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Background
Mutational signatures are distinctive combinations of somatic mutations which can be 
of various origin, such as exogenous or endogenous exposures, defective DNA repair 
pathways, DNA replication infidelity or DNA enzymatic editing [1, 2]. Currently, on 
the order of 100 signatures have been discovered in human cancer, but for the major-
ity of them the aetiology remains unknown. This has given rise to a rich new field of 
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mutational signature discovery, as well as linking signatures to various risk factors, in 
projects like Mutographs [3].

De novo extraction of signatures is commonly performed using Non-Negative Matrix 
Factorisation (NMF)  [4] for somatic mutations under various mutational classifica-
tions [5], with tools such as SigProfilerExtractor [6]. Such signature extraction has been 
extremely informative in the analysis of many cancer types and shed light into mutagen-
esis of endogenous and exogenous risk factors [2].

It has also become apparent that certain signatures show a dose-response relation-
ship with risk factors, for example COSMIC signature SBS4 with tobacco smoking [7]. 
In order to characterise such relationships, it is increasingly important to attribute 
mutational signatures, i.e. estimate their activities in any given sample, with confidence 
intervals. Some signatures with similar shapes are difficult to differentiate between each 
other, for instance COSMIC signatures SBS5 and SBS40 that both have a relatively flat 
profile. For such signatures, point estimates of attribution can often be inaccurate, lead-
ing to false positive or false negative findings.

Ideally, statistical uncertainty of signature attribution would be best estimated by per-
forming repeated measurements. Given the high cost and complexity of such measure-
ments (especially sample preparation, DNA extraction and sequencing), one needs to 
look for other alternatives. Bootstrapping has been proposed as a practical method to 
estimate uncertainty of signature attribution  [8, 9], however, not all investigators are 
explicit in the precise version of bootstrapping used. Whereas some suggest that sim-
ple resampling with replacement of a mutational catalogue can give a meaningful result, 
we argue that classic bootstrap is not applicable in mutational signature attribution, and 
propose the parametric bootstrap approach under assumption that mutations accumu-
late according to Poisson processes for each given mutation class, such as a trinucleotide 
context.

Another common difficulty of signature attribution packages is the low reproducibil-
ity as well as scalability of computations in high-performance computing environments. 
This is a particular concern when analysis is performed on large datasets, and when the 
number of bootstrap variations is considerable. We resolve this issue by utilising Nex-
tflow  [10], a domain-specific language (DSL) designed to primarily address computa-
tional irreproducibility and efficient parallel execution in a large number of computing 
environments, from individual workstations to server clusters and cloud computing 
services.

Implementation
Consider a mutational catalogue (such as a set of somatic mutations in cancer genomes) 
as a matrix M ( m× n ). Here, m is the number of mutation types, such as 96 single base 
substitution types in the trinucleotide context, and n is the number of samples. Let S 
( m× k ) be the non-negative matrix of k mutational signatures (e.g.  COSMIC cata-
logue  [2]). The goal is to find the non-negative matrix of activities (or exposures) A 
( k × n):

(1)
M = S× A
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In a more general version of the problem where the matrix S is unknown, de novo 
extraction of signatures can be performed using algorithms such as Non-negative Matrix 
Factorisation (NMF). Here, we assume that the signature matrix S is known, thereby 
scrutinising a more specific problem of finding activities of predefined signatures. This is 
particularly relevant when estimating the uncertainty of each signature activity is impor-
tant, or simply when the number of samples n is low and one needs to quickly examine 
how well these samples can be explained by known mutational signatures.

The signature attribution problem can therefore be studied independently for each 
given sample y from the mutational catalogue M , as it can be seen as a linear combina-
tion of signatures S and their per-sample activities x:

Several algorithms can be used to solve this kind of problem, such as quadratic program-
ming (QP) or simulated annealing (SA). Here, we utilise the Lawson-Hanson algorithm 
for non-negative least squares (NNLS) [11], which is essentially a constrained version of 
the ordinary least squares problem:

Application of NNLS out of the box can be performed using one of the popular packages 
(nnls in R or optimize.nnls function in scipy library in Python), however, such approach is 
known to over-fit the data and lead to a large number of false-positive findings, as shown 
using simulations below. To mitigate this, ad-hoc approaches can be utilised, such as the 
optimisation of signature attribution using additional penalties on each signature’s con-
tribution, or by using pre-existing biological knowledge such as strand bias rules [2, 12]. 
Although such optimisation is implemented in MSA using the penalty loops described 
below, the main advantage of the tool is the ability to quantify the confidence of attribu-
tion for each signature.

Classic bootstrap

To estimate the confidence of signature attribution, several bootstrap approaches have 
been explored when developing this tool. In principle, bootstrapping can be applied 
to the full genome sequence data, but in the context of mutational signatures we apply 
bootstrap to collapsed mutational catalogues [matrix M in Eq. (1)] for the sake of com-
putational facility. Furthermore, it appears problematic to validate bootstrapped full 
sequences with simulations of predefined signatures.

Initially, a simple bootstrap, meaning resampling with replacement, was attempted 
on both simulated and real data. In this approach, N observations are randomly drawn 
from an initial sample with N mutation counts with replacement. In any given resam-
ple, each observation occurs 0, 1 or more times according to the binomial distribution 
Binomial(N , 1/N ) . Since the total number of observations is N, all counts jointly form 
a multinomial distribution Multinomial(N , 1/N , . . . , 1/N ) . Importantly, this approach 
gives meaningful results only under the i.i.d. assumption, i.e. when underlying random 
variables are independent and identically distributed [13]. This is not the case in muta-
tion profiles: existing mutational signatures suggest that accumulation of mutations in 
particular trinucleotide contexts are inter-dependent and not identically distributed. 

(2)y = S× x

(3)arg minx�Sx − y�2, x ≥ 0
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For example, samples with high levels of APOBEC activity are characterised by muta-
tions enriched within TCA and TCT contexts, clearly not identically distributed to all 
other trinucleotide contexts. Not surprisingly, using simple bootstrap to derive confi-
dence intervals of signature attribution leads to rather poor results (Fig. 1a). In a simu-
lated example, four COSMIC signatures (SBS 1, 5, 22 and 40) were used to mimic real 
kidney RCC (Renal Cell Carcinoma) data without noise. Whilst running NNLS on the 
input sample yielded attributions nearly identical to the simulated true values, results 
on bootstrapped samples were vastly different, producing grossly inaccurate confidence 
intervals.

Some investigators argue that classic bootstrap approach can be regarded as conserva-
tive for non-i.i.d. data [14]. Other investigators argue that classic bootstrap is inadequate 
for high-dimensional non-i.i.d. data [15]. In the context of high-dimensional mutational 
profiles, we choose to derive confidence intervals on signature attributions using para-
metric bootstrap.

Parametric bootstrap using Multinomial distribution

Parametric bootstrap assumes that the data follow a known underlying distribution. This 
implies making certain assumptions on the original dataset, so that the bootstrap sam-
ples can be drawn from the estimated parametric model.

Here, we make an assumption that mutations are accumulated following Poisson dis-
tributions for each mutation class, such as a specific trinucleotide context, i.e.  that in 
each class, mutations accumulate randomly, independently and at a constant rate.

The idea of parametric bootstrap applied to mutational processes was inspired by mut-
Signatures package  [9] (which is itself based on the original MATLAB framework for 
deciphering signatures [16]), where the input mutation matrix is bootstrapped according 
to the multinomial distribution Multinomial(M, p1, . . . , pm) , where M is the total muta-
tional burden in a given sample, and probabilities pi are normalised mutation counts for 
each mutation type. This distribution is chosen since the conditional distribution of a 
vector of independent Poisson variables is equivalent to multinomial distribution [17].
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Fig. 1  Attribution with a classic and b parametric bootstrap. Confidence intervals are derived as [2.5%, 
97.5%] percentiles of the resulting bootstrap activities, applied to simulated data with COSMIC signatures SBS 
1, 5, 22 and 40, without noise. Point estimates of NNLS attribution (red dots) almost perfectly coincide with 
the generated true values (green dots) in such noiseless scenario
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Since the mutational burden of each bootstrap sample is fixed and equal to M, we 
slightly modify the method by drawing counts from independent binomial distributions, 
so that the total mutational burden is no longer fixed. Nevertheless, for any given muta-
tion category (e.g. C[T > A]G trinucleotide context on Fig. 2) the distribution of boot-
strapped mutation counts follows a Poisson distribution.

For each bootstrap sample, NNLS attribution is applied to derive the vector of signa-
ture activities. 95% confidence intervals are then derived for each signature attribution 
by taking [2.5%, 97.5%] percentiles of the resulting bootstrap activities. Direct compari-
son with classic bootstrap on a simple simulated case without noise shows a clear advan-
tage of the parametric method (Fig. 1b).

Optimisation of signature attribution

Since pure NNLS is based on a simple fitting approach, it is generally prone to over-
fitting, particularly in noisy environments [18]. To mitigate this, a form of regularisation 
can be applied using the penalisation loops to add or remove signatures based on their 
contribution to the fit. This approach is based on the penalised attribution used in Pan-
Cancer Analysis of Whole Genomes (PCAWG) consortium signature assignment [2].

The default optimisation strategy, called removal strategy, starts with a full set of 
available signatures. Base L2 similarity of the reconstructed profile (linear combination 
of input signatures) to the input mutational profile is calculated, normalised by its L2 
norm. Afterwards, a removal loop is executed, where all least contributing signatures 
increasing the L2 similarity by less than a given penalty (called “weak” threshold) are 
sequentially removed. The resulting set of remaining signatures is used to describe the 
input sample by applying the final NNLS fit.

On the other hand, high penalties used in optimisation can lead to under-fitting of 
data, meaning that optimal penalties need to be derived. We perform this by running 
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with 1000 bootstrap variations, the histogram is fitted by Poisson probability mass function
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simulations and measuring sensitivities, specificities as well as other metrics for all act-
ing signatures.

Automation and integration

The MSA tool is implemented as a set of scripts in Python language, with simulation, 
optimisation and final attribution steps fully automised using Nextflow workflow man-
agement system  [10]. All dependencies, including packages such as pandas, numpy, 
scipy, matplotlib and seaborn, are automatically handled by Nextflow via containerisa-
tion using Docker technology, as well as Singularity where Docker is not available. Users 
not willing to use Docker or Singularity may opt to use a Conda environment that is also 
automatically handled by Nextflow, yet this approach has inferior reproducibility com-
pared to container technology.

Native support of SigProfilerMatrixGenerator [5] and SigProfilerExtractor [6] tools is 
implemented in MSA for convenience. Where SigProfiler outputs are available, running 
MSA is as simple as executing a single line containing the output paths: 

nextflow run https://gitlab.com/s.senkin/MSA -profile 
docker --dataset test --SP_matrix_generator_output_path 
path/to/SP_ME/ --SP_extractor_output_path path/to/SP_
extractor/

Mutational classifications currently supported are SBS-96, SBS-192 and SBS-288 for 
single base substitution signatures, DBS-78 for doublet base substitution signatures, 
ID-83 for small insertion and deletion signatures, SV-32 for structural variant signa-
tures. The SV signatures are implemented as an experimental feature.

Results
Execution of the MSA tool using Nextflow automatically produces various output files, 
including tables with absolute and relative signature attributions, statistical information 
with goodness-of-fit measures, optimisation plots and tables, fitted mutation spectra, 
residuals and all bootstrap output including confidence intervals of attribution. All cor-
responding plots are produced in PDF format.

Validation with simulations

When simulating a dataset that is supposed to resemble real data, one generally has 
to make certain assumptions about underlying distributions. Firstly, we explored sce-
narios mimicking real cohorts (e.g. shown on Fig. 1), with a defined set of acting refer-
ence COSMIC signatures, where generated signature attributions follow non-negative 
zero-inflated Gaussian distributions. Generally, such distributions do not describe real 
attributions well, especially for rare signatures. Therefore, as a default approach fully 
automised within the MSA Nextflow pipeline, we use data-driven simulations based on 
a simple bootstrap of signature activities derived without regularisation (i.e. with zero 
penalties). These activities are used to generate mutational profiles which are then resa-
mpled with replacement and injected with noise. Although these activities are bound 
to be over-fitted, they provide a way to sample signature attributions from distributions 
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of observed real data, capturing signatures specific to any given cohort. The over-fitted 
generated signatures generally have low attribution levels, and can be regarded as noise 
in addition to the default noise model. We use the Gaussian noise model by default, with 
the standard deviation equal to 10% of mutational burden for each sample. Alternatively, 
Poisson model can be used, where the variance is equal to the mean generated mutation 
burden for any given mutation type.

Simulations allow to estimate the performance of signature attribution overall, as well 
as for each signature in different optimisation scenarios. Since the simulated truth is 
always known, one is able to calculate various metrics in order to estimate the accuracy 
of signature attribution, such as sensitivity and specificity for each signature, or for all 
signatures on average. As an example, Fig. 3 shows such metrics for all COSMIC SBS 
signatures combined, based on the simulated model of Esophageal Squamous Cell Carci-
noma (ESCC) signature activities. Figure 4 shows these metrics for COSMIC signatures 
SBS5 and SBS16, for a range of “weak” penalties discussed previously. Signatures SBS5 
and SBS16 were picked as typical examples of signatures with flat and non-flat profiles, 
respectively. The L2 penalty of zero corresponds to simple NNLS fit without any optimi-
sation. Metrics are estimated with and without utilising confidence intervals, with the 
latter approach using the lower limit of confidence intervals when calculating metrics.

First of all, it is evident that higher penalties lead to lower sensitivity yet higher speci-
ficity of signature attribution. Secondly, confidence intervals allow to reach higher levels 
of specificity for signatures that are particularly difficult to attribute, such as signatures 
SBS5 and SBS40 due to their relatively flat profile. In a given example without confidence 
intervals, i.e. only using point estimates of attributions derived for simulated samples, 
specificity of SBS5 never reaches 90% . On the other hand, confidence intervals do drive 
weakly-acting signatures with low attributions to zero, hence lowering the overall sen-
sitivity to such signatures, which can be partially recovered by applying a lower penalty.

Generally, finding an optimal penalty is always a trade-off. The advantage of the MSA 
tool is its flexibility with respect to optimisation. By default, the pipeline automatically 
runs optimisation across the default range of L2 penalties, prioritising specificity of all 
signatures. However, investigators are free to choose a more or less conservative strategy 
by prioritising sensitivity or specificity of selected signatures.

(a) (b)
Fig. 3  Overall performance metrics of signature attribution for simulated ESCC cohort with respect to 
optimisation penalty. a Senstivity, specificity and Matthews correlation coefficient are calculated using point 
estimates without confidence intervals. b Similar metrics are calculated using bootstrap variations yielding 
confidence intervals. Red horizontal line corresponds to the 95% value for each metric
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Finally, performance of MSA was benchmarked against existing tools using both real 
and synthetic data published by the PCAWG consortium [19] (Additional file 1), as well 
as simulations based on the real PCAWG data, for SBS, DBS and Indel mutation types 
(Additional file 2). MSA generally achieves higher attribution performance than that of 
other tools due to its automised optimisation of the penalties applied, coupled with the 
application of confidence intervals.

Discussion
We explored parametric bootstrap based on multinomial distribution as an effective 
method to derive confidence intervals of mutational signature attribution for any given 
mutational profile and available set of de novo extracted, or reference signatures. The 
multinomial distribution is chosen as the one corresponding to an assumption that 
mutations are accumulated according to Poisson processes for each mutation class, in 
line with the original signature extraction algorithm [16], but other assumptions can be 
potentially investigated—such as Monte Carlo simulations of mutations following distri-
butions of increasing complexity.

The main limitation of the parametric bootstrap we use is its bias towards 
observed data, since empirical probabilities pi in the multinomial distribution 
Multinomial(N , p1, . . . , pm) are taken from real data which can be inaccurate. However, 
this method aims to estimate the statistical uncertainty of signature attribution method 
rather than total uncertainty of attribution, and for such purposes remains adequate.

(a) (b)

(c) (d)
Fig. 4  Performance metrics for COSMIC signatures SBS5 and SBS16 with respect to optimisation penalty. 
SBS5 metrics are derived using point estimates (a) and confidence intervals (b). Similarly, SBS16 metrics are 
derived using point estimates (c) and confidence intervals (d). Red horizontal line corresponds to the 95% 
value for each metric
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Parametric bootstrap can be applied using both simple NNLS attribution and the one 
based on penalised optimisation designed to maximise sensitivity and specificity of sig-
nature attribution. We developed a set of tools assisting in the validation of optimisation 
parameters for any given scenario using automised data-driven simulations of different 
cancer types and population cohorts. In general, it appears that such optimisation is 
unique for any given cohort due to the uniqueness of acting signatures. It also depends 
on noise, therefore investigators exploring cohorts of interest ideally need to test differ-
ent noise scenarios. We opted to pick the Gaussian and Poisson noise models, yet other 
models such as negative binomial noise are worth consideration.

Estimating the systematic uncertainties of signature attribution, such as the ones due 
to sequencing artefacts, is a more challenging task that requires comparison of multiple 
sequencing technologies, not feasible in most settings. However, an uncertainty due to 
the variant calling can potentially be estimated for any given variant, and propagated to 
the signature attribution uncertainty. Evaluating these and other uncertainties remains a 
matter for further studies.

In summary, considering different sources of errors is an important exercise for any 
measurement, and as we show here, particularly for the attribution of mutational sig-
natures. We hope that investigators will continue to ask such questions and strive to 
advance the methods shedding light on them. As a step in this direction, we present 
MSA—a computational tool to attribute mutational signatures with confidence intervals 
in an easily reproducible and scalable manner.

Conclusions
Mutational signature attribution is a problem distinct from signature extraction, requir-
ing uncertainty estimation, particularly in noisy scenarios or when the acting signatures 
have similar shapes. Whilst many packages for signature attribution exist, a few provide 
accuracy measures, and practically none apply automised regularisation based on simu-
lations. Furthermore, most tools are not easily reproducible nor scalable in high-perfor-
mance computing environments.

In this study, we propose MSA, a computational tool for optimised mutational signature 
attribution based on simulations, providing confidence intervals using parametric bootstrap. 
It is the first tool to perform automatic optimisation of regularisation based on data-driven 
simulations specific to any given input cohort. The tool comprises a set of Python scripts 
unified in a single Nextflow pipeline with containerisation, specifically designed for cross-
platform reproducibility and scalability in high-performance computing environments.

MSA is publicly available at https://​gitlab.​com/s.​senkin/​MSA with an extensive docu-
mentation at https://​gitlab.​com/s.​senkin/​MSA/-/​wikis.

Availability and requirements

•	 Project name: MSA
•	 Project home page: https://​gitlab.​com/s.​senkin/​MSA
•	 Project wiki page: https://​gitlab.​com/s.​senkin/​MSA/-/​wikis
•	 Operating system(s): Platform independent
•	 Programming language: Python, Nextflow DSL

https://gitlab.com/s.senkin/MSA
https://gitlab.com/s.senkin/MSA/-/wikis
https://gitlab.com/s.senkin/MSA
https://gitlab.com/s.senkin/MSA/-/wikis
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•	 Other requirements: Java 8 or later, docker, conda or singularity
•	 License: GNU GPL
•	 Any restrictions to use by non-academics: None

Abbreviations
DBS: Doublet base substitution; ESCC: Esophageal squamous cell carcinoma; ID: Small insertion and deletion; Indel: 
Small insertion and deletion; NMF: Non-negative matrix factorisation; NNLS: Non-negative least squares; SBS: Single base 
substitution; SV: Structural variant.
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