L. Zhou,
et al,2018

Rg1 Ab1-42 Rats / IDE↑ APP↓BACE1↓PS1↓ADAM10↑
Ab↓

(169) S. Zhi Liu,
et al,2019

F1 APP/PS1
Ab1-42

Mice N2aAPP695sw
SH-SY5Y

NEP↑ 、IDE↑ Ab↓ (170) Y. J. Yun, et al,
2022

Rb1 STZ Mice / IDE↑ (164) R. Yang, et al,
2020

DNLA HMD Mice / NEP↑ 、IDE↑ APP↓BACE1↓PS1↓DNMT1↓
Ab↓

(167) T. Pi, et al,2021

STS / / SH-SY5Y
SH-SY5YAPPsw

NEP↑ 、IDE↑
ROS↓、MDA↓、NO↓、iNOS↓、SOD↑、GSH↑
IL-6↓、IL-1b↓、TNF-a↓

BACE1↓ADAM10↑
Ab↓

(168) X. Q. Liu,
et al,2020

CIG 3×Tg Mice / NEP↑ 、IDE↑
NGF↑、BDNF↑、p-CREB↑

/ (171) C. Yang, et al,
2020

EFAD HFD Mice 3T3-L1 IDE↑ Ab↓、p-tau↓ (124) S. Bin Park, et al,
2019
IDE, Iinsulin degrading enzyme; NGF, nerve growth factor; PMA, Primary microglia and astrocytes.
The '↑' means up-regulation and '↓' means down-regulation.
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receptor b (Erb), inhibit IkBa degradation, and reduce BACE1

expression and Ab level through the NFkB pathway (176).

Calycosin, a typical phytoestrogen derived from astragalus

membranaceus, binds with estrogen receptors to activate the

protein kinase C pathway, reducing oxidative stress and

inflammatory response, thereby improving the deposition of

toxic substance such as amyloid beta and Tau in the

hippocampus of APP/PS1 transgenic mice, and has a good

cognitive improvement effect (177).

Some estrogen receptor selective activators have shown great

anti-apoptotic effects and can protect nerve cells and synaptic

functions. Silibinin, a flavonoid phytoestrogen derived from

milk thistle, can improve cognition in AD rats by inhibiting

the PI3K-Akt pathway and is a potential drug candidate for the

treatment of Alzheimer’s disease (178). Erzhi pills, a classical

Chinese medicine prescription that can up-regulate estrogen

levels, can also increase the number of Erb receptors, reduce

nerve cell apoptosis and relieve AD pathology by the PI3K-Akt

pathway similar to Silibinin (179). Kaempferol can protect PC-

12 cells from the apoptotic process by activating estrogen

receptors through the ER/ERK-related MAPK signaling

pathway (180). Guanghopin alcohol (PTA) is a selective ERb
agonist that can improve oxidative stress and synaptic integrity

by enhancing BDNF/TrkB/CREB signaling, and has shown a

good neuroprotective effect (181). Interestingly, the quercetin,

luteolin, and EGCG mentioned above also have phytoestrogenic

properties, which will not be described further in this section due

to their similar effects.

In addition, phytoestrogens can also protect endoplasmic

reticulum and mitochondrial functions in AD model, showing a

good regulation of cell metabolism. Resveratrol (Res) can
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increase estrogen levels and antioxidant capacity in AD

models through the Nrf2/HO-1 signaling pathway, showing a

role in regulating mitochondrial function (182). Biochanin A

(BCA) is a phytoestrogens isolated from Pratense L. clover that

has been commonly used to relieve postmenopausal problems in

women. BCA can increase the expression of mitochondrial

stability and morphology-related proteins like phosphorylated

Drp1, OPA1 and Mfn2, as well as the expression of

mitochondrial autophagy related proteins Beclin1, LC3B,

Pink1 and Parkin. This shows that BCA can rescue

mitochondrial abnormalities, thereby restoring cognitive

decline and reducing Ab deposition and BACE1 expression in

oophorectomized APP/PS1 mice (183). Both phytoestrogens a
-Zearalanol (a -Zal) and estrogens can effectively reduce the

death of AD-like apoptotic neurons, but the side effects of a -ZAl

on breast and endometrial tissues are significantly less than that

of estrogens. a -ZAl has been proved to have the potential to

stabilize ER function by reducing intracellular calcium overload,

showing at least partial effects of neuronprotective effect against

AD-like apoptosis (184), (Figure 3).

There are also studies shows that the activation of estrogen

receptors can promote the expression of neurotransmitters and

receptors and improve the neurotransmission function.

Genistein is a neuroprotective phytoestrogens that can activate

estrogen receptor subtypes, regulate NR2B and GLUTamate

receptor subunit GluR2 (185), (Table 5).

2.2.4 The neuroendocrine mechanism of TCM
regulating brain gut axis correlation

Most TCM treatments need to be taken orally. Recent studies

have shown that some TCM can play an ideal role in the treatment
FIGURE 2

The neuroendocrine mechanism of TCM regulating HPA axis and insulin signal transduction.
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of AD by affecting neuroendocrine factors related to brain-gut

axis, such as pro-inflammatory factors, neurotransmitters and

active metabolites. Some other TCM require intestinal conversion

to become active forms for their neuroprotective effects (186).

Some studies have shown that acupuncture can also affect

intestinal flora, regulate levels of anti-inflammatory factors, and

improve cognition in AD model animals (187). In patients with

mild to moderate AD, the combination of abdominal acupoint

catenet embedding therapy and Donepezil hydrochloride tablets

was superior to monotherapy (188). However, the related

mechanism is still unclear and needs further exploration.

Chinese medicine regulates intestinal flora and plays a

neuroprotective role by improving inflammatory environment.

Gastrodin (Gas) can reduce LPS and pro-inflammatory

cytokines in the brain of AD model animals and improve

memory by interfering with some intestinal microbiota (189).

A novel selenium peptide (SE-PS) with neuroprotective effects

obtained from Cordyceps militaris has shown significant

protective effects on LPS-induced colon and brain

inflammation and oxidative stress and has reduced cognitive

impairment in mice by inhibiting the production of pro-

inflammatory mediators and malondialdehyde, as well as

promoting anti-inflammatory cytokines and the activity of

antioxidant enzymes (190). Qisheng Wan Formula (QWF) has

been widely used since ancient times to treat patients with

amnesia or dementia. QWF has also been proved to improve

hippocampal structure in AD rats by inhibiting pro-

inflammatory factors and regulating gut microbiota (191).

TCM can regulate the metabolites derived from intestinal

microorganisms, improve the metabolism of neurotransmitters

and play a neuroprotective role. Xanthoceraside (XAN) is
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derived from the shell of Xanthoceras sorbifolia Bunge and

has anti-AD activity. Although XAN is hardly absorbed by the

BBB, it can significantly regulate metabolic disorders including

neurotransmitter, amino acid, bile acid and SCFAs metabolism

directly or indirectly induced by Ab1-42 in the intestinal tract. In
this way, XAN improves learning and memory deficits in AD

rats (192). Similarly, fructose-oligosaccharides from Morinda

Officinalis (OMO) can not only maintain the diversity and

stability of the gut microbiome, but also have a similar effect

in regulating neurotransmitters (193). Through metabonomics

correlation analysis, it is beneficial for us to understand the

mechanism of action of TCM by studying metabolic pathways

related to metabolites derived from intestinal microorganisms.

However, specific mechanisms need to be further explored, and

relevant studies have been listed in Table 6.
2.3 Discussion

With the development of modern society, there are more

and more sporadic AD patients, many of whom have

neuroendocrine related dementia risk factors. Existing western

medicine treatment methods for AD mostly focus on a single

target to improve neurological function, but due to the complex

etiology of AD, a single treatment method often cannot play an

ideal role, and some drugs will produce dangerous side effects,

which is not well accepted by patients. TCM has unique

advantages in treating AD. First of all, as endocrine is A

complex organic whole, it is sometimes difficult for drugs with

A single target to take into account multiple causes. TCM can

simultaneously take into account multiple pathologies of AD in
FIGURE 3

The neuroendocrine mechanism of TCM regulating HPG axis.
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the nervous system and peripheral organs through multi-target

action, such as regulating the aggregation of Ab and pTau in the

whole process from generation to metabolism. Regulates

inflammation and oxidative stress associated with central and

peripheral insulin resistance; Regulate intestinal flora to reduce

systemic inflammation, improve the internal environment of the

nervous system from the root, and treat AD. Secondly, the use of

natural ingredients in TCM have been proved to be safer.
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Currently western medicine such as Donepezil, lisdamine,

galantamine and memantine, are commonly used in AD

patients and often have side effects such as headache,

dizziness, weight loss, abnormal blood pressure and confusion.

None of them are recommended for the prevention of cognitive

decline in early stage patients. Many TCM prescriptions,

including Liuwei Dihuang decoction, Xuefu Zhuyu decoction

and many other recipes mentioned above, have been applied for
TABLE 6 TCM regulates neuroendocrine administration through the brain-gut axis.

TCM Model Methods Memory Neuroprotective effect Reference

Gas Mice D-gal Improved LPS↓,proinflammatory cytokine↓ (189) Fasina OB,
et al. 2022

Se-Ps Mice LPS Improved pro-inflammatory mediator↓, anti-inflammatory cytokines↑ (190) Wu S,et al.
2022

QWF Rats Ab1-42 Improved pro-inflammatory mediator↓, Improved the hippocampal morphology (191) Xiong W, et
al. 2022

XAN Rats Ab1-42 Improved Regulation of neurotransmitter, amino acids, bile acids, and SCFAs metabolism (192) Zhou H, et
al. 2022

OMO Rats D-gal
Ab1-42

Improved Improve neurotransmitter synthesis and secretion (193) Chen D,et al.
2017

Rg1 Mice 3xTg-AD / Linoleic acid metabolism,arachidonic acid metabolism,tryptophan metabolism,sphingolipid
metabolism

(194) Li G, et al
.2019

HAL Mice hyoscine Improved cholinergic function↑,pro-inflammatory mediator↓ (195) Li SP, et
al.2018

Ge Mice Ab1-42 / Lysophosphatidylcholine metabolism, phenylalanine metabolism (196) Li J, et al.
2018

BSTSF Rats Ab1-42 Improved Linoleic acid metabolism,beta-linolenic acid metabolism,glycerophospholipid metabolism,tryptophan
metabolism, arginine, proline metabolism

(197) Zhang Z,
et al. 2020

HLJDD Rats Ab25-35 / Methionine metabolism, glutamine metabolism,tryptophan metabolism (198) Gu X, et al.
2020
The '↑' means up-regulation and '↓' means down-regulation.
TABLE 5 Mechanisms associated with phytoestrogen treatment with AD.

TCM Methods Animal Cell Mechanism Reference

Curcumin / / SH-SY5Y
HEK293- APPswe

ERb↑/NFkB↓
Ab↓、BACE1↓

(176) Huang P,et al.2020

Resveratrol SAMP8 Mice / ERa/ERb↑、Nrf2/HO-1↑Ab↓ (182) Kong D,et al.2019

Genistein Ab25-35 / PRHN GluR2↑、NR2B↑ (185) Wang Yxiang,et al.2020

Kaempferol Ab25-35 / PC-12 ER/ERK (180) Zhang N,et al.2020

Biochanin A APP/PS1
OVX

Mice / Beclin1、LC3B↑
p-Drp1、OPA1、Mfn2↑
Ab↓、BACE1↓

(183) Hou Y,et al.2022

Patchouli alcohol APP/PS1
PTA

Mice BV2 ERb/BDNF/TrkB/CREB (181) Yan Qying,et al.2022

a-ZAL Ab25-35 / PRHN GRP78/PERK/CHOP10↓ (184) Yilong D,et al.2017

Calycosin APP/PS1 Mice / PKC (177) Song L,et al.2017

Silibinin Ab1−42 Rats / ERER↓/PI3K↓/Akt↓
p-JNK↑ p-p38/p-ERK↓

(178) Xiaoyu S,et al.2018

Erzhi pills OVXd-gal
Ab1-40

Rats / PI3K↑/Akt↑/GSK3b↓
Bad/Bcl-xl/Bcl-2↑
Ab↓、p-Tau↓

(179) XieY,et al.2021
OVX, Ovariectomize.
The '↑' means up-regulation and '↓' means down-regulation.
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thousands of years in China. With the development of modern

medicine, more evidence-based medical studies have shown

satisfying safety and therapeutic benefits of these herbs (199,

200). In view of the objective factors such as the mixture of TCM

components in traditional medical treatment, in recent years,

researchers have tried to clarify the mechanism of TCM by

isolating the active ingredients in formulations or natural

Chinese medicinal materials and conducting cell or animal

experiments (201). Relevant studies have shown that TCM is

an option for patients with AD-related risk factors and mild

cognitive decline (202). Some clinical studies have also shown

that the combination of TCM and western medicine can have

long-term effects on patients with mild cognitive impairment,

but larger clinical studies are still needed to enhance the level of

evidence (203, 204). Finally, for patients in the early stage of

cognitive deficit, timely reduction of various risk factors to

promote neurological compensation can greatly improve the

quality of life of patients in the later stage. There is a gap in

western medicine in this aspect, and Chinese medicine can play a

good supplement in this aspect.

In the process of data collection, it was found that some

active ingredients of Traditional Chinese medicines such as

ginseng, dendrobium, EGCG, silibinin, berberine, curcumin,

genistein and so on can regulate various neuroendocrine

pathways. This suggests that these drugs have multiple targets

in AD, making them more powerful drugs. However, the

majority of these studies can not fully explain whether the

effects of these drugs on hormone receptors can fully cover

their effects, and further experiments are needed. We also found

that TCM prescriptions often regulate a variety of

neuroendocrine pathways, but the related mechanisms are

rarely studied. It was also found that these neuroendocrine

related axes often affect mitochondria and endoplasmic

reticulum related functions to promote AD susceptibility.

More effective drugs and treatments can be found by screening

TCM treatments that affect the above related pathways. At

present, most of the relevant mechanisms of TCM regulation

of the neuroendocrine axis are still not in-depth, such as

immune regulation mechanism, metabolism mechanism and

other studies need to be further supplemented. Since the

neuroendocrine disorders of AD patients vary from person to

person, exploring the unique effects of TCMs can provide a basis

for personalized treatment.

At present, there are still many deficiencies in the research

on the neuroendocrine therapy of AD regulated by TCM. The

research on the endocrine regulation mechanism of TCM is still

at the surface phenomenon, lacking in-depth mechanism

discussion. This is partly due to the use of natural products in

TCM, which has the promiscuous characteristics. On the other

hand, due to the complexity of endocrine system itself, further

research is needed. Due to the differences between animal

endocrine physiology and human neuroendocrine physiology,
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human neuroendocrine physiology has unique characteristics.

Although existing animal research models can represent certain

characteristics of AD to a certain extent, for sporadic AD with

mixed etiology, a model closer to the actual situation still needs

to be developed. Although TCM has been used in China and

other Asian countries for thousands of years, in the era of

modern medicine, more standardized and larger scale clinical

studies are necessary to establish widely accepted and

recommended TCM treatment plans for dementia.
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